
Chapter 20 Molecules in Motion 

1.  Diffusion: the migration of matter down a concentration gradient 

2.  Thermal conduction: the migration of energy down a  
temperature gradient   

3.  Electric conduction: the migration of electric charge along a 
potential gradient 

4.  Viscosity: the migration of linear momentum down a velocity 
gradient 

                                  

Transport properties of a substance 



Figure 20.1 
Four types of transport properties: (a) diffusion, the 
spreading of one species into another ; (b) thermal 
conduction, when molecules with different energies 
of thermal motion (represented by the arrows) 
spread into each other’s region; (c) electrical 
conduction, when ions migrate under the influence 
of an electric field; (d) viscosity, when molecules 
with different linear momenta (represented by the 
arrows) migrate.  



The Kinetic Model of Gases  
Three assumptions 

1. The gas consists of molecules of mass m in ceaseless random 
motion. 

2. The size of the molecules is negligible, in the sense that their 
diameters are much smaller than the average distance traveled 
between collisions. 

3. The molecules do not interact except that they make perfectly 
elastic collisions when they are in contact. 

An elastic collision means that the total translational kinetic 
energy of a colliding pair is the same before and after the collision: 
no energy is left in one of the colliding particles as rotational 
energy or vibrational energy, etc. 



The pressure exerted by a gas 
When a molecule of mass m collides with the wall perpendicular 
to the x-axis, its component of momentum along the x-axis 
changes from mvx to –mvx. The total change of momentum on 
each collision is of magnitude  2 .xmv

The collision frequency, z: the number of collisions made by a 
single particle 

The mean free path, λ: the average distance each particle travels 
between collisions 



Figure 20.2 
The pressure of a gas arises from the impact of its molecules on the 
walls. In an elastic collision of a molecule with a wall perpendicular 
to the x-axis, the x-component of velocity is reversed but the y- and 
z-components are unchanged.  



Figure 20.3 
A molecule will reach the wall on the right within an interval ∆t if it is 
within a distance vx∆t of the wall and traveling to the right.  

The number of collisions in a time interval ∆t  ≅ the number of 
molecules able to reach in that time 



The distance a molecule of velocity vx can travel in a time 
so all molecules lying within a distance            of the wall will strike it if 
they are traveling towards it.   
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Not all molecules travel with the same velocity, and so the 
detected pressure is the average quantity just calculated. 
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2

1
2

1
3

3

pV nRT nMc

RTc
M

= =

 ∴ = 
 

The above equation is an expression for the root mean square 
speed of molecules. However, in an actual gas the speeds of 
individual molecules span a wide range, and the collisions in the 
gas continually redistribute the speeds among the molecules. 
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Figure 20.4 
To calculate the probability that a 
molecule will have a speed in the 
range v1 to v2, we integrate the 
distribution between those two 
limits; the integral is equal to the 
area of the curve between the limits, 
as shown shaded here.  



The distribution                    can depend only on the speed v, where  
                            can not depend on the individual components.    
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For three-dimensional case, the Maxwell-Boltzmann distribution 
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Maxwell-Boltzmann distribution of 
molecular velocities 



Figure 20.5 
The distribution of molecular 
speeds with temperature and molar 
mass. Note that the most probable 
speed (corresponding to the peak 
of the distribution) increases with 
temperature and with decreasing 
molar mass and, simultaneously, 
the distribution becomes broader.  
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The volume of spherical shell 

The probability that the speed lies 
in the range v to v+dv irrespective 
of direction of motion: 
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Figure 20.6 
The probability f(v)dv that the molecule has a 
speed in the range v                        to v+dv is the 
sum of the probabilities that it lies in any way of 
the volume elements dvxdvydvz in a spherical 
shell of radius v. 
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(1) The root mean square speed c is the square root of the average 
value of v2. 
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(2) The mean speed    is the mean of the speeds calculated using 
the Maxwell distribution. 
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(3) The most probable speed     is the speed at which the Maxwell  
     distribution passes through a maximum. 
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Figure 20.8 
A simplified version of the argument to show that the mean relative speed of 
molecules in a gas is related to the mean speed. When the molecules are 
moving in the same direction, the mean relative speed is zero; it is 2v when 
the molecules are approaching each other. A typical mean direction of 
approach is from the side, and the mean speed of approach is then       . The 
last direction of approach is the most characteristic, so the mean speed of 
approach can be expected to be about        . This value is confirmed by more 
detailed calculation.  
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Figure 20.7 
A summary of the conclusions that 
can be deduced from the Maxwell 
distribution for molecules of molar 
mass M at a temperature T: c* is 
the most probable speed,    is the 
mean speed, and c is the root mean 
square speed.  

