
Chapter 4A
The Processor

Chapter 4 — The Processor — 1

Introduction
 CPU performance factors

 Instruction count
 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw
 Arithmetic/logical: add, sub, and, or, slt
 Control transfer: beq, j

§4.1 Introduction

Chapter 4 — The Processor — 2

MIPS Microarchitecture
 Building blocks

 Registers
 Memories (instruction, data)
 ALUs
 Muxes
 Wires

Chapter 4 — The Processor — 3

Instruction Execution
 PC → instruction memory, fetch instruction
 Register numbers → register file, read registers
 Depending on instruction class

 Use ALU to calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory for load/store
 PC ← target address or PC + 4

Fetch
PC = PC+4

Decode Exec

Chapter 4 — The Processor — 4

CPU Overview

Chapter 4 — The Processor — 5

Multiplexers
 Can’t just join

wires together
 Use multiplexers

Chapter 4 — The Processor — 6

Logic Design Basics
§4.2 Logic D

esign C
onventions

 Information encoded in binary
 Low voltage = 0, High voltage = 1
 One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
 Store information

Chapter 4 — The Processor — 7

Combinational Elements

 AND-gate
 Y = A & B
A
B Y

I0
I1 Y

M
u
x

S

 Multiplexer
 Y = S ? I1 : I0

A

B
Y +

A

B

Y ALU

F

 Adder
 Y = A + B

 Arithmetic/Logic Unit
 Y = F(A, B)

Chapter 4 — The Processor — 8

Sequential Elements
 Register: stores data in a circuit

 Uses a clock signal to determine when to
update the stored value

 Edge-triggered: update when Clk changes
from 0 to 1

D

Clk

Q
Clk

D

Q

Chapter 4 — The Processor — 9

Sequential Elements
 Register with write control

 Only updates on clock edge when write
control input is 1

 Used when stored value is required later

D

Clk

Q
Write

Write

D

Q

Clk

Chapter 4 — The Processor — 10

Clocking Methodology
 Combinational logic transforms data during

clock cycles
 Between clock edges
 Input from state elements, output to state

element
 Longest delay determines clock period

Chapter 4 — The Processor — 11

Building a Datapath
 Datapath

 Elements that process data and addresses
in the CPU
 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath incrementally
 Refining the overview design

§4.3 B
uilding a D

atapath

Chapter 4 — The Processor — 12

Fetching Instructions
 Fetching instructions involves

 reading the instruction from the Instruction Memory
 updating the PC to hold the address of the next

instruction

Read
Address

Instruction

Instruction
Memory

Add

PC

4

– PC is updated every cycle, so it does not need an explicit
write control signal

– Instruction Memory is read every cycle, so it doesn’t need
an explicit read control signal

Chapter 4 — The Processor — 13

Decoding Instructions
 Decoding instructions involves

 sending the fetched instruction’s opcode
and function field bits to the control unit

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

Control
Unit

– reading two values from the Register File
• Register File addresses are contained in the instruction

Chapter 4 — The Processor — 14

R-Format Instructions
 Read two register operands
 Perform arithmetic/logical operation
 Write register result

Chapter 4 — The Processor — 15

Executing R-type Operations
 R format operations (add, sub, slt, and, or)

 perform the (op and funct) operation on values in rs and rt
 store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow
zero

ALU control RegWrite

R-type:
31 25 20 15 5 0

op rs rt rd funct shamt

10

– The Register File is not written every cycle (e.g. sw), so we
need an explicit write control signal for the Register File

Chapter 4 — The Processor — 16

Load/Store Instructions
 Read register operands
 Calculate address using 16-bit offset

 Use ALU, but sign-extend offset
 Load: Read memory and update register
 Store: Write register value to memory

Chapter 4 — The Processor — 17

Executing lw/sw Operations
 Load and store operations involves

 compute memory address by adding the base register (read from
the Register File during decode) to the 16-bit signed-extended
offset field in the instruction

 store value (read from the Register File during decode) written to
the Data Memory

 load value, read from the Data Memory, written to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow
zero

