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Branch Addressing 
 Branch instructions specify 

 Opcode, two registers, target address 
 I-type 

 Most branch targets are near branch 
 Forward or backward 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 

 PC-relative addressing 
 Target address = (PC+4) + offset × 4 
 PC already incremented by 4 by this time 



Specifying Branch Destinations 
 Use a register (like in lw and sw) added to the 16-bit offset 

 which register?  Instruction Address Register  (the PC) 
 its use is automatically implied by instruction 
 PC gets updated (PC+4) during the fetch cycle so that it holds the 

address of the next instruction 
 limits the branch distance to -215 to +215-1 (word) instructions from 

the (instruction after the) branch instruction, but most branches 
are local anyway 

PC 
Add 

32 
32 32 

32 

32 

offset 
16 

32 

00 

sign-extend 

from the low order 16 bits of the branch instruction 

branch dst 
address 

? 
Add 

4 32 
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Jump Addressing 
 Jump (j and jal) targets could be 

anywhere in text segment 
 Encode full address in instruction 
 J-type 

op address 
6 bits 26 bits 

 (Pseudo)Direct jump addressing 
 Target address = PC31…28 : (address × 4) 
                            = PC31…28 : (address) : 00 



Jump Addressing 

 Instruction Format (J Format): 

0x02                                  26-bit address 

PC 
4 

32 

26 

32 

00 

from the low order 26 bits of the jump instruction 
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Target Addressing Example 
 Loop code from earlier example 

 Assume Loop at location 80000 
Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0 

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32 

      lw   $t0, 0($t1) 80008 35 9 8 0 

      bne  $t0, $s5, Exit 80012 5 8 21 2 

      addi $s3, $s3, 1 80016 8 19 19 1 

      j    Loop 80020 2 20000 

Exit: … 80024 

00080020(hex) = 0000 0000 0000 1000 0000 0000 0010 0000 ( 4 + 28  bits) 
00080000(hex) = 0000 0000 0000 1000 0000 0000 0000 0000 (20000 <<2) 
      80024(hex)= 80012 + 4  + 2 <<2 = (PC + 4) + (offset << 2)                                     
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Conditional Branching Far Away 
 If branch target is too far to encode with 

16-bit offset, assembler rewrites the code 
 Example 

  beq $s0,$s1, L1 

    ↓ 
  bne $s0,$s1, L2 
 j L1 
L2: … 
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Addressing Mode Summary 

Upper 4 bits of PC 

Shift left 2 

Shift left 2 

 3        2       1       0  

 3        2       1       0  
 7        6       5       4  
 11      10      9       8  

 lsb                      msb 

MIPS is big-endian 
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MIPS instruction formats 



MIPS Organization So Far 
Processor Memory 

32 bits 

230 

words 

read/write 
 addr 

read data 

write data 

word address 
(binary) 

0…0000 
0…0100 
0…1000 
0…1100 

1…1100 
Register File 

src1 addr 

src2 addr 

dst addr 

write data 

32 bits 

src1 
data 

src2 
data 

32 
registers 

($zero - $ra) 

32 

32 

32 
32 

32 

32 

5 

5 

5 

  

PC 

ALU 

32 32 

32 
32 

32 

3 2 1 0 
4 5 6 7 

byte address 
(big Endian) 

Fetch 
PC = PC+4 

Decode Exec 

Add 
32 

32 
4 

Add 
32 

32 
branch offset 
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lsb                     msb 
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Synchronization 
 Two processors sharing an area of memory 

 P1 writes, then P2 reads 
 Data race if P1 and P2 don’t synchronize 

 Result depends of order of accesses 

 Lock and unlock synchronization operation 
 Used to create (memory) regions where only a single 

processor can operate, called mutual exclusion, as 
well as to implement more complex synchronization 
mechanisms. 