c



Figure 20.9 A velocity selector. The molecules are produced in the 
source (which may be an oven with a small hole in one wall), and travel 
in a beam towards the rotating disks. Only if the speed of a molecule is 
such as to carry it through each slot that rotates into its path will it reach 
the detector. Thus, the number of slow molecules can be counted by 
rotating the disks slowly, and the number of fast molecules counted by 
rotating the disks rapidly.  



Figure 20.10 
In an interval ∆t, a molecule of diameter d sweeps out a tube of diameter 2d and 
length          . As it does so it encounters other molecules with centers that lie 
within the tube, and each such encounter counts as one collision. In practice, the 
tube is not straight, but changes direction at each collision. Nevertheless, the 
volume swept out is the same, and this straightened version of the tube can be 
used as a basis of the calculation.  
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The mean free path λ,  
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Collisions with walls and surfaces 

A : area of a wall perpendicular to the x-axis 

   : the number density  N
V
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If a molecule has a velocity vx lying between 0 and +    , it will 
strike the wall in a time ∆t if it lies within a distance vx ∆t of it. 
Therefore all molecules in the volume Avx∆t, with velocities in the 
right direction, will strike the wall in the interval ∆t. 
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∴ The number of collisions per unit time per unit area 
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Figure 20.11 
Only molecules within a distance vx∆t 
with vx>0 can reach the wall on the right 
in an interval ∆t. 



The rate of effusion  
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If the area of the hole is A0, the number of molecules that escape per 
unit time is 
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= Graham’s law of effusion:                              
The rate of effusion is inversely proportional 
to the square-root of the molar mass. 

Example: 
Derive an expression that shows how the pressure of an effusing 
perfect gas varies with time. 

When a gas at pressure p and temperature T is separated from a 
vacuum by a small hole, the rate of escape of its molecules is equal to 
the rate at which they strike the area constituting the hole. 

* The calculation of the rate of effusion relies upon the hole being 
much  shorter than mean free path of the gas molecule. 



Example: 
      the diameter of hole = 0.50 mm   
     ∆m = 385 mg (mass loss) for ∆t =100 sec. 
     Calculate the vapour pressure of liquid cesium (Cs) at 500 ˚C. 



 Transport properties 
− effusion 

− diffusion 

− thermal conductivity 

− electrical conductivity 

− viscosity 

Flux, J: − a measure of the rate of the flow 
             − the amount of the property passing through unit area 
in unit time  

Usually the flux of a property is proportional to the gradient of 
a related property of a system.  
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e. g.,  (mass transport) 

(energy transport) 

z-direction 



Fick’s First Law of Diffusion  
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The mass flow occurs down a 
concentration gradient. 
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the coefficient of thermal 
conductivity  



The connection between the flux of momentum and viscosity  
Particles are continuously moving between the laminas, and 
bringing with them the x-component of momentum. A lamina is 
retarded by particles arriving from the left, because they have a low 
momentum in the x-direction, and is accelerated by particles 
arriving from the right. As a result, the laminas tend towards a 
uniform velocity, and we interpret the retarding effect of the slow 
layers on the fast ones as the fluid’s viscosity. 

Figure 20.13 
The viscosity of a gas arises from the 
transport of linear momentum. In this 
illustration the fluid is undergoing laminar 
flow, and particles bring their initial 
momentum when they enter a new layer. If 
they arrive with high x-component of 
momentum they accelerate the layer; if with 
low x-component of momentum they retard it. 



