COMPUTER ORGANIZATION AND DESIGN @>
«\O\-/?

The Hardware/Software Interface

Chapter 2B

Instructions: Language
of the Computer

Copyright © 2009 Elsevier, Inc. All rights reserved.

Branch Addressing *

Branch instructions specify
Opcode, two registers, target address
I-type

Most branch targets are near branch

Forward or backward
op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = (PC+4) + offset X 4
PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 2

Specifying Branch Destinations

Use a register (like in lw and sw) added to the 16-bit offset
which register? Instruction Address Register (the)

its use is automatically by instruction
PC gets updated (PC+4) during the cycle so that it holds the
address of the next instruction

limits the branch distance to (word) instructions from

the (instruction after the) branch instruction, but most branches

are local anyway
from the low order 16 bits of the branch instruction

l16
olset
sign-exte
| 1] lod
branch dst
| 32 . address
BC 32\
32 4 773770

Chapter 2 — Instructions: Language of the Computer — 3

Jump Addressing

Jump (J and jal) targets could be
anywhere In text segment

Encode full address in instruction

J-type
op address
6 bits 26 bits

(Pseudo)Direct jump addressing

Target address = PC;; .4 : (address X 4)
= PC;; ,g: (address) : 00

Chapter 2 — Instructions: Language of the Computer — 4

Jump Addressing

Instruction Format (J Format):

0x02

26-bit address

from the low order 26 bits of the jump instruction

|26

0d

32

"

32

Chapter 2 — Instructions: Language of the Computer — 5

Target Addressing Example

Loop code from earlier example
Assume Loop at location 80000

Loop: sIl $tl, $s3, 2 80000 | 0 [0 [19 | 9 | 4 | O
add $t1, $tl1, $s6 80004”"%...9 9 | 22| 9| 0|3
v $t0, 0($tl) 80008 35 9O | 8 0
bne $t0, $s5, Exit 80012)| 5 "’8.’ 21 | 2
addi $s3, $s3, 1 80016 | 8 | 19 :j‘;;l.g"“'" T
j Loop 80020 | 2.4 20000

Exit: . 80024

00080020(hex) = 0000 0000 0000 1000 0000 0000 0010 0000 (4 + 28 bits)
00080000(hex) = 0000 0000 0000 1000 0000 0000 0000 0000 (20000 <<2)
80024(hex)= 80012 + 4 + 2 <<2 = (PC + 4) + (offset << 2)

Chapter 2 — Instructions: Language of the Computer — 6

Conditional Branching Far Away

If branch target Is too far to encode with
16-bit offset, assembler rewrites the code

Example
beqg $s0,%$s1, L1
l
bne $s0,$s1, L2
j L1
L2: ..

Chapter 2 — Instructions: Language of the Computer — 7

Addressing Mode Summary

1. Immediate addressing

op|rs |t Immediate

2. Register addressing

op|rs | rt|rd|...|funct Registers

Register

3. Base addressing

op|rs rt Address Memory
Register\—Cb— Word
[
4. PC-relative addressing 3 2 ! 0 MIPS IS blg-endlan
op|rs |t | Address Shift left 2 Memory

PC
I

s
o

5. Pseudodirect addressing

op Address Shift left 2 Memory
' 11 10 9 8
Upper 4 bits of PC 7 BNord 5 4
) . 3 2 1 0
Isb msb

i

Chapter 2 — Instructions: Language of the Computer — 8

MIPS instruction formats

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions are 32 bits long
R-format op rs rt rd shamt funct Arithmetic instruction format

[-format op rs rt address/immediate Transfer, branch, imm. format
J-format op target address Jump instruction format

Chapter 2 — Instructions: Language of the Computer — 9

MIPS Organization So Far

Processor
Memory
Register File
src1 addr—<» <y SICL
5 32 data
src2 addr—5—> 32
dst add registers -
sta r—5->($zero_$ra) Src2 read/write
write dataé; g; data addr
" 32bits 52
branch offset —32 read data
- —p PC 4 dd 4 D
32 32Add 32 %2
32 ite d
write data
32
_ 716 |5 | 4
32 LU 3_2, 3 +2 1110
%) 32 bits
byte address
(big Endian)