ALU control RegWrite

Data
Memory

Address

Write Data

Read Data

Sign
Extend

MemWrite

MemRead

16 32

Chapter 4 — The Processor — 18

Branch Instructions
 Read register operands
 Compare operands

 Use ALU, subtract and check Zero output
 Calculate target address

 Sign-extend displacement
 Shift left 2 places (word displacement)
 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 19

Executing Branch Operations
 Branch operations involves

 compare registers + compute branch target

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

zero

ALU control

Sign
Extend 16 32

Shift
left 2

Add

4 Add

PC

Branch
target

address

(to branch
control logic)

Chapter 4 — The Processor — 20

Executing Jump Operations
 Jump operation involves

 replace the lower 28 bits of the PC with the lower 26
bits of the fetched instruction shifted left by 2 bits

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Shift
left 2

Jump
address

26

4

28

Chapter 4 — The Processor — 21

Composing the Elements
 First-cut data path does an instruction in

one clock cycle
 Each datapath element can only do one

function at a time
 Hence, we need separate instruction and data

memories
 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 22

Assembling the Parts
 Assemble the datapath segments and add

control lines and multiplexors as needed
 Single cycle design – fetch, decode and

execute each instructions in one clock cycle
 no datapath resource can be used more than once

per instruction, so some must be duplicated (e.g.,
separate Instruction Memory and Data Memory,
several adders)

 multiplexors needed at the input of shared
elements with control lines to do the selection

 write signals to control writing to the Register File
and Data Memory

Chapter 4 — The Processor — 23

Fetching, Register, and
Memory Access Portions

MemtoReg

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf
zero

ALU control RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend 16 32

ALUSrc

Chapter 4 — The Processor — 24

ALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtract
 R-type: F depends on funct field

§4.4 A S
im

ple Im
plem

entation S
chem

e

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

Chapter 4 — The Processor — 25

ALU Control
 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 26

The Main Control Unit
 Control signals derived from instruction

0 rs rt rd shamt funct
31:26 5:0 25:21 20:16 15:11 10:6

35 or 43 rs rt address
31:26 25:21 20:16 15:0

4 rs rt address
31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

base
register

Chapter 4 — The Processor — 27

Datapath With Control

Chapter 4 — The Processor — 28

rs

rt

rd

imm

opcode

funct

R-Type Instruction
0 rs rt rd shamt funct

31:26 5:0 25:21 20:16 15:11 10:6
R-type

Chapter 4 — The Processor — 29

Load Instruction

1

35 rs rt address

31:26 25:21 20:16 15:0

Load

base register

Chapter 4 — The Processor — 30

rs

rt

Store Instruction

1

43 rs rt address

31:26 25:21 20:16 15:0

Store

base register

Chapter 4 — The Processor — 31

rs

rt

Branch-on-Equal Instruction
4 rs rt address

31:26 25:21 20:16 15:0

Branch

Chapter 4 — The Processor — 32

Implementing Jumps

 Jump uses word address
 Update PC with concatenation of

 Top 4 bits of old PC
 26-bit jump address
 00

 Need an extra control signal decoded from
opcode

2 address
31:26 25:0

Jump

Chapter 4 — The Processor — 33

Datapath With Jumps Added
2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 34

Performance Issues
 Longest delay determines clock period

 Critical path: load instruction
 lw: Instruction memory → register file → ALU
→ data memory → register file

 Not feasible to vary period for different
instructions

 Violates design principle
 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 35

Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining  Four loads:
 Speedup

= 8/3.5 = 2.3
 Non-stop:

 Speedup
= 2n/(0.5n + 1.5) ≈ 4
= number of stages

Chapter 4 — The Processor — 36

MIPS Pipeline
 Five stages, one step per stage

1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register

Chapter 4 — The Processor — 37

Pipeline Performance
 Assume time for stages is

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 38

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

write read

Chapter 4 — The Processor — 39

Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time
 Time between instructionspipelined

= Time between instructionsnonpipelined
 Number of stages

 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 40

Pipelining and ISA Design
 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage
 Alignment of memory operands

 Memory access takes only one cycle

Chapter 4 — The Processor — 41

Other Pipeline Structures
 What about the (slow) multiply operation?