Note, however, that the effect depends on the transfer of x-
momentum into the lamina of interest, and so the viscosity depends 
on the flux of x-momentum in the z-direction. Furthermore, this flux 
depends on the gradient of the x-component of velocity of the fluid 
and so we write  

(momentum along ) x
z

dvJ x
dz

 ∝  
 

or 

x
z

dvJ
dz

η  = −  
 

the (cofficientof) viscosity



The flux of particles is proportional to the gradient of their concentration.  

The rate of diffusion 

Figure 20.14 The calculation of the rate 
of diffusion of a gas considers the net 
flux of molecules through a plane of 
area A as a result of arrivals from on 
average a distance λ away in each 
direction, where λ is the mean free path. 



A molecule can be identified as originating from some point where 
the density of particles is         only if the point z is no farther away 
from the window than some mean free path distance.  
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The net flux  
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The net flux is proportional to the gradient of the concentration. 

Fick’s Law  
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Although a molecule may have begun its journey very close to the 
window, it could have a long-path before it penetrated. Since the 
path is long, it stands a high probability of colliding before passing 
through the window. As might be imagined, taking account of this 
effect introduces considerable labour into the calculation, but the net 
result turns out to be that the result we have derived is modified 
only to the extent of a factor 2/3 , representing the lower flux 
because of the collisions suffered by the longer travelling particles.  

Figure 20.15 
Some molecules travel further 
in order to cross a plane. 



The result of this modification 
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Thermal conductivity 
kTε ν= where v is a number of the order of 1. 

For monatomic particles,  3 2.ν =
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Thermal conductivity 

Suppose every molecule carries an amount of energy ε. 
When one molecule passes through the imaginary window, it 
transports that amount of energy. 
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The energy gradient can be related to the temperature gradient by 
means of the heat capacity of the sample. 
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This shows that k is independent of pressure. 
The physical reason for this pressure independence is that the thermal 
conductivity is large when many molecules are available to transport 
the energy but the pressure of many molecules limits the mean free 
paths and so the molecules are unable to carry the energy even great 
distances: these two effects balance. 



The viscosity of gases 
We have already seen that the coefficient of viscosity is 
determined by the rate at which momentum is transported. 

Figure 20.16 The calculation of the 
viscosity of a gas examines the net 
x-component of momentum brought 
to a plane from faster and slower 
layers on average a mean free path 
away in each direction. 



The number of impacts on the imaginary window is          per unit 
area per unit time. 
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     The viscosity increases with temperature because            . The peculiar  
     result arises because at higher temperatures the particles travel more  
     quickly and thus the flux of momentum is greater. 

     This viscosity behavior is quite different from that shown by liquids,  
which flow more easily as temperature is increased. This difference  
stems from the fact that a liquid’s viscosity is dominated by 
intermolecular forces: in order to flow, molecules need energy to escape 
from their neighbors, and this is more freely available at high 
temperatures than at low. 

1
2c T∝



Figure 20.17 The experimental 
temperature dependence of the 
viscosity of water. As the 
temperature is increased, more 
molecules are able to escape 
from the potential wells 
provided by their neighbors, 
and so the liquid becomes more 
fluid. A plot of lnη against 1/T 
is a straight line with positive 
slope. 



One method for determination of viscosity 
Poiseuille’s formula for the flow of fluid through a tube of radius r 

      V: the volume flowing 
p1, p2: the pressures at each end of the tube of length l 
      p0: the pressure at which the volume is measured 

( )2 2 4
1 2

016
p p rdV

dt l p
π

η
−

=

In order to determine the viscosity, the rate of flow under a 
known pressure difference is monitored and interpreted using 
this equation. 



The conductivities of electrolyte solutions 

The most direct evidence for the existence of ions in solutions is 
the observation that the solution can conduct an electric current. 

lR
A

lR
A

ρ

∝

=

Ion motion: the empirical facts 

The simplest way of studying the motion of ions in solution is 
through their conductivity, their ability to conduct electricity. 