' 1...1100

230
words

0...1100
0...1000
0...0100
v 0...0000

> word address

(binary)

Chapter 2 — Instructions: Language of the Computer — 10

Synchronization

Two processors sharing an area of memory
P1 writes, then P2 reads
Data race if P1 and P2 don’t synchronize
Result depends of order of accesses
Lock and unlock synchronization operation

Used to create (memory) regions where only a single
processor can operate, called mutual exclusion, as
well as to implement more complex synchronization
mechanisms.

Hardware primitives required
Atomic (read and modify) memory operation

No other access to the location allowed between the
read and write (modify)

Chapter 2 — Instructions: Language of the Computer — 11

Synchronization

Hardware support required
Atomic read/write memory operation

No other access to the location allowed between the
read and write

In general, do not expect to
employ the basic hardware primitives.

The primitives are used by system programmers to
build a synchronization library, a process that is often
complex and tricky

Could be a single instruction
E.g., atomic swap of register — memory
Or an atomic pair of instructions

Chapter 2 — Instructions: Language of the Computer — 12

Atomic swap & a simple lock

A simple lock

O: to indicate that the lock is free: released

1: to indicate that the lock is unavailable: locked
A processor tries to set the lock by swapping 1 In
a register with the memory address of a lock.

the returned value is 1 (already locked) if some other
processor has already claimed and O otherwise.

In the latter case, the value is changed to 1 (newly

locked), preventing any competing exchange in
another processor from retrieving a 0.

Implementing a single atomic swap with memory
IS challenging (//? two operations in an instruction)
An alternative Is to have a pair of instructions

Chapter 2 — Instructions: Language of the Computer — 13

Load linked and store conditional

These two Instructions are used in sequence.

If the content of the memory location specified by
the load linked are changed before the store
conditional to the same address occurs, then the
store conditional falls.

Load linked (locked): 1l rt, offset(rs)

Store conditional: sc rt, offset(rs)

Store the value of register rt into memory specified

Succeeds if location not changed since the 11
Instruction
Returns 1 in rt of sc

Fails if location is changed after the 11 instruction
Returns O in rt of sc

Chapter 2 — Instructions: Language of the Computer — 14

An atomic swap

atomic swap (to test/set lock variable) between
$s4 and the memory location specified by $s1

exch $s4, 0($sl) ;

try:|add $t0,%$zero,$s4
Il $t1,0($sl)
sc $t0,0($s1)
beq $t0,%$zero,try
add $s4,%zero, $tl

atomic swap

,copy exchange value
;load li1nked

;store condirtional
;branch store fails
;put load value In $s4

Although it Is proposed for multiprocessor
synchronization, atomic exchange is also useful
for the operating system in dealing with multiple
processes in a single processor.

Chapter 2 — Instructions: Language of the Computer — 15

Implementation of |l and sc

Typically implemented by keeping track of the address
specified in the Il instruction in a register, called the link
register.

If an interrupt occurs, or if the cache block matching the
address in the link register is invalidated (for example, by
another sc), the link register is cleared.

The sc instruction simply checks that its address
that in the link register to determine its failure or
success.

Since the store conditional will fail after either another
attempted store to the load linked address or any
exception, care must be taken in choosing what
Instructions are inserted between the two instructions.

Only register-register instructions can safely be permitted.

Chapter 2 — Instructions: Language of the Computer — 16

C program

Assembly language program

Assembler

Translation and Startup

Many compilers produce
object modules directly

@Machine language module

Object: Library routine (machine language)

 tinker > Static linking

Executable:

achine language program

C code — x.c or .TXT
assembly code — x.s or .ASM
object code — x.0 or .OBJ
executable — a.out or .EXE

Memory

Chapter 2 — Instructions: Language of the Computer — 17

Two storage classes in C

Automatic variables: local to a procedure,
discarded when procedure exits

Static variables: exist across exits from
and entries to procedures

To simplify access to static data, MIPS
software reserves another register, called
the global register or $gp.

