
Chapter 2B
Instructions: Language
of the Computer

Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 2 — Instructions: Language of the Computer — 2

Branch Addressing
 Branch instructions specify

 Opcode, two registers, target address
 I-type

 Most branch targets are near branch
 Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = (PC+4) + offset × 4
 PC already incremented by 4 by this time

Specifying Branch Destinations
 Use a register (like in lw and sw) added to the 16-bit offset

 which register? Instruction Address Register (the PC)
 its use is automatically implied by instruction
 PC gets updated (PC+4) during the fetch cycle so that it holds the

address of the next instruction
 limits the branch distance to -215 to +215-1 (word) instructions from

the (instruction after the) branch instruction, but most branches
are local anyway

PC
Add

32
32 32

32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

Chapter 2 — Instructions: Language of the Computer — 3

Chapter 2 — Instructions: Language of the Computer — 4

Jump Addressing
 Jump (j and jal) targets could be

anywhere in text segment
 Encode full address in instruction
 J-type

op address
6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)
 = PC31…28 : (address) : 00

Jump Addressing

 Instruction Format (J Format):

0x02 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

Chapter 2 — Instructions: Language of the Computer — 5

Chapter 2 — Instructions: Language of the Computer — 6

Target Addressing Example
 Loop code from earlier example

 Assume Loop at location 80000
Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

00080020(hex) = 0000 0000 0000 1000 0000 0000 0010 0000 (4 + 28 bits)
00080000(hex) = 0000 0000 0000 1000 0000 0000 0000 0000 (20000 <<2)
 80024(hex)= 80012 + 4 + 2 <<2 = (PC + 4) + (offset << 2)

Chapter 2 — Instructions: Language of the Computer — 7

Conditional Branching Far Away
 If branch target is too far to encode with

16-bit offset, assembler rewrites the code
 Example

 beq $s0,$s1, L1

 ↓
 bne $s0,$s1, L2
 j L1
L2: …

Chapter 2 — Instructions: Language of the Computer — 8

Addressing Mode Summary

Upper 4 bits of PC

Shift left 2

Shift left 2

 3 2 1 0

 3 2 1 0
 7 6 5 4
 11 10 9 8

 lsb msb

MIPS is big-endian

Chapter 2 — Instructions: Language of the Computer — 9

MIPS instruction formats

MIPS Organization So Far
Processor Memory

32 bits

230

words

read/write
 addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32
32

32

32

5

5

5

PC

ALU

32 32

32
32

32

3 2 1 0
4 5 6 7

byte address
(big Endian)

Fetch
PC = PC+4

Decode Exec

Add
32

32
4

Add
32

32
branch offset

Chapter 2 — Instructions: Language of the Computer — 10

lsb msb

Chapter 2 — Instructions: Language of the Computer — 11

Synchronization
 Two processors sharing an area of memory

 P1 writes, then P2 reads
 Data race if P1 and P2 don’t synchronize

 Result depends of order of accesses

 Lock and unlock synchronization operation
 Used to create (memory) regions where only a single

processor can operate, called mutual exclusion, as
well as to implement more complex synchronization
mechanisms.

 Hardware primitives required
 Atomic (read and modify) memory operation
 No other access to the location allowed between the

read and write (modify)

§2.11 P
arallelism

 and Instructions: S
ynchronization

Chapter 2 — Instructions: Language of the Computer — 12

Synchronization
 Hardware support required

 Atomic read/write memory operation
 No other access to the location allowed between the

read and write
 In general, architects do not expect users to

employ the basic hardware primitives.
 The primitives are used by system programmers to

build a synchronization library, a process that is often
complex and tricky

 Could be a single instruction
 E.g., atomic swap of register ↔ memory
 Or an atomic pair of instructions

Chapter 2 — Instructions: Language of the Computer — 13

Atomic swap & a simple lock
 A simple lock

 0: to indicate that the lock is free: released
 1: to indicate that the lock is unavailable: locked

 A processor tries to set the lock by swapping 1 in
a register with the memory address of a lock.
 the returned value is 1 (already locked) if some other

processor has already claimed and 0 otherwise.
 In the latter case, the value is changed to 1 (newly

locked), preventing any competing exchange in
another processor from retrieving a 0.