R : resistance 

ρ : the resistivity or specific resistance 



The conductivity κ is the inverse of the resistivity ρ , 

1 1 1 11 ( or )l lR m cm
A RA

κ
κ

− − − −= ∴ = Ω Ω

       : reciprocal ohm, is sometimes called mho, and sometimes the 
siemens:      

          1 S = 1  
 

Once the resistance of the sample has been measured, the conductivity                                         
can be calculated from a knowledge of the cell dimensions. 

*
*R

R
κ κ

 
= 

 

R*: the resistance of a standard solution (usu., KCl in water) 

κ*: the known conductivity of the standard sample 

1−Ω

1−Ω



The conductivity depends on the number of charged ions present, 
and so it is normal to express the conductivity as a molar quantity. 

m

m

c
κ

Λ =

Λ

Two types of electrolytes 
 (1) strong electrolytes 

     − Substances of one class have conductivities that depend only  
weakly on the concentration of the solute. 

     − The molar conductivity rises slightly so the concentration falls. 
As the concentration of solute decreases, the molar conductivity 
rises to a limit which is called the molar conductivity at infinite 
dilution,      . 0

mΛ

: the molar conductivity 



Figure 20.18 
The concentration dependence of 
molar conductivities. 

strong electrolyte (ionophores) 

weak electrolyte (ionogenes) 

Kohlrausch’s law 
1
20( ) Κm mc cΛ = Λ −

K  : the coefficient which depends more on the nature of the salt 
than its specific identity 

: the limiting molar conductivity 0
mΛ



0 0 0
m ν λ ν λ+ + − −Λ = +

           : the number of cations and anions needed to form one 
molecule of the salt (e.g.                      for NaCl, CuSO4; 

                                                             for MgCl2). 

,ν ν+ −
1ν ν+ −= =

1,  2ν ν+ −= =

: the molar conductivity at infinite dilution 0 0,λ λ+ −

 (2) weak electrolytes 

     − Substances that have molar conductivities that depend markedly  
on the concentration. 

     −                              : the existence of an equilibrium  

The conductivity reflects the number of ions in the solution, 
and  this depends on the equilibrium constant for the 
dissociation. 

+MA M +A−




      

( )( )
( )

2

1 1
M A

MA

c c c c
K c

c c
α α α

α α
+ −  

= = =  − − 

c : the concentration of added electrolytes 
α : the degree of ionization 

0
m mαΛ = Λ

 : the measured molar conductance 

: the molar conductance of the fully ionized solution 

mΛ
0
mΛ



Oswald’s Dilution Law 
2

0

01

m

m

m

m

K c

  Λ
  Λ  =   Λ −   Λ  

The expression can be used to determine the dissociation equilibrium 
constant by measuring Λm and estimating  0 0 0 0from :m m ν λ ν λ+ + − −Λ Λ = +

1
2 01 41 1

2m m
K c
c K

 
    Λ = + − Λ    

     

the explicit dependence of the molar conductivity on the 
concentration 

0
0
m

m m
m

α α Λ
Λ = Λ ⇒ =

Λ

2

1
K cα

α
 

=  − 



The mobility of ions 

      l : distance of electrode 

   ∆φ : potential ���������� 

 ∆φ /l: the potential gradient 

The magnitude of the force is proportional to the potential gradient. 

   F = zeE      

   F : force  
   ze: the charge on an ion (where z  is positive for cations and 

negative for anions) 

   E : elective field 

 

 

φ∆ = 
 l



φ∴ = ∆F ze l

The force acting on an ion accelerates it, but as it rubs through the 
solvent, a frictional force retards it. It is therefore accelerated only to 
some limiting velocity which depends on the strength of the applied 
field and the viscosity of the solvent. This terminal velocity is called 
the drift speed of the ion in solution, and is denoted s. 

Stokes formula 

the frictional force = 6πaη s 
a: the radius of a spherical object 
η: the viscosity of a medium 

6

6

a s ze
zes
aπ η

π η ≅

∴ ≅

E 

E 



Table 20.1 Ionic mobilities in water at 298 oK 



Since the drift speed governs the rate at which current may be 
conducted, it follows that we should expect the conductivity to 
decrease with increasing solution viscosity and increasing the size. 