Chapter 2 — Instructions: Language of the Computer — 18

Allocating Space on the Stack

The segment of the stack

containing a procedure’s high adgdr
saved registers and local o sf
. .. Saved argument P
variables is its procedure regs (if any)
frame (aka Saved return addr
Saved local regs
) (if any)
The frame pointer ($fp) Local arrays_i
points to the first word of SyyCrures @
the frame of a procedure — —$sp
providing a stable “base” low addr

register for the procedure
$fp is initialized using $sp
on a call and $sp is restored

using $fp on a return
Chapter 2 — Instructions: Language of the Computer — 19

Memory Layout

Text: program code

Static data: global variables
§sp—=7FFf Fffcpe, Stack

e.g., static variables in C, I

constant arrays and strings
i

$gp initialized to address

Dynamic data

allowing +16-bit offsets into

this segment (1000 0000 — P00 Soomme: [Saledata
1000 ffff) pc— 0040 0000,y e
Dynamic data: heap : osoned

e.g., malloc in C, new in Java
Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 20

Layout of memory

7fff fffcy o,
Stack segment
This allocation allows the stack and
Heap to grow toward each other,
Thereby allowing the efficient use
Of memory as the two segments
T wax and wane.
Dynamic data <— heap
————— ——————| Data segment
Static data
10000000},
Text segment
400000n Reserved

Appendix B — 21

Memory allocation

Controlled by programs in C

It is the source of many common and
difficult bugs.

leads to a “memory
leak,” which eventually uses up so much
memory that the operating system may
crash.

leads to “dangling
pointer,” which can cause pointers to point
to thing that the program never intended.

Java uses automatic memory allocation and
garbage collection just to avoid such bugs.

Chapter 2 — Instructions: Language of the Computer — 22

Character Data

Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 23

Example alphabets in Unicode

Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian Shavian Optical Character Recognition
Aboriginal Syllabic

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols | Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” which is their name for
a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 0370,,,, and Cyrillic at 0400,,. The
first three columns show 48 blocks that correspond to human languages in roughly Unicode numerical order. The last
column has 16 blocks that are multilingual and are not in order. A 16-bit encoding, called UTF-16, is the default. A
variable-length encoding, called UTF-8, keeps the ASCII subset as eight bits and uses 16-32 bits for the other
characters. UTF-32 uses 32 bits per character. To learn more, see

Chapter 2 — Instructions: Language of the Computer — 24

http://www.unicode.org/

Byte/Halfword Operations

Could use bitwise operations

MIPS byte/halfword load/store
String processing iIs a common case

Ib rt, offset(rs) Ih rt, offset(rs)

Sign extend to 32 bits in rt
Ibu rt, offset(rs) Ihu rt, offset(rs)

Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 25

String Copy Example

C code (naive):

Null-terminated string
void strcpy (char x[], char y[])
{ int 1;

1 = O;

while ((X[i]=y[i])!I="\0")

1 += 1;

by

Addresses of x, y in $a0, $al

1 in $s0

Chapter 2 — Instructions: Language of the Computer — 26

String Copy Example

MIPS code:

strcpy:
addi $sp, $sp, -4
sw $s0, 0($sp)

adjust stack for 1 1tem
save $s0 to use it for 1

add $s0, $zero, $zero 1 =0

L1: add $t1, $sO, %al addr of y[i1] 1n $tl
Ibu 3$t2, 0($tl) $t2 = y[i]
add $t3, $s0, $al addr of x[i1] in $t3
sb $t2, 0($t3) x[1i] = y[i]
beq %$t2, $zero, L2 exit loop 1f y[1] ==
addi $s0, $s0, 1 1 =1 +1