 Implementing a single atomic swap with memory
is challenging (why? two operations in an instruction)
 An alternative is to have a pair of instructions

Chapter 2 — Instructions: Language of the Computer — 14

Load linked and store conditional
 These two instructions are used in sequence.
 If the content of the memory location specified by

the load linked are changed before the store
conditional to the same address occurs, then the
store conditional fails.

 Load linked (locked): ll rt, offset(rs)
 Store conditional: sc rt, offset(rs)

 Store the value of register rt into memory specified
 Succeeds if location not changed since the ll

instruction
 Returns 1 in rt of sc

 Fails if location is changed after the ll instruction
 Returns 0 in rt of sc

Chapter 2 — Instructions: Language of the Computer — 15

An atomic swap
 atomic swap (to test/set lock variable) between

$s4 and the memory location specified by $s1
 exch $s4, 0($s1) ; atomic swap

try: add $t0,$zero,$s4 ;copy exchange value

 ll $t1,0($s1) ;load linked

 sc $t0,0($s1) ;store conditional

 beq $t0,$zero,try ;branch store fails

 add $s4,$zero,$t1 ;put load value in $s4

 Although it is proposed for multiprocessor

synchronization, atomic exchange is also useful
for the operating system in dealing with multiple
processes in a single processor.

Chapter 2 — Instructions: Language of the Computer — 16

Implementation of ll and sc
 Typically implemented by keeping track of the address

specified in the ll instruction in a register, called the link
register.

 If an interrupt occurs, or if the cache block matching the
address in the link register is invalidated (for example, by
another sc), the link register is cleared.

 The sc instruction simply checks that its address
matches that in the link register to determine its failure or
success.

 Since the store conditional will fail after either another
attempted store to the load linked address or any
exception, care must be taken in choosing what
instructions are inserted between the two instructions.

 Only register-register instructions can safely be permitted.

Chapter 2 — Instructions: Language of the Computer — 17

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 Translating and S
tarting a P

rogram

C code – x.c or .TXT
assembly code – x.s or .ASM
object code – x.o or .OBJ
executable – a.out or .EXE

Chapter 2 — Instructions: Language of the Computer — 18

Two storage classes in C
 Automatic variables: local to a procedure,

discarded when procedure exits
 Static variables: exist across exits from

and entries to procedures
 To simplify access to static data, MIPS

software reserves another register, called
the global register or $gp.

Allocating Space on the Stack
 The segment of the stack

containing a procedure’s
saved registers and local
variables is its procedure
frame (aka activation
record)
 The frame pointer ($fp)

points to the first word of
the frame of a procedure –
providing a stable “base”
register for the procedure
 $fp is initialized using $sp

on a call and $sp is restored
using $fp on a return

low addr

high addr

$sp

Saved argument
regs (if any)

Saved return addr

Saved local regs
(if any)

Local arrays &
structures (if
any)

$fp

Chapter 2 — Instructions: Language of the Computer — 19

Chapter 2 — Instructions: Language of the Computer — 20

Memory Layout
 Text: program code
 Static data: global variables

 e.g., static variables in C,
constant arrays and strings

 $gp initialized to address
allowing ±16-bit offsets into
this segment (1000 0000 –
1000 ffff)

 Dynamic data: heap
 e.g., malloc in C, new in Java

 Stack: automatic storage

Appendix B — 21

Layout of memory

heap

This allocation allows the stack and
Heap to grow toward each other,
Thereby allowing the efficient use
Of memory as the two segments
wax and wane.

Chapter 2 — Instructions: Language of the Computer — 22

Memory allocation
 Controlled by programs in C
 It is the source of many common and

difficult bugs.
 Forgetting to free space leads to a “memory

leak,” which eventually uses up so much
memory that the operating system may
crash.

 Freeing space too early leads to “dangling
pointer,” which can cause pointers to point
to thing that the program never intended.

 Java uses automatic memory allocation and
garbage collection just to avoid such bugs.