Experimental results confirm the first of these predictions, but not the 
second. For example, the molar conductivities of the alkali metal ions 
increase on going from Li+ to Cs+ even though the ion size are known 
to increase markedly. 

Solvation effect 

The solvent molecules cluster around the ion increase its effective 
size (hydrodynamic radius). Small ions are the source of stronger 
electric fields than large ions (this is a result of electrostatic theory, 
which shows that the electric field at the surface of a sphere of 
radius r is proportional to ze/r2) and so the solvation is more 
extensive in the case of small ions. They have larger hydrodynamic 
radii than larger ions, lower drift velocities, and therefore lower 
conductivities. 



The mobility of ions 
The drift velocity of an ion is a quantity with direction as well as 
magnitude. We shall call its magnitude the drift speed s±, so that 
s±=|v±|. 

s± ∝

s u± ±=

E :  electric field applied  

u±:  − the mobility of the ion 
       −  the speed of the ion in a field of unit length  
            directly related to the conductivity 

E 

E 



The relation between mobility and conductivity 
Consider a solution of a salt              of concentration c (molar 
concentration in moles per unit volume) so that it contains v+cNA 
cations and v−cNA anions per unit volume. The cations have charge 
z+e and the anions z−e. 

volume: s+∆tA 

the number that pass through: (s+∆tA)v+cNA 

Figure 20.19 
Calculating the charge flux. 

M Xν ν+ −



Each ion carries a charge z+e, and so the flux of positive charge, the 
number of charge passing through per unit area per unit time, is  

( )( ) A AJ s tA v cN z e A t v s z ceN+ + + + + + += ∆ ∆ =charge

Current is also transported by the anions; they move in the opposite 
direction but carry the opposite charge. The total flux is therefore 

(

4

( )

( 9.65 10 / )

charge)

where the Faraday constant

A A

A

J v s z ceN v s z ceN

u v z u v z cF

F eN C mol
s u

+ + + − − −

+ + + − − −

± ±

= +

= +

= = ×
=

Since the current and ,I JA E
l
φ∆

= =

( )u v z u v z cFA
I

l
φ+ + + − − −+ ∆

=

E 

E 



Comparison of these two expressions 

( )v u z v u z cFκ + + + − − −= +

the molar conductivity 

( )m v u z v u z F+ + + − − −Λ = +

For a 1:1 salt with |z+|=|z−|=z,  

( )m z u u F+ −Λ = +

the individual conductivities of cation and anion 

u z Fλ± ± ±=

Ohm’s law 
1A lI R

R l A
φ κ φ

κ
∆ ∆  = = ← = 

 



By measuring the conductivities we can find the mobilities through 
last two equations. 

the transport number: the fraction of the total current carried by 
each type of ion 

For 1:1 salt, 

,

/ orm m

u ut t
u u u u

t tλ λ λ
λ λ

+ −
+ −

+ − + −

±
± ± ± ±

+ −

= =
+ +

= = Λ = Λ
+

Therefore, if we have an independent way of measuring 
transport numbers, the individual ion conductivities, and then 
the mobilities, may be established. 



Conductivities and ionic interactions 

Examination of eq                                  ( )
1

0 2Km mc cΛ = Λ −

(1) relaxation effect 
An ion tends to gather into its vicinity a cluster of ions of opposite 
charge. The charge cloud is called the ionic atmosphere, and on 
the average it is spherically symmetrical. 

Figure 20.19 
(a) The ionic atmosphere when the ions 
have no net motion and (b) the distortion 
arising from motion. 



An external electric field induces a distortion of ionic 
atmosphere so that the overall effect displace the center of 
charge of the atmosphere a short distance behind the moving ion. 
As the charge of the ion and atmosphere are opposite, the result 
is to retard the motion of the moving ion. This is called the 
relaxation effect, because the formation and decay of the 
atmosphere is a kind of relaxation into an equilibrium 
distribution of the ions. 