] L1

L2: Iw $sO, 0($sp)
addi $sp, $sp, 4
jr $ra

next tteration of loop
restore saved $sO

pop 1 1tem from stack
and return

FHIH HHF R HHF RHERHFHE

Chapter 2 — Instructions: Language of the Computer — 27

32-bit Constants

Most constants are small
16-bit iImmediate Is sufficient

For the occasional 32-bit constant

lur rt, constant

lul: load upper immediate
Copies 16-bit constant to left 16 bits of rt
Clears right 16 bits of rt to O

lui $s0, 61 0000 0000 0111 1101|0000 OO0OO O0O00 0000

ori $s0, $s0O, 2304 | 0000 0000 0111 1101|0000 1001 0000 0000

Chapter 2 — Instructions: Language of the Computer — 28

Effect of lul Instruction

The machine language version of Tui $t0, 255 # $t0 is register 8:
001111 00000 01000 000000001111 1111

Contents of register $t0 after executing 1ui $t0, 255: /
000000001111 1111 0000 0000 0000 0000

Chapter 2 — Instructions: Language of the Computer — 29

Linker and loader

A loader does program loading
A linker does symbol resolution
Either can do relocation

here have been all-in-one linking loaders
that do all three functions

Program loading

Relocation

Symbol resolution

Chapter 2 — Instructions: Language of the Computer — 30

Assembler Pseudoinstructions

Most assembler instructions represent
machine instructions one-to-one

Pseudoinstructions: figments of the
assembler’s imagination

move $t0, $tl — add $t0, $zero, $til

blt $t0, $t1, L — slt $%at, $t0, $t1
bne $at, $zero, L

$at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 31

MIPS Register Convention

Name Register Usage Preserve
Number on call by
callee?

$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $vi 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Chapter 2 — Instructions: Language of the Computer — 32

Producing an Object Module

Assembler (or compiler) translates program into machine
Instructions

Provides information for building a complete program from
the pieces

Object file header: size and location of each piece, source file
name, creation date

Text segment: translated instructions
Static data segment: data allocated for the life of the program

Relocation info: a list of the places in the object code that have to
be fixed up by the linker, which depend on absolute location of
loaded program

Symbol table: global definitions and external refs
Debug info: for debugger: source code, line number, data structure

Object file
header

Text
segment

Data
segment

Relocation
information

Symbol
table

Debugging
information

Chapter 2 — Instructions: Language of the Computer — 33

Linking Object Modules

Produces an executable image
Find library routines used by the program
Merges code and data modules
Resolve labels (determine their addresses)
Patch location-dependent and external refs

Could leave location dependencies for
fixing by a relocating loader
But with virtual memory, no need to do this

Program can be loaded into absolute location
In virtual memory space

Chapter 2 — Instructions: Language of the Computer — 34

Linker (liInk editor) oo 1. 140

Object file
sub:
Object file . Executable file
Instructions | main: main:
jal 277 jal printf
[] V []
Jal 22 jal sub
) printf;
Relocati call, sub Linker ;
elocation call, printf .
records .
A sub:
C library .
—
print: ’

FIGURE B.3.1 The linker searches a collection of object fi les and program libraries to find nonlocal routines
used in a program, combines them into a single executable file, and resolves references between routines in
different files.

Appendix B — 35

Linking Object Modules

Two object files

Object file header

Object file header

name: procedure A
text size: 100 (hex)
data size: 20 (hex)

name: procedure B
text size: 200 (hex)
data size: 30 (hex)

Text segment address instruction

Text segment address instruction

0 lw $a0, 0($gp)
4 jal 0

0 sw $al, 0($gp)
4 jal 0

g

X)

Data segment O

Y)

Data segment O

Relocation info addr | type Depend

Relocation info addr | type Depend

0 lw X 0 sw Y

4 jal B 4 jal A
Symbol table label address Symbol table label address

X - Y -

B - A -

Chapter 2 — Instructions: Language of the Computer — 36

Executable module

Executable file header
Text size: 300 (hex)

$sp— 7FFf Ffcpe, Stack

data size: 50 (hex) l
Text segment T
address Instruction

Dynamic data

0040,0000 Iw $a0, 8000($gp)