Chapter 2 — Instructions: Language of the Computer — 23

Character Data
 Byte-encoded character sets

 ASCII: 128 characters
 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …
 Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith P
eople

Chapter 2 — Instructions: Language of the Computer — 24

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” which is their name for
a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 0370hex, and Cyrillic at 0400hex. The
first three columns show 48 blocks that correspond to human languages in roughly Unicode numerical order. The last
column has 16 blocks that are multilingual and are not in order. A 16-bit encoding, called UTF-16, is the default. A
variable-length encoding, called UTF-8, keeps the ASCII subset as eight bits and uses 16−32 bits for the other
characters. UTF-32 uses 32 bits per character. To learn more, see www.unicode.org.

Example alphabets in Unicode

http://www.unicode.org/

Chapter 2 — Instructions: Language of the Computer — 25

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 26

String Copy Example
 C code (naïve):

 Null-terminated string
 void strcpy (char x[], char y[])
{ int i;
 i = 0;
 while ((x[i]=y[i])!='\0')
 i += 1;
}

 Addresses of x, y in $a0, $a1
 i in $s0

Chapter 2 — Instructions: Language of the Computer — 27

String Copy Example
 MIPS code:
 strcpy:

 addi $sp, $sp, -4 # adjust stack for 1 item
 sw $s0, 0($sp) # save $s0 to use it for i
 add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $a1 # addr of y[i] in $t1
 lbu $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # addr of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]
 beq $t2, $zero, L2 # exit loop if y[i] == 0
 addi $s0, $s0, 1 # i = i + 1
 j L1 # next iteration of loop
L2: lw $s0, 0($sp) # restore saved $s0
 addi $sp, $sp, 4 # pop 1 item from stack
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 28

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

 16-bit immediate is sufficient
 For the occasional 32-bit constant
 lui rt, constant

 lui: load upper immediate
 Copies 16-bit constant to left 16 bits of rt
 Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304

§2.10 M
IP

S
 A

ddressing for 32-B
it Im

m
ediates and A

ddresses

Chapter 2 — Instructions: Language of the Computer — 29

Effect of lui instruction

Chapter 2 — Instructions: Language of the Computer — 30

Linker and loader
 A loader does program loading
 A linker does symbol resolution
 Either can do relocation
 There have been all-in-one linking loaders

that do all three functions
 Program loading
 Relocation
 Symbol resolution

Chapter 2 — Instructions: Language of the Computer — 31

Assembler Pseudoinstructions
 Most assembler instructions represent

machine instructions one-to-one
 Pseudoinstructions: figments of the

assembler’s imagination
 move $t0, $t1 → add $t0, $zero, $t1

 blt $t0, $t1, L → slt $at, $t0, $t1
 bne $at, $zero, L

 $at (register 1): assembler temporary

MIPS Register Convention
Name Register

Number
Usage Preserve

on call by
callee?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Chapter 2 — Instructions: Language of the Computer — 32

Chapter 2 — Instructions: Language of the Computer — 33

Producing an Object Module
 Assembler (or compiler) translates program into machine

instructions
 Provides information for building a complete program from

the pieces
 Object file header: size and location of each piece, source file

name, creation date
 Text segment: translated instructions
 Static data segment: data allocated for the life of the program
 Relocation info: a list of the places in the object code that have to

be fixed up by the linker, which depend on absolute location of
loaded program

 Symbol table: global definitions and external refs
 Debug info: for debugger: source code, line number, data structure

Chapter 2 — Instructions: Language of the Computer — 34

Linking Object Modules
 Produces an executable image

1. Find library routines used by the program
2. Merges code and data modules
3. Resolve labels (determine their addresses)
4. Patch location-dependent and external refs

 Could leave location dependencies for
fixing by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location

in virtual memory space

Appendix B — 35

FIGURE B.3.1 The linker searches a collection of object fi les and program libraries to find nonlocal routines
used in a program, combines them into a single executable file, and resolves references between routines in
different files.