(2) electrophoretic effect 

When the ions are not infinitely far apart, the viscous drag 
effect is enhanced because ions of opposite charge, each with 
their cluster of solvent molecules, are rubbing past each other. 
This enhances the viscous drag, which is called the 
electrophoretic effect, and lowers the drift velocity and 
therefore the conductivity.  



1 1
2 2 2 2 2 22 22 2,   

3 24
A AzeF z e N e z q z e NA B

kT kT kTπη ε πε πε
   

= =   
   

where ε : the electric permittivity of the medium 

             q ~ 0.586 for a (1,1)-electrolyte 

Debye-Hückel-Onsager equation for molar conductivities 
1

0 0 2( )m m mA B cΛ = Λ − + Λ



The slopes of the curves are predicted to depend on the 
valence type (z appears in the constants A and B). 

The success of the Debye−Huckel−Onsager equation suggests that 
the model of ion-ion interactions is substantially correct. 

Figure 20.20 
The dependence of molar conductivities 
on the square root of the ionic strength, 
and comparison (dotted line) with the 
dependence predicted by the Debye-
Huckel-Onsager theory. 



Diffusion: the thermodynamic view 

∴ the work involved in transferring unit amount of material  
     from x to x + dx is 

Fundamental aspects of molecular transport 

When unit amount of solute is moved from a region where its 
chemical potential is µ (1) to one where it is µ (2), the work required 
is w = µ (2)    µ (1). 

( ) ( ) ( )dw x dx x xµ µ µ= + − = ( )d dx x
dx
µ µ  + −    

     d dx
dx
µ =  

 

In classical mechanics 

       : forcedw Fdx F= −

−



By comparing the last two equations we see that the gradient of 
the chemical potential acts like a force. 

In an ideal solution where the concentration is c, 

:   thermodynamic foF rced
dx
µ = − 

 

( )o 3lnRT c mol dmµ µ −= + ⋅

If the concentration depends on position, the thermodynamic 
force acting is 

( )oF ln RTd RT c dc
c dx xd

µ   −  
 

=


− =


+



Example: 
Suppose that the concentration of a solute decays exponentially 
along the length of a container. Calculate the thermodynamic force 
on the solute at 25 oC when the concentration decreases to half its 
value in every 10 cm. 



From the exponential form of the concentration it follows that 

dc c
dx λ

= −

,

F
p T

RT c
c x

∂ = −  ∂ 

1 1

2

F

8.31 298     17 /
14.4 10
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−

∴ =

×
= =

×

( )oF ln
d RT dc

RT c
dx c dx

µ= − + = −  
  
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Fick’s first law of diffusion 
The flux of diffusing particles is motion in response to a 
thermodynamic force arising from a concentration gradient. The 
particles reach a steady drift speed s when the thermodynamic 
force F is matched by the viscous drag. 

Fs ∝

The particle flux J is proportional to the drift speed, and the 
thermodynamic force is proportional to the concentration 
gradient dc/dx. 

dcJ
dx

∴ ∝

AJ sN scN= =

Since ,  F and F ,∝ ∝ ∝J s s dc dx

==>  Fick’s 1st law, (matter)x
dNJ D
dx

= −


A A
dN dcscN D DN
dx dx

   = − = −   
  





Therefore, once we know the effective force and D, we can 
calculate the drift speed of the particles (and vice versa), and this 
will be true whatever the origin of the force. 

( ) FuuE zFE us
zFzF

 = = =  









We know, however, that the mobility of an ion is related to the 
electrical force on it. Since the mobility is defined through s = uE, 
and since the electrical force is ezE, so that the force per mole zFE, 

the drift speed under the 
influence of unit force 

F F  D dc Ds RT dc
c dx c dR xT

      ∴ = − = = −          
 
 


⇐

 



u D
zF RT

∴ =

2 2

( ) ( )m
z FzF u u D D
RT+ − + −Λ = + = +

The nature of the force is irrelevant; therefore the two drift speed 
(D/RT)F and (u/zF)F may be identified: 

The above equation can be developed in two directions: 

uRT ukTD
zF ze

=∴ = Einstein relation 

(1)The relation between the molar conductivity and the 
diffusion constant of the ions, D+ and      for 1:1 salts  

( )
2 2

m
z F D D
RT + −

 
Λ = + 

 
Nernst-Einstein relation 

−D



(2) The relation between the mobility and the viscosity 

          
6
ezEs s uE

aπη
= =

By equating two equations, 

6
ezu

aπη
=

Since the Einstein relation is ezDu
kT

= , the two may be equated 

and combined into the Stokes-Einstein relation. 