0040 0004 jal 10 0040 $gp—= 1000 80000, Static data

1000 0000,

Text

00400100 sw$al, 8020($gp) pc— 0040 0000y ~osorved
0040 0104 jal 10 0000 0
Data segment
address 8000(hex) = 1000 0000 0000 0000
1000 00000 (X) (16-bit 2's complement number)
= - 8000 (hex)
1000 00020 (Y) 8020(hex) = 1000 0000 0010 0000

(16-bit 2's complement number)
= - 8000 (hex) + 0020 (hex)
8000($gp) = 1000 8000 — 8000 = 1000 00000; 0:010 0040<<2 = 0040 0100
8020($gp) = 1000 8020 — 8000 + 0020 = 1000 00020; 0:010 0000<<2 = 0040 0000

Chapter 2 — Instructions: Language of the Computer — 37

Loading a Program

Load from image file on disk into memory
Read header to determine segment sizes
Create (virtual) address space

Copy text and initialized data into memory
Or set page table entries so they can be faulted in

Set up arguments (if any) to the main
program on stack

Initialize registers (including $sp, $fp, $gp)

Jump to startup routine
Copies arguments to $a0, ... and calls main
When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 38

Statically Linked Libraries

The fastest way to call library routines

A few disadvantages

The library routines become part of the
executable code. If a new version of the
ibrary is released, the statically linked
orogram keeps using the old version.

t loads all routines in the library that are
called anywhere in the executable even if
those calls are not executed. The library can
be large relative to the program. (for example,
the standard C library is 2.5 MB)

Chapter 2 — Instructions: Language of the Computer — 39

Dynamic Linking Libraries (DLL)

Only link/load library procedure when it is
callec
Requires procedure code to be relocatable

Avoids image bloat caused by static linking of
all (transitively) referenced libraries

Automatically picks up new library versions

Initial version of DLL

The loader ran a dynamic linker

Downside: it still linked all routines of library
that might be called.

Chapter 2 — Instructions: Language of the Computer — 40

Lazy procedure linkage

Each routine is linked only after it is called.

It relies on another level of indirection, as
shown In Fig. 2.22.

It starts with nonlocal routines calling a set of
dummy routine in [PLT] at the end of the
program, with one entry per nonlocal routine.

These dummy entries each contain an indirect
jump after loading an offset from [GOT] .

The first time the library routine is called, the
program calls the dummy entry and follows the
indirect jump.

Chapter 2 — Instructions: Language of the Computer — 41

Lazy procedure linkage

It initially points to code that puts a number In
a register to identify the desired library routine
and then jumps to the dynamic linker/loader.

The linker/loader finds the desired routine
remaps the GOT entry by changing the
address in the indirect jump location to point
to that routine. It then jJump to the routine.

When the routine completes, it returns to the
original calling site.

Thereafter, the call to the library jJump
Indirectly to the routine without the extra hops.

Chapter 2 — Instructions: Language of the Computer — 42

Lazy procedure linkage

Text Text PLT: procedure linkage table
jal ® | jal :EW * A level of indirection for position
N m=m &y independent code (PIC)
PLT ir o] ir ICE, * A set of dummy routines at the
| end of the program, each entry
cotl L% 2ok per nonlocal routine.
i _— * Each entry contains an indirect
' \ ' jump after loading an offset from
Text special GOT
1 IDF& Bl Egﬁleﬁ;ier GOT: global offset table
L — \ * Each PLT entry has a corresponding
o dvnamic GOT entry which was initially set to
Si’;?a";'%'ﬂ“?éﬂﬁﬁé\” | Iir>1/ker code that put the routine ID in a
.. Eq Madify the GOP entry register and then jump to the linker.
DLL Data/Text Text Dynamic linker:
routine| 7| DH-routne | DL routie * Find the desired routine with ID
o LeF o Lo * Relocate it and change its GOT entry

a. First call to DLL routine b. Subsequent calls to DLL routine | * Jump to it.
Chapter 2 — Instructions: Language of the Computer — 43