Linker (link editor) Ref: pp. 143 - 144

Chapter 2 — Instructions: Language of the Computer — 36

Linking Object Modules
 Two object files
 Object file header
 name: procedure A
 text size: 100 (hex)
 data size: 20 (hex)
Text segment address instruction
 0 lw $a0, 0($gp)
 4 jal 0
 … …
Data segment 0 (X)
 … …
Relocation info addr I type Depend
 0 lw X
 4 jal B
Symbol table label address
 X -
 B -

Object file header
 name: procedure B
 text size: 200 (hex)
 data size: 30 (hex)
Text segment address instruction
 0 sw $a1, 0($gp)
 4 jal 0
 … …
Data segment 0 (Y)
 … …
Relocation info addr I type Depend
 0 sw Y
 4 jal A
Symbol table label address
 Y -
 A -

Chapter 2 — Instructions: Language of the Computer — 37

Executable module
Executable file header
 Text size: 300 (hex)
 data size: 50 (hex)
Text segment
 address instruction
 0040 0000 lw $a0, 8000($gp)
 0040 0004 jal 10 0040
 … …
 0040 0100 sw $a1, 8020($gp)
 0040 0104 jal 10 0000
Data segment
 address
 1000 00000 (X)
 … …
 1000 00020 (Y)
 … …

8000(hex) = 1000 0000 0000 0000
 (16-bit 2’s complement number)
 = - 8000 (hex)
8020(hex) = 1000 0000 0010 0000
 (16-bit 2’s complement number)
 = - 8000 (hex) + 0020 (hex)

8000($gp) = 1000 8000 – 8000 = 1000 00000; 0:010 0040<<2 = 0040 0100
8020($gp) = 1000 8020 – 8000 + 0020 = 1000 00020; 0:010 0000<<2 = 0040 0000

Chapter 2 — Instructions: Language of the Computer — 38

Loading a Program
 Load from image file on disk into memory

1. Read header to determine segment sizes
2. Create (virtual) address space
3. Copy text and initialized data into memory

 Or set page table entries so they can be faulted in
4. Set up arguments (if any) to the main

program on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine

 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 39

Statically Linked Libraries
 The fastest way to call library routines
 A few disadvantages

 The library routines become part of the
executable code. If a new version of the
library is released, the statically linked
program keeps using the old version.

 It loads all routines in the library that are
called anywhere in the executable even if
those calls are not executed. The library can
be large relative to the program. (for example,
the standard C library is 2.5 MB)

Chapter 2 — Instructions: Language of the Computer — 40

Dynamic Linking Libraries (DLL)
 Only link/load library procedure when it is

called
 Requires procedure code to be relocatable
 Avoids image bloat caused by static linking of

all (transitively) referenced libraries
 Automatically picks up new library versions

 Initial version of DLL
 The loader ran a dynamic linker
 Downside: it still linked all routines of library

that might be called.

Chapter 2 — Instructions: Language of the Computer — 41

Lazy procedure linkage
 Each routine is linked only after it is called.
 It relies on another level of indirection, as

shown in Fig. 2.22.
 It starts with nonlocal routines calling a set of

dummy routine in [PLT] at the end of the
program, with one entry per nonlocal routine.

 These dummy entries each contain an indirect
jump after loading an offset from [GOT] .

 The first time the library routine is called, the
program calls the dummy entry and follows the
indirect jump.

Chapter 2 — Instructions: Language of the Computer — 42

Lazy procedure linkage
 It initially points to code that puts a number in

a register to identify the desired library routine
and then jumps to the dynamic linker/loader.

 The linker/loader finds the desired routine
remaps the GOT entry by changing the
address in the indirect jump location to point
to that routine. It then jump to the routine.

 When the routine completes, it returns to the
original calling site.

 Thereafter, the call to the library jump
indirectly to the routine without the extra hops.

Chapter 2 — Instructions: Language of the Computer — 43

Lazy procedure linkage
PLT: procedure linkage table
* A level of indirection for position
 independent code (PIC)
* A set of dummy routines at the
 end of the program, each entry
 per nonlocal routine.
* Each entry contains an indirect
 jump after loading an offset from
 GOT

GOT: global offset table
* Each PLT entry has a corresponding
 GOT entry which was initially set to
 code that put the routine ID in a
 register and then jump to the linker.

PLT

GOT

special
code to
call linker

dynamic
linker

DLL
routine

Dynamic linker:
* Find the desired routine with ID
* Relocate it and change its GOT entry
* Jump to it.