 
6
kTD

aπη
=

An important feature of this result is that it is independent of the 
charge of the diffusing species, and therefore it also applies in the 
limit of vanishingly small charge or neutral molecules. 



Example: 
Evaluate the diffusion coefficient, limiting molar conductivity, and 
effective hydrodynamic radius of SO4

2− in water at 298 K. 
3

2 4 2
4

(water) 0.891 10
(SO ) 8.29 10

kg m s
u cm sV
η −

− −

= × ⋅

= ×



The Diffusion Equation 
Let the concentration at x be c at the time t. The number of particles 
that enter the slab per unit time is JA, and so the increase in 
concentration inside the slab on the account of the flux from the left 
is (see Figure 20.21) 

c JA J
t Al l

∂
= =

∂

The outflow flux through the window is J’ 

' 'c J A J
t Al l

∂ − −
= =

∂

The net rate of change of concentration is therefore  

'c J J
t l

∂ −
=

∂



Figure 20.21 

The net flux in a region is the difference between the flux entering 
from the region of high concentration (on the left) and the flux 
leaving to the region of low concentration (on the right). 



The rate of change of concentration is proportional to the curvature 
(the 2nd derivative) of  the concentration dependence on the distance. 

'' dc dcJ J D D
dx dx

− = − +

2

2

c cD D c l
x x x

cDl
x

 ∂ ∂ ∂ = − + +  ∂ ∂ ∂  

∂
=

∂

2

2
c cD
t x

∂ ∂
∴ =

∂ ∂
Fick’s 2nd law of diffusion 

'c J J
t l

∂ −
=

∂



Diffusion with convection 
Convection : the transport of particles arising from the motion 

of a streaming fluid 
If for the moment we ignore diffusion, the flux of particles through 
an area A in an interval Δt when the fluid is flowing at a velocity v 
can be calculated in the same way as before. 

cAv tJ cv
A t

∆
= =

∆
J: the convection flux 

The rate of change of concentration in a slab of thickness l and area A 
is, by the same argument as before, assuming that the velocity does 
not depend upon the position, 

'J J c vc c l
l x

c
t l

  − ∂ = = − +   ∂   

∂
∂

cv
x

∂
= −

∂



When both diffusion and convection are of similar importance, 
the total change of concentration in a region is the sum of the 
two effects, and the generalized diffusion equation is   

2

2
c c cD v
t x x

∂ ∂ ∂
= −

∂ ∂ ∂

The diffusion equation is a second-order differential equation in 
space and first-order in time, and therefore in order to arrive at a 
solution we have to specify two boundary conditions for the 
spatial dependence and a single initial condition for the time 
dependence. 



The solution of the diffusion equation 
2

0 4( , )
x
Dtnc x t e

A Dtπ
−

=

Another useful solution is for the case of a localized concentration 
of solute in a three-dimensional solvent (a sugar lump suspended 
in a large flask of water). The concentration of diffused solute is 
spherically symmetrical, and at a radius r is 

2

4
0

3
2

( , )
8( )

r
Dtn ec r t

Dtπ

−

=

Consider the specific example of a solvent in which the solute is 
coated on one surface. At time goes, the initial condition is that all 
the No solute particles are concentrated on the y−z plane at x=0. 
The  two boundary conditions are that (1) the concentration must 
be everywhere finite, and (2) the total amount of particles 
(number of moles) present must be no (with no=No/ NA) at all times. 