Lazy Linkage

PLT: Procedure linkage table

GOT: Indirection table

Stub: Loads routine 1D,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Text

jal

——

Tw
i

Data
L o —
Text
L 1% 1D
. [
|
Text

J

- Dynamic linker/loader
Remap DLL routine

KS;

jr

L Data/Text
DLL routine

=)

Y
[
o

G

ir L&
Data

R —
Text

| DLL routine

ir e

a. First call to DLL routine

b. Subsequent calls to DLL routine

Chapter 2 — Instructions: Language of the Computer — 44

DLL Summary

speed program startup

require extra space for information needed

for dynamic linking

a good deal of overhead for the first call
only an indirect jJump for subsequent calls

Microsoft's Window relies extensively on

DLL and it i1s also the default when

executing programs on UNIX systems
today.

Chapter 2 — Instructions: Language of the Computer — 45

C Sort Example

lllustrates use of assembly instructions
for a C bubble sort function

Swap procedure (leaf)
void swap(int v[], int k)

{
int temp;
temp = v[Kk];
VIK] = vlk+1];
vlk+1] = temp;
}

vin $a0, k in $al, temp in $t0

Chapter 2 — Instructions: Language of the Computer — 46

The Procedure Swap

 vin%$ao, kin $al, temp in $t0

$tl = k * 4
$tl = v+(k*4)
(address of v[k])

swap: sll $t1, $al, 2
add $t1, $a0, $t1l

Iw $t0, 0($tl)
Iw $t2, 4($tl)

$t0 (temp) = v[k]
$t2 = v[k+1]

sw $t2, 0($tl)
sw $t0, 4($tl)

vik] = $t2 (v[k+1]D)
v[k+1] = $t0 (temp)

H | H B HF B H R

jr $ra return to calling routine

Chapter 2 — Instructions: Language of the Computer — 47

The Sort Procedure in C

Non-leaf (calls swap)
void sort (int v[], int n){
int i1, j;
for (1 = 0; 1 < n; 1++) {
for (g = 1-1;
J >= 0 ¢&& vl>vh+1]; 31--) {
swap(V,J);
}
+
by

vin $a0, kin $al, iin $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 48

The Procedure Body

Move
params

Outer loop

Inner loop

Pass
params
& call

Inner loop

move $s2, $al # save $a0 into $s2
move $s3, $al # save $al into $s3
move $s0, $zero #i1 =0
forltst: slt $t0, $s0, $s3 # $t0 = 0 if $sO0 > $s3 (i = n)
beq $t0, $zero, exitl # go to exitl if $s0 > $s3 (i > n)
addi $s1, $sO0, -1 #3 =1 -1
for2tst: slti $t0, $s1, O # $t0 = 1 if $s1 <0 (< 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 <0 (J < 0)
sl $t1, $s1, 2 # $tl =3 * 4
add $t2, $s2, $tl #$2=v+ g =*4a
Iw $t3, 0(%t2) # $t3 = v[j]
Iw $t4, 4($t2) # $t4 = v[j + 1]
slt $t0, $t4, $t3 # $t0 = 0 if $t4 > $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 > $t3
move $al0, $s2 # 1st param of swap is v (old $a0)
move $al, $sl # 2nd param of swap is j
jal swap # call swap procedure
addi $s1, $s1, -1 #j —=1
3 for2tst # jump to test of i1nner loop
exit2: addi $s0, $s0O, 1 # 0 +=1
J forltst # jump to test of outer loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 49

The Full Procedure

sort: addi $sp,Psp, —20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8(%$sp) # save $s2 on stack
sw $s1, 4($sp) # save $sl1 on stack
sw $s0, 0($sp) # save $s0 on stack
procedure body
exitl: lw $sO, O0($sp) # restore $sO from stack
Iw $s1, 4($sp) # restore $sl1 from stack
Iw $s2, 8($sp) # restore $s2 from stack
Iw $s3,12($sp) # restore $s3 from stack
Iw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer
jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 50