 Hardware primitives required 
 Atomic (read and modify) memory operation 
 No other access to the location allowed between the 

read and write (modify) 
 

§2.11 P
arallelism

 and Instructions: S
ynchronization 
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Synchronization 
 Hardware support required 

 Atomic read/write memory operation 
 No other access to the location allowed between the 

read and write 
 In general, architects do not expect users to 

employ the basic hardware primitives. 
 The primitives are used by system programmers to 

build a synchronization library,  a process that is often 
complex and tricky 

 Could be a single instruction 
 E.g., atomic swap of register ↔ memory 
 Or an atomic pair of instructions 
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Atomic swap & a simple lock 
 A simple lock 

 0: to indicate that the lock is free: released 
 1: to indicate that the lock is unavailable: locked 

 A processor tries to set the lock by swapping 1 in 
a register with the memory address of a lock. 
 the returned value is 1 (already locked) if  some other 

processor has already claimed and 0 otherwise. 
 In the latter case, the value is changed to 1 (newly 

locked), preventing any competing exchange in 
another processor from retrieving a 0. 

 Implementing a single atomic swap with memory 
is challenging (why? two operations in an instruction) 
 An alternative is to have a pair of instructions 
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Load linked and store conditional 
 These two instructions are used in sequence. 
 If the content of the memory location specified by 

the load linked are changed before the store 
conditional to the same address occurs, then the 
store conditional fails. 

 Load linked (locked): ll rt, offset(rs) 
 Store conditional: sc rt, offset(rs) 

 Store the value of register rt  into memory specified 
 Succeeds if location not changed since the ll 

instruction 
 Returns 1 in rt of sc 

 Fails if location is changed after  the ll  instruction 
 Returns 0 in rt of sc 
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An atomic swap 
 atomic swap (to test/set lock variable) between 

$s4 and the memory location specified by $s1 
    exch $s4, 0($s1) ; atomic swap 

 

try: add $t0,$zero,$s4 ;copy exchange value 

     ll  $t1,0($s1)    ;load linked 

     sc  $t0,0($s1)    ;store conditional 

     beq $t0,$zero,try ;branch store fails 

     add $s4,$zero,$t1 ;put load value in $s4 

      
 Although it is proposed for multiprocessor 

synchronization, atomic exchange is also useful 
for the operating system in dealing with multiple 
processes in a single processor. 
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Implementation of ll and sc 
 Typically implemented by keeping track of the address 

specified in the ll instruction in a register, called the link 
register. 

 If  an interrupt occurs, or if the cache block matching the 
address in the link register is invalidated (for example, by 
another sc), the link register is cleared. 

 The sc instruction simply checks that its address 
matches that in the link register to determine its failure or 
success. 

 Since the store conditional will fail after either  another 
attempted store to the load linked address or any 
exception, care must be taken in choosing what 
instructions are inserted between the two instructions. 

 Only register-register instructions can safely be permitted. 
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Translation and Startup 

Many compilers produce 
object modules directly 

Static linking 

§2.12 Translating and S
tarting a P

rogram
 

C code – x.c or .TXT 
assembly code – x.s or .ASM 
object code – x.o or .OBJ 
executable – a.out or .EXE 
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Two storage classes in C 
 Automatic variables: local to a procedure, 

discarded when procedure exits 
 Static variables: exist across exits from 

and entries to procedures 
 To simplify access to static data, MIPS 

software reserves another register, called 
the global register or $gp. 
 



Allocating Space on the Stack 
 The segment of the stack 

containing a procedure’s 
saved registers and local 
variables is its procedure 
frame (aka activation 
record) 
 The frame pointer ($fp) 

points to the first word of 
the frame of a procedure – 
providing a stable “base” 
register for the procedure 
 $fp is initialized using $sp 

on a call and $sp is restored 
using $fp on a return 

low addr 

high addr 

$sp 

Saved argument 
regs (if any) 

Saved return addr 

Saved local regs 
(if any) 

Local arrays & 
structures (if 
any) 