Modify the GOP entry

Chapter 2 — Instructions: Language of the Computer — 44

Lazy Linkage

GOT: Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

PLT: Procedure linkage table

Chapter 2 — Instructions: Language of the Computer — 45

DLL Summary
 speed program startup
 require extra space for information needed

for dynamic linking
 a good deal of overhead for the first call

 only an indirect jump for subsequent calls
 Microsoft’s Window relies extensively on

DLL and it is also the default when
executing programs on UNIX systems
today.

Chapter 2 — Instructions: Language of the Computer — 46

C Sort Example
 Illustrates use of assembly instructions

for a C bubble sort function
 Swap procedure (leaf)

 void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

 v in $a0, k in $a1, temp in $t0

§2.13 A C
 S

ort E
xam

ple to P
ut It A

ll Together

Chapter 2 — Instructions: Language of the Computer — 47

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4

 add $t1, $a0, $t1 # $t1 = v+(k*4)

 # (address of v[k])

 lw $t0, 0($t1) # $t0 (temp) = v[k]

 lw $t2, 4($t1) # $t2 = v[k+1]

 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

 sw $t0, 4($t1) # v[k+1] = $t0 (temp)

 jr $ra # return to calling routine

• v in $a0, k in $a1, temp in $t0

Chapter 2 — Instructions: Language of the Computer — 48

The Sort Procedure in C

 Non-leaf (calls swap)
 void sort (int v[], int n){
 int i, j;
 for (i = 0; i < n; i++) {
 for (j = i–1;
 j >= 0 && v[j]>v[j+1]; j--) {
 swap(v,j);
 }
 }
 }

 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 49

The Procedure Body
 move $s2, $a0 # save $a0 into $s2

 move $s3, $a1 # save $a1 into $s3

 move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

 addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

 sll $t1, $s1, 2 # $t1 = j * 4

 add $t2, $s2, $t1 # $t2 = v + (j * 4)

 lw $t3, 0($t2) # $t3 = v[j]

 lw $t4, 4($t2) # $t4 = v[j + 1]

 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

 move $a0, $s2 # 1st param of swap is v (old $a0)

 move $a1, $s1 # 2nd param of swap is j

 jal swap # call swap procedure

 addi $s1, $s1, –1 # j –= 1

 j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

 j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 50

sort: addi $sp,$sp, –20 # make room on stack for 5 registers

 sw $ra, 16($sp) # save $ra on stack

 sw $s3,12($sp) # save $s3 on stack

 sw $s2, 8($sp) # save $s2 on stack

 sw $s1, 4($sp) # save $s1 on stack

 sw $s0, 0($sp) # save $s0 on stack

 … # procedure body

 …

 exit1: lw $s0, 0($sp) # restore $s0 from stack

 lw $s1, 4($sp) # restore $s1 from stack

 lw $s2, 8($sp) # restore $s2 from stack

 lw $s3,12($sp) # restore $s3 from stack

 lw $ra,16($sp) # restore $ra from stack

 addi $sp,$sp, 20 # restore stack pointer

 jr $ra # return to calling routine

The Full Procedure

Chapter 2 — Instructions: Language of the Computer — 51

Optimization types

Chapter 2 — Instructions: Language of the Computer — 52

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Chapter 2 — Instructions: Language of the Computer — 53

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

Chapter 2 — Instructions: Language of the Computer — 54

Lessons Learnt
 Instruction count and CPI are not good

performance indicators in isolation
 Compiler optimizations are sensitive to the

algorithm
 Java/JIT compiled code is significantly

faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 55

Arrays vs. Pointers
 Array indexing involves

 Multiplying index by element size
 Adding to array base address

 Pointers correspond directly to memory
addresses
 Can avoid indexing complexity

§2.14 A
rrays versus P

ointers

Chapter 2 — Instructions: Language of the Computer — 56

Example: Clearing and Array
clear1(int array[], int size) {
 int i;
 for (i = 0; i < size; i += 1)
 array[i] = 0;
}

clear2(int *array, int size) {
 int *p;
 for (p = &array[0]; p < &array[size];
 p = p + 1)
 *p = 0;
}