Optimization types

Optimization name Explanation

High level At or near the source level; processor independent

Procedure integration Replace procedure call by procedure body 03

Local Within straight-line code

Common subexpression elimination Replace two instances of the same computation by single copy 01

Constant propagation Replace all instances of a variable that is assigned a constant with the 01
constant

Stack height reduction Rearrange expression tree to minimize resources needed for expression evaluation 01

Global Across a branch

Global common subexpression Same as local, but this version crosses branches 02

elimination

Copy propagation Replace all instances of a variable A that has been assigned X (i.e., A= X) with X 02

Code motion Remove code from a loop that computes same value each iteration of the loop 02

Induction variable elimination Simplify/eliminate array addressing calculations within loops 02

Processor dependent Depends on processor knowledge

Strength reduction Many examples; replace multiply by a constant with shifts 01

Pipeline scheduling Reorder instructions to improve pipeline performance 01

Branch offset optimization Choose the shortest branch displacement that reaches target 01

Chapter 2 — Instructions: Language of the Computer — 51

Effect of Compiler Optimization

Compiled with gcc for Pentium 4 under Linux

3 O Relative Performance 140000 O Instruction count
25 120000

5 100000

80000
1.5
60000

1 40000
0.5 20000

0 T T T 0 T T T

none o1 02 03 none o1 02 03

180000 O Clock Cycles 2 OcCPI
160000
140000 15
120000
100000 1

80000

60000 —

40000 _— 0.5

20000 —

o T T T 0 T T T
none 01 02 03 none 01 02 03

Chapter 2 — Instructions: Language of the Computer — 52

Effect of Language and Algorithm

3 O Bubblesort Relative Performance

2.5

15

0.5

C/none C/01 C/02 C/03 Java/int Java/ZJIT

25 O Quicksort Relative Performance

15

0.5

]

C/none C/01 C/02 C/03 Java/int Java/JIT

3000 O Quicksort vs. Bubblesort Speedup

2500

2000

1500

1000

500

]

C/none C/01 C/02 C/03 Java/int Java/JIT

Chapter 2 — Instructions: Language of the Computer — 53

| essons Learnt

Instruction count and CPI are not good
performance indicators in isolation

Compiler optimizations are sensitive to the
algorithm

Java/JIT compiled code is significantly
faster than JVM interpreted
Comparable to optimized C in some cases

Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 54

Arrays vs. Pointers

Array indexing involves
Multiplying index by element size
Adding to array base address

Pointers correspond directly to memory
addresses

Can avoid indexing complexity

Chapter 2 — Instructions: Language of the Computer — 55

Example: Clearing and Array

clearl(int array[], int size) { clear2(int *array, iInt size) {
int 1; int *p;
for (1 = 0; 1 < size; 1 += 1) for (p = &array[0]; p < &array[size];
array[i] = O; p=p+1)
} *p = 0;
s
move $t0,$zero # 1 =0 move $tO0,
loopl: sl $t1,%$t0,2 #$tl =1 * 4 sl $t1, ,2 # $tl = * 4
add $t2,%a0,$t1 # $t2 = add $t2,%a0,%tl # $t2 =

&array[i]
array[i] =0
#1 =1 +1
$t3 =
(1 < si1ze)
bne $t3,%zero,loopl # if (.)

goto loopl

sw $zero, 0(%$t2)
addi $t0,%$t0,1
sit $t3,%$t0,%al

&array[1
sw $zero,0(St0) # =0
addi $t0, $t0, #
slt $t3,$t0, # $t3 =

#()
bne $t3,%zero,loop2 # if (.)

goto loop2

Chapter 2 — Instructions: Language of the Computer — 56

Comparison of Array vs. Ptr

Multiply “strength reduced” to shift
Array version requires shift to be inside
loop

Part of index calculation for incremented i

c.f. Incrementing pointer
Compiler can achieve same effect as
manual use of pointers