$fp 
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Memory Layout 
 Text: program code 
 Static data: global variables 

 e.g., static variables in C, 
constant arrays and strings 

 $gp initialized to address 
allowing ±16-bit offsets into 
this segment (1000 0000 – 
1000 ffff) 

 Dynamic data: heap 
 e.g., malloc in C, new in Java 

 Stack: automatic storage 
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Layout of memory 

heap 

This allocation allows the stack and  
Heap to grow toward each other,  
Thereby allowing the efficient use 
Of memory as the two segments 
wax and wane. 
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Memory allocation 
 Controlled by programs in C 
 It is the source of many common and 

difficult bugs. 
 Forgetting to free space leads to a “memory 

leak,” which eventually uses up so much 
memory that the operating system may 
crash. 

 Freeing space too early leads to “dangling 
pointer,” which can cause pointers to point 
to thing that the program never intended. 

 Java uses automatic memory allocation and 
garbage collection just to avoid such bugs. 
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Character Data 
 Byte-encoded character sets 

 ASCII: 128 characters 
 95 graphic, 33 control 

 Latin-1: 256 characters 
 ASCII, +96 more graphic characters 

 Unicode: 32-bit character set 
 Used in Java, C++ wide characters, … 
 Most of the world’s alphabets, plus symbols 
 UTF-8, UTF-16: variable-length encodings 

§2.9 C
om
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FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” which is their name for 
a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 0370hex, and Cyrillic at 0400hex. The 
first three columns show 48 blocks that correspond to human languages in roughly Unicode numerical order. The last 
column has 16 blocks that are multilingual and are not in order. A 16-bit encoding, called UTF-16, is the default. A 
variable-length encoding, called UTF-8, keeps the ASCII subset as eight bits and uses 16−32 bits for the other 
characters. UTF-32 uses 32 bits per character. To learn more, see www.unicode.org.  

Example alphabets in Unicode 

http://www.unicode.org/
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Byte/Halfword Operations 
 Could use bitwise operations 
 MIPS byte/halfword load/store 

 String processing is a common case 
 

lb rt, offset(rs)     lh rt, offset(rs) 

 Sign extend to 32 bits in rt 
lbu rt, offset(rs)    lhu rt, offset(rs) 

 Zero extend to 32 bits in rt 
sb rt, offset(rs)     sh rt, offset(rs) 

 Store just rightmost byte/halfword 
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String Copy Example 
 C code (naïve): 

 Null-terminated string 
 void strcpy (char x[], char y[]) 
{ int i; 
  i = 0; 
  while ((x[i]=y[i])!='\0') 
    i += 1; 
} 

 Addresses of x, y in $a0, $a1 
 i in $s0 



Chapter 2 — Instructions: Language of the Computer — 27 

String Copy Example 
 MIPS code: 
 strcpy: 

    addi $sp, $sp, -4      # adjust stack for 1 item 
    sw   $s0, 0($sp)       # save $s0 to use it for i 
    add  $s0, $zero, $zero # i = 0 
L1: add  $t1, $s0, $a1     # addr of y[i] in $t1 
    lbu  $t2, 0($t1)       # $t2 = y[i] 
    add  $t3, $s0, $a0     # addr of x[i] in $t3 
    sb   $t2, 0($t3)       # x[i] = y[i] 
    beq  $t2, $zero, L2    # exit loop if y[i] == 0   
    addi $s0, $s0, 1       # i = i + 1 
    j    L1                # next iteration of loop 
L2: lw   $s0, 0($sp)       # restore saved $s0 
    addi $sp, $sp, 4       # pop 1 item from stack 
    jr   $ra               # and return 
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0000 0000 0111 1101 0000 0000 0000 0000 