Figure 20.22 The concentration 
profiles above a plane from which 
a solute is diffusing. The curves 
are plots of diffusion equation and 
are labelled with different values 
of Dt. The units of Dt and x are 
arbitrary, but are related so that 
Dt/x2 is dimensionless. 
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x
Dtn

Dt
c x t e

A π
−

=



The mean distance through which the solute has spread 
after a time t 

The number of particles in a slab of thickness dx and area A at x, 
where the molar concentration is c 

AcAN dx=

The probability that any of the No molecules is there 

o

AcAN dx
N

=

If the molecule is there, it has traveled a distance x from the origin: 
therefore, the mean distance traveled is 

2

4

o

1
2

0 0

1 2
π π

−∞ ∞  
 
 

= = =∫ ∫
x

A Dt DtxcAN dx e dx
N D

x x
t

The average distance varies as the square root of the time lapses. 

2

0 4

π
−

=
x
Dtnc e

A Dt



By combining Stokes-Einstein relation and the above equation 
1 1
2 2

2 2
22

6 3
kTt kTx t

a aπ η π η
   

= =   
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The root mean square distance:  2x x=

( )
2 1

22

0
0

2Ax cAN dxx t
N

Dx
∞

= = =∫

The number in all the slabs up to the one at  x

0
0

( , ) (0.68 )( )
x

A
NN x x t cAN dx
A

≤ = =∫ 

It follows that the proportion of molecules inside the range  
0   is  0.68.x x≤ ≤

6
kT

D
aπη

=



Figure 20.23 The root mean 
square distance covered by 
particles with a typical diffusion 
coefficient                              . 
Note the great slowness of 
diffusion. 

10 2 15 10D m s− −= ×

( )
1

2 22x x Dt= =



Diffusion : the statistical view 

Consider a model of diffusion on the basis that the particles can jump 
through a distance d, and do so in a time τ. This means that the  

distance covered by a molecule in a time t is            . 
t d
τ

 
 
 

Also consider one-dimensional random walk. 

Find the probability that a molecule will be formed at a distance x 
from the origin at a time t. 

(steps)t n
τ

=

nR: the number of steps to the right 
nL: the number of steps to the left 

the net distance 
R L

R L

n n n

x n d n d

= +

∴ = −



The probability of being at x after n steps of length d is the 
probability that of the n steps, nR occurred to the right, nL occurred 
to the left, and  

R L
xn n
d

− =

What is the total number of possibilities for left or right steps?                       
In other word, the total number of different journeys for a walk of n 
steps 

2the total number n=

How many ways are there of taking nR of the n steps to the right? 
This is the same as the number of ways of choosing nR objects from 
n possibilities, irrespective of the order: 

!
!( )!R R

n
n n n−



We can check this in the case of 4 steps, and ask what is the total 
number of ways of taking 2 right steps: 

42 : possible step sequences

LLLL LLLR LLRR LRRR RRRR 
LLRL LRLR RLRR 
LRLL LRRL RRLR 
RLLL RLLR RRRL 

RLRL 
RRLL 

6 ways of taking 2 steps to the right and 2 steps to the left 
4! 6

2!2!
=

6
16

The probability that the particle is at the origin after 4 steps = 
1( 4 )

16
The probability that it is at = =x d



Generally, the probability of being x after n steps 
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This equation becomes identical to the Gaussian distribution 
when we examine the limit in which the number of steps becomes 
very large. 



Stirrling’s approximation (more accurate) 
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If we allow s/n to be a small number (so that x must not be a great 
distance from the origin), 
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the Gaussian form 
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This has precisely the form of c/n0 as a solution of the diffusion 
equation. Therefore we can be confident that the diffusion can be 
interpreted as a result of a very large number of small steps in 
random directions. 

Comparison of the two exponents leads to the identification, 
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∴ = Einstein-Smoluchowski equation 

For if         is interpreted as a mean velocity of the molecules 
undergoing diffusion, and the jump length d is called a mean free path 
and written λ, the Einstein-Smoluchowski equation reduces 
to                  , which is the same as that obtained for the diffusion 
constant from the kinetic theory of gases. 
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λ=D cCompare the eq.: 
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