Induction variable elimination

Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 57

Compiling C and Interpreting Java

Homework: read section 2.15 in CD

Chapter 2 — Instructions: Language of the Computer — 58

ARM & MIPS Similarities

ARM: the most popular embedded core
Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 X 32-bit 31 X 32-bit
Input/output Memory Memory

mapped mapped

Chapter 2 — Instructions: Language of the Computer — 59

Compare and Branch in ARM

Uses four condition codes for result of an
arithmetic/logical instruction

Negative, zero, carry, overflow

Compare instructions to set condition codes
without keeping the result

Each instruction can be conditional
Top 4 bits of instruction word: condition value
Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 60

Fallacies

Powerful instruction = higher performance

Fewer instructions required

But complex instructions are hard to implement
May slow down all instructions, including simple ones

Compilers are good at making fast code from simple
Instructions
Use assembly code for high performance

But modern compilers are better at dealing with
modern processors

More lines of code = more errors and less
productivity

Chapter 2 — Instructions: Language of the Computer — 61

Fallacies

Backward compatibility = instruction set
doesn’'t change
But they do accrete more instructions

1000

900
800 ,

700

600 {

500 X86 instruction set
400

300

200 —
100 ?—4—-—/

O e e e L B s s s B s s B L e

Number of Instructions

Year

Chapter 2 — Instructions: Language of the Computer — 62

Pitfalls

Sequential words are not at sequential
addresses

Increment by 4, not by 1!

Keeping a pointer to an automatic variable
after procedure returns
e.g., passing pointer back via an argument
Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 63

Concluding Remarks

Design principles
Simplicity favors regularity
Smaller is faster
Make the common case fast
Good design demands good compromises

Layers of software/hardware
Compiler, assembler, hardware

MIPS: typical of RISC ISAs
c.f. x86

Chapter 2 — Instructions: Language of the Computer — 64

Concluding Remarks

Measure MIPS instruction executions In
benchmark programs

Consider making the common case fast
Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer lw, sw, Ib, Ibu, Ih, 35% 36%

lhu, sb, lui
Logical and, or, nor, andi, 12% 4%
ori, sll, srli

Cond. Branch |beq, bne, slt, slti, 34% 8%

sltiu
Jump J, Jr, jal 2% 0%

Chapter 2 — Instructions: Language of the Computer — 65

	Chapter 2B
	Branch Addressing
	Specifying Branch Destinations
	Jump Addressing
	Jump Addressing
	Target Addressing Example
	Conditional Branching Far Away
	Addressing Mode Summary
	MIPS instruction formats
	MIPS Organization So Far
	Synchronization
	Synchronization
	Atomic swap & a simple lock
	Load linked and store conditional
	An atomic swap
	Implementation of ll and sc
	Translation and Startup
	Two storage classes in C
	Allocating Space on the Stack
	Memory Layout
	Layout of memory
	Memory allocation
	Character Data
	Example alphabets in Unicode
	Byte/Halfword Operations
	String Copy Example
	String Copy Example
	32-bit Constants
	Effect of lui instruction
	Linker and loader
	Assembler Pseudoinstructions
	MIPS Register Convention
	Producing an Object Module
	Linking Object Modules
	Linker (link editor)
	Linking Object Modules
	Executable module
	Loading a Program
	Statically Linked Libraries
	Dynamic Linking Libraries (DLL)
	Lazy procedure linkage
	Lazy procedure linkage
	Lazy procedure linkage
	Lazy Linkage
	DLL Summary
	C Sort Example
	The Procedure Swap
	The Sort Procedure in C
	The Procedure Body
	The Full Procedure
	Optimization types
	Effect of Compiler Optimization
	Effect of Language and Algorithm
	Lessons Learnt
	Arrays vs. Pointers
	Example: Clearing and Array
	Comparison of Array vs. Ptr
	Compiling C and Interpreting Java
	ARM & MIPS Similarities
	Compare and Branch in ARM
	Fallacies
	Fallacies
	Pitfalls
	Concluding Remarks
	Concluding Remarks