32-bit Constants 
 Most constants are small 

 16-bit immediate is sufficient 
 For the occasional 32-bit constant 
 lui rt, constant 

 lui: load upper immediate 
 Copies 16-bit constant to left 16 bits of rt 
 Clears right 16 bits of rt to 0 

lui $s0, 61 

0000 0000 0111 1101 0000 1001 0000 0000 ori $s0, $s0, 2304 

§2.10 M
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Effect of lui instruction 
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Linker and loader 
 A loader does program loading 
 A linker does symbol resolution 
 Either can do relocation 
 There have been all-in-one linking loaders 

that do all three functions 
 Program loading 
 Relocation 
 Symbol resolution 
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Assembler Pseudoinstructions 
 Most assembler instructions represent 

machine instructions one-to-one 
 Pseudoinstructions: figments of the 

assembler’s imagination 
 move $t0, $t1 → add $t0, $zero, $t1 

 blt $t0, $t1, L  →  slt $at, $t0, $t1 
  bne $at, $zero, L 

 $at (register 1): assembler temporary 



MIPS Register Convention 
Name Register 

Number 
Usage Preserve 

on call by 
callee? 

$zero 0 constant 0 (hardware) n.a. 
$at 1 reserved for assembler n.a. 
$v0 - $v1 2-3 returned values no 
$a0 - $a3 4-7 arguments yes 
$t0 - $t7 8-15 temporaries no 
$s0 - $s7 16-23 saved values yes 
$t8 - $t9 24-25 temporaries no 
$gp 28 global pointer yes 
$sp 29 stack pointer yes 
$fp 30 frame pointer yes 
$ra 31 return address yes 
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Producing an Object Module 
 Assembler (or compiler) translates program into machine 

instructions 
 Provides information for building a complete program from 

the pieces 
 Object file header: size and location of  each piece, source file 

name, creation date 
 Text segment: translated instructions 
 Static data segment: data allocated for the life of the program 
 Relocation info: a list of the places in the object code that have to 

be fixed up by the linker, which depend on absolute location of 
loaded program 

 Symbol table: global definitions and external refs 
 Debug info: for debugger: source code, line number, data structure 
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Linking Object Modules 
 Produces an executable image 

1. Find library routines used by the program 
2. Merges code and data modules 
3. Resolve labels (determine their addresses) 
4. Patch location-dependent and external refs 

 Could leave location dependencies for 
fixing by a relocating loader 
 But with virtual memory, no need to do this 
 Program can be loaded into absolute location 

in virtual memory space 
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FIGURE B.3.1 The linker searches a collection of object fi les and program libraries to find nonlocal routines 
used in a program, combines them into a single executable file, and resolves references between routines in 
different files.  

Linker (link editor) Ref: pp. 143 - 144 
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Linking Object Modules 
 Two object files 
 Object file header 
   name: procedure A 
 text size: 100 (hex) 
              data size: 20 (hex) 
Text segment address  instruction 
             0       lw $a0, 0($gp) 
           4       jal 0 
                        …      … 
Data segment  0       (X) 
                         …      … 
Relocation info addr I type  Depend 
               0       lw      X 
             4       jal      B 
Symbol table    label    address 
               X         - 
             B         - 

Object file header 
   name: procedure B 
 text size: 200 (hex) 
              data size: 30 (hex) 
Text segment address  instruction 
             0       sw $a1, 0($gp) 
           4       jal 0 
                        …      … 
Data segment  0       (Y) 
                         …      … 
Relocation info addr I type  Depend 
               0       sw     Y 
             4       jal      A 
Symbol table    label    address 
               Y         - 
             A         - 
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Executable module 
Executable file header 
   Text size: 300 (hex) 
               data size: 50 (hex) 
Text segment  
     address       instruction 
     0040 0000   lw $a0, 8000($gp) 
     0040 0004   jal  10 0040 
      …                … 
     0040 0100   sw $a1, 8020($gp) 
     0040 0104   jal 10 0000 
Data segment    
      address 
     1000 00000       (X) 
      …                      … 
     1000 00020       (Y) 
      …                      … 

8000(hex) = 1000 0000 0000 0000 
                    (16-bit 2’s complement number) 
                 = - 8000 (hex) 
8020(hex) = 1000 0000 0010 0000 
                    (16-bit 2’s complement number) 
                 =  - 8000 (hex) + 0020 (hex) 