 move $t0,$zero # i = 0

loop1: sll $t1,$t0,2 # $t1 = i * 4

 add $t2,$a0,$t1 # $t2 =

 # &array[i]

 sw $zero, 0($t2) # array[i] = 0

 addi $t0,$t0,1 # i = i + 1

 slt $t3,$t0,$a1 # $t3 =

 # (i < size)

 bne $t3,$zero,loop1 # if (…)
 # goto loop1

 move $t0,$a0 # p = & array[0]

 sll $t1,$a1,2 # $t1 = size * 4

 add $t2,$a0,$t1 # $t2 =

 # &array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

 addi $t0,$t0,4 # p = p + 4

 slt $t3,$t0,$t2 # $t3 =

 #(p<&array[size])

 bne $t3,$zero,loop2 # if (…)

 # goto loop2

Chapter 2 — Instructions: Language of the Computer — 57

Comparison of Array vs. Ptr
 Multiply “strength reduced” to shift
 Array version requires shift to be inside

loop
 Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers
 Induction variable elimination
 Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 58

Compiling C and Interpreting Java

Homework: read section 2.15 in CD

§2.15 C
om

piling C
 and Interpreting Java

Chapter 2 — Instructions: Language of the Computer — 59

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.16 R
eal S

tuff: A
R

M
 Instructions

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 × 32-bit 31 × 32-bit
Input/output Memory

mapped
Memory
mapped

Chapter 2 — Instructions: Language of the Computer — 60

Compare and Branch in ARM
 Uses four condition codes for result of an

arithmetic/logical instruction
 Negative, zero, carry, overflow
 Compare instructions to set condition codes

without keeping the result
 Each instruction can be conditional

 Top 4 bits of instruction word: condition value
 Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 61

Fallacies
 Powerful instruction ⇒ higher performance

 Fewer instructions required
 But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors
 More lines of code ⇒ more errors and less

productivity

§2.18 Fallacies and P
itfalls

Chapter 2 — Instructions: Language of the Computer — 62

Fallacies
 Backward compatibility ⇒ instruction set

doesn’t change
 But they do accrete more instructions

x86 instruction set

Chapter 2 — Instructions: Language of the Computer — 63

Pitfalls
 Sequential words are not at sequential

addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 64

Concluding Remarks
 Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 c.f. x86

§2.19 C
oncluding R

em
arks

Chapter 2 — Instructions: Language of the Computer — 65

Concluding Remarks
 Measure MIPS instruction executions in

benchmark programs
 Consider making the common case fast
 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu, lh,
lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt, slti,
sltiu

34% 8%

Jump j, jr, jal 2% 0%

	Chapter 2B
	Branch Addressing
	Specifying Branch Destinations
	Jump Addressing
	Jump Addressing
	Target Addressing Example
	Conditional Branching Far Away
	Addressing Mode Summary
	MIPS instruction formats
	MIPS Organization So Far
	Synchronization
	Synchronization
	Atomic swap & a simple lock
	Load linked and store conditional
	An atomic swap
	Implementation of ll and sc
	Translation and Startup
	Two storage classes in C
	Allocating Space on the Stack
	Memory Layout
	Layout of memory
	Memory allocation
	Character Data
	Example alphabets in Unicode
	Byte/Halfword Operations
	String Copy Example
	String Copy Example
	32-bit Constants
	Effect of lui instruction
	Linker and loader
	Assembler Pseudoinstructions
	MIPS Register Convention
	Producing an Object Module
	Linking Object Modules
	Linker (link editor)
	Linking Object Modules
	Executable module
	Loading a Program
	Statically Linked Libraries
	Dynamic Linking Libraries (DLL)
	Lazy procedure linkage
	Lazy procedure linkage
	Lazy procedure linkage
	Lazy Linkage
	DLL Summary
	C Sort Example
	The Procedure Swap
	The Sort Procedure in C
	The Procedure Body
	The Full Procedure
	Optimization types
	Effect of Compiler Optimization
	Effect of Language and Algorithm
	Lessons Learnt
	Arrays vs. Pointers
	Example: Clearing and Array
	Comparison of Array vs. Ptr
	Compiling C and Interpreting Java
	ARM & MIPS Similarities
	Compare and Branch in ARM
	Fallacies
	Fallacies
	Pitfalls
	Concluding Remarks
	Concluding Remarks