8000($gp) = 1000 8000 – 8000    = 1000 00000; 0:010 0040<<2 = 0040 0100 
8020($gp) = 1000 8020 – 8000 + 0020 = 1000 00020; 0:010 0000<<2 = 0040  0000 
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Loading a Program 
 Load from image file on disk into memory 

1. Read header to determine segment sizes 
2. Create (virtual) address space 
3. Copy text and initialized data into memory 

 Or set page table entries so they can be faulted in 
4. Set up arguments (if any) to the main 

program on stack 
5. Initialize registers (including $sp, $fp, $gp) 
6. Jump to startup routine 

 Copies arguments to $a0, … and calls main 
 When main returns, do exit syscall 
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Statically Linked Libraries 
 The fastest way to call library routines 
 A few disadvantages 

 The library routines become part of the 
executable code. If  a new version of the 
library is released, the statically linked 
program keeps using the old version. 

 It loads all routines in the library that are 
called anywhere in the executable even if 
those calls are not executed. The library can 
be large relative to the program. (for example, 
the standard C library is 2.5 MB) 
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Dynamic Linking Libraries (DLL)  
 Only link/load library procedure when it is 

called 
 Requires procedure code to be relocatable 
 Avoids image bloat caused by static linking of 

all (transitively) referenced libraries 
 Automatically picks up new library versions 

 Initial version of DLL 
 The loader ran a dynamic linker 
 Downside: it still linked all routines of library 

that might be called. 



Chapter 2 — Instructions: Language of the Computer — 41 

Lazy procedure linkage 
 Each routine is linked only after it is called. 
 It relies on another level of indirection, as 

shown in Fig. 2.22. 
 It starts with nonlocal routines calling a set of 

dummy routine in [PLT] at the end of the 
program, with one entry per nonlocal routine.  

 These dummy entries each contain an indirect 
jump after loading an offset from [GOT] . 

 The first time the library routine is called, the 
program calls the dummy entry and follows the 
indirect jump.  
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Lazy procedure linkage 
 It initially points to code that puts a number in 

a register to identify the desired library routine 
and then jumps to the dynamic linker/loader. 

 The linker/loader finds the desired routine 
remaps the GOT entry by changing the 
address in the indirect jump location to point 
to that routine. It then jump to the routine.  

 When the routine completes, it returns to the 
original calling site. 

 Thereafter, the call to the library jump 
indirectly to the routine without the extra hops. 
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Lazy procedure linkage 
PLT: procedure linkage table 
* A level of indirection for position  
  independent code (PIC) 
* A set of dummy routines at the  
  end of the program, each entry  
  per nonlocal routine. 
* Each entry contains an indirect  
  jump after loading an offset from 
  GOT 

GOT: global offset table 
* Each PLT entry has a corresponding  
  GOT entry which was initially set to 
  code  that put the routine ID in a 
  register and then jump to the linker.   

PLT 

GOT 

special  
code to  
call linker 

dynamic 
linker 

DLL 
routine 

Dynamic linker:  
* Find the desired routine with ID 
* Relocate it and change its GOT entry 
* Jump to it. 

Modify the GOP entry 
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Lazy Linkage 

GOT: Indirection table 

Stub: Loads routine ID, 
Jump to linker/loader 

Linker/loader code 

Dynamically 
mapped code 

PLT: Procedure linkage table 
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DLL Summary 
 speed program startup 
 require extra space for information needed 

for dynamic linking 
 a good deal of overhead for the first call 

 only an indirect jump for subsequent calls 
 Microsoft’s Window relies extensively on 

DLL and it is also the default when 
executing programs on UNIX systems 
today. 
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C Sort Example 
 Illustrates use of assembly instructions 

for a C bubble sort function 
 Swap procedure (leaf) 

 void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

 v in $a0, k in $a1, temp in $t0 
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The Procedure Swap 

swap: sll $t1, $a1, 2   # $t1 = k * 4 

      add $t1, $a0, $t1 # $t1 = v+(k*4) 

                        #   (address of v[k]) 

      lw $t0, 0($t1)    # $t0 (temp) = v[k] 

      lw $t2, 4($t1)    # $t2 = v[k+1] 

      sw $t2, 0($t1)    # v[k] = $t2 (v[k+1]) 

      sw $t0, 4($t1)    # v[k+1] = $t0 (temp) 

      jr $ra            # return to calling routine 

• v in $a0, k in $a1, temp in $t0 
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The Sort Procedure in C 

 Non-leaf (calls swap) 
 void sort (int v[], int n){ 
   int i, j; 
   for (i = 0; i < n; i++) { 
    for (j = i–1;  
          j >= 0 && v[j]>v[j+1]; j--) {      
         swap(v,j); 
    } 
   } 
  } 
 
 v in $a0, k in $a1, i in $s0, j in $s1 
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The Procedure Body 
         move $s2, $a0           # save $a0 into $s2 

         move $s3, $a1           # save $a1 into $s3 

         move $s0, $zero         # i = 0 

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) 

         beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n) 

         addi $s1, $s0, –1       # j = i – 1 

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0) 

         bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2        # $t1 = j * 4 

         add  $t2, $s2, $t1      # $t2 = v + (j * 4) 

         lw   $t3, 0($t2)        # $t3 = v[j] 

         lw   $t4, 4($t2)        # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3 

         beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3 

         move $a0, $s2           # 1st param of swap is v (old $a0) 

         move $a1, $s1           # 2nd param of swap is j 

         jal  swap               # call swap procedure 

         addi $s1, $s1, –1       # j –= 1 

         j    for2tst            # jump to test of inner loop 

exit2:   addi $s0, $s0, 1        # i += 1 

         j    for1tst            # jump to test of outer loop 

Pass 
params 
& call 

Move 
params 

Inner loop 

Outer loop 

Inner loop 

Outer loop 
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sort:    addi $sp,$sp, –20      # make room on stack for 5 registers 

         sw $ra, 16($sp)        # save $ra on stack 

         sw $s3,12($sp)         # save $s3 on stack 

         sw $s2, 8($sp)         # save $s2 on stack 

         sw $s1, 4($sp)         # save $s1 on stack 

         sw $s0, 0($sp)         # save $s0 on stack 

         …                      # procedure body 

         … 

         exit1: lw $s0, 0($sp)  # restore $s0 from stack 

         lw $s1, 4($sp)         # restore $s1 from stack 

         lw $s2, 8($sp)         # restore $s2 from stack 

         lw $s3,12($sp)         # restore $s3 from stack 

         lw $ra,16($sp)         # restore $ra from stack 

         addi $sp,$sp, 20       # restore stack pointer 

         jr $ra                 # return to calling routine 

The Full Procedure 
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Optimization types 
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Effect of Compiler Optimization 
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Effect of Language and Algorithm 
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Lessons Learnt 
 Instruction count and CPI are not good 

performance indicators in isolation 
 Compiler optimizations are sensitive to the 

algorithm 
 Java/JIT compiled code is significantly 

faster than JVM interpreted 
 Comparable to optimized C in some cases 

 Nothing can fix a dumb algorithm! 
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Arrays vs. Pointers 
 Array indexing involves 

 Multiplying index by element size 
 Adding to array base address 

 Pointers correspond directly to memory 
addresses 
 Can avoid indexing complexity 

§2.14 A
rrays versus P

ointers 
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Example: Clearing and Array 
clear1(int array[], int size) { 
  int i; 
  for (i = 0; i < size; i += 1) 
    array[i] = 0; 
} 

clear2(int *array, int size) { 
  int *p; 
  for (p = &array[0]; p < &array[size]; 
       p = p + 1) 
    *p = 0; 
} 

       move $t0,$zero   # i = 0 

loop1: sll $t1,$t0,2    # $t1 = i * 4 

       add $t2,$a0,$t1  # $t2 = 

                        #   &array[i] 

       sw $zero, 0($t2) # array[i] = 0 

       addi $t0,$t0,1   # i = i + 1 

       slt $t3,$t0,$a1  # $t3 = 

                        #   (i < size) 

       bne $t3,$zero,loop1 # if (…) 
                           # goto loop1 

       move $t0,$a0    # p = & array[0] 

       sll $t1,$a1,2   # $t1 = size * 4 

       add $t2,$a0,$t1 # $t2 = 

                       #   &array[size] 

loop2: sw $zero,0($t0) # Memory[p] = 0 

       addi $t0,$t0,4  # p = p + 4 

       slt $t3,$t0,$t2 # $t3 = 

                       #(p<&array[size]) 

       bne $t3,$zero,loop2 # if (…) 

                           # goto loop2 



Chapter 2 — Instructions: Language of the Computer — 57 

Comparison of Array vs. Ptr 
 Multiply “strength reduced” to shift 
 Array version requires shift to be inside 

loop 
 Part of index calculation for incremented i 
 c.f. incrementing pointer 

 Compiler can achieve same effect as 
manual use of pointers 
 Induction variable elimination 
 Better to make program clearer and safer 
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Compiling C and Interpreting Java 

Homework: read section 2.15 in CD 

§2.15  C
om

piling C
 and Interpreting Java 
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ARM & MIPS Similarities 
 ARM: the most popular embedded core 
 Similar basic set of instructions to MIPS 

§2.16 R
eal S

tuff: A
R

M
 Instructions 

ARM MIPS 
Date announced 1985 1985 
Instruction size 32 bits 32 bits 
Address space 32-bit flat 32-bit flat 
Data alignment Aligned Aligned 
Data addressing modes 9 3 
Registers 15 × 32-bit 31 × 32-bit 
Input/output Memory 

mapped 
Memory 
mapped 
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Compare and Branch in ARM 
 Uses four condition codes for result of an 

arithmetic/logical instruction 
 Negative, zero, carry, overflow 
 Compare instructions to set condition codes 

without keeping the result 
 Each instruction can be conditional 

 Top 4 bits of instruction word: condition value 
 Can avoid branches over single instructions 
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Fallacies 
 Powerful instruction ⇒ higher performance 

 Fewer instructions required 
 But complex instructions are hard to implement 

 May slow down all instructions, including simple ones 

 Compilers are good at making fast code from simple 
instructions 

 Use assembly code for high performance 
 But modern compilers are better at dealing with 

modern processors 
 More lines of code ⇒ more errors and less 

productivity 

§2.18 Fallacies and P
itfalls 
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Fallacies 
 Backward compatibility ⇒ instruction set 

doesn’t change 
 But they do accrete more instructions 

x86 instruction set 
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Pitfalls 
 Sequential words are not at sequential 

addresses 
 Increment by 4, not by 1! 

 Keeping a pointer to an automatic variable 
after procedure returns 
 e.g., passing pointer back via an argument 
 Pointer becomes invalid when stack popped 
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Concluding Remarks 
 Design principles 

1. Simplicity favors regularity 
2. Smaller is faster 
3. Make the common case fast 
4. Good design demands good compromises 

 Layers of software/hardware 
 Compiler, assembler, hardware 

 MIPS: typical of RISC ISAs 
 c.f. x86 

§2.19 C
oncluding R

em
arks 
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Concluding Remarks 
 Measure MIPS instruction executions in 

benchmark programs 
 Consider making the common case fast 
 Consider compromises 

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP 
Arithmetic add, sub, addi 16% 48% 

Data transfer lw, sw, lb, lbu, lh, 
lhu, sb, lui 

35% 36% 

Logical and, or, nor, andi, 
ori, sll, srl 

12% 4% 

Cond. Branch beq, bne, slt, slti, 
sltiu 

34% 8% 

Jump j, jr, jal 2% 0% 
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