 Make the clock twice as slow or …
 let it take two cycles (since it doesn’t use the DM stage)

ALU

IM Reg DM Reg

MUL

ALU

IM Reg DM1 Reg DM2

• What if the data memory access is twice as slow as the
instruction memory?
– make the clock twice as slow or …
– let data memory access take two cycles (and keep the

same clock rate)

Chapter 4 — The Processor — 42

Sample Pipeline Alternatives
 ARM7

 StrongARM-1

 XScale

ALU

IM1 IM2 DM1 Reg
DM2

IM Reg EX

PC update
IM access

decode
reg
access

ALU op
DM access
shift/rotate
commit result
 (write back)

ALU

IM Reg DM Reg

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write

Chapter 4 — The Processor — 43

MIPS Pipeline Datapath
 What do we need to add/modify in our MIPS datapath?

 State registers between each pipeline stage to isolate them

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data IF

et
ch

/D
ec

D
ec

/E
xe

c

Ex
ec

/M
em

M
em

/W
B

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

System Clock

Sign
Extend

Chapter 4 — The Processor — 44 What is wrong here?

(Pipeline) Hazards
 Situations that prevent starting the next

instruction in the next cycle
 Structure hazards

 A required resource is busy
 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control (branch) hazard
 Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 45

Structure Hazards
 Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for that

cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Chapter 4 — The Processor — 46

A Single Memory ?!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

ALU

Mem Reg Mem Reg

ALU

Mem Reg Mem Reg

ALU

Mem Reg Mem Reg
ALU

Mem Reg Mem Reg

ALU

Mem Reg Mem Reg

Reading data from
memory

Reading instruction
from memory

Chapter 4 — The Processor — 47

• A structure hazard!

Dual Memory: I$, D$!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

ALU

Reg D$ Reg

ALU

Reg Reg

ALU

Reg Reg
ALU

 I$ Reg Reg

ALU

Reg Reg

• Fix with separate instrution and data memories (I$ and D$)

Chapter 4 — The Processor — 48

I$

I$

I$

I$

D$

D$

D$

D$

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add $1,

Inst 1

Inst 2

add $2,$1,
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

Chapter 4 — The Processor — 49

writing data to a register

Reading data from a register

• Another structure hazard!

A solution!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

Fix register file access
hazard by writing in the
first half of the cycle
and reading in the
second half

add $1,..

add $2,$1,

clock edge that controls
register reading

clock edge that controls
reading of pipeline state
registers and register writing

Chapter 4 — The Processor — 50

Is it OK?

Another solution!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

Fix register file access
hazard by writing in the
second half of the cycle
and reading in the first
half

add $1,..

add $2,$1,

clock edge that controls
register writing

clock edge that controls
reading of pipeline state
registers and register file

Chapter 4 — The Processor — 51

Is it OK?

Data Hazards
 An instruction depends on completion of

data access by a previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3

write

read

Chapter 4 — The Processor — 52

Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

Chapter 4 — The Processor — 53

Data Forwarding (Bypassing)
 Take the result from the earliest point that it exists in any

of the pipeline state registers and forward it to the
functional units (e.g., the ALU) that need it that cycle

 For ALU functional unit: the inputs can come from any
pipeline register rather than just from ID/EX by
 adding multiplexors to the inputs of the ALU
 connecting the Rd write data in EX/MEM or MEM/WB to either (or

both) of the EX’s stage Rs and Rt ALU mux inputs
 adding the proper control hardware to control the new muxes

 Other functional units may need similar forwarding logic
(e.g., the DM)

 With forwarding can achieve a CPI of 1 even in the
presence of data dependencies

Chapter 4 — The Processor — 54

Forwarding Hardware
PCSrc

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

Branch

B

A

Forward
Unit

ID/EX.RegisterRt

ID/EX.RegisterRs

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Chapter 4 — The Processor — 55

00

01

10

00

01

10

rt
rd

rs

Forwarding Control Conditions
 EX hazard:
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

Forwards the
result from the
previous instr.
to either input
of the ALU

Forwards the
result from the
second
previous instr.
to either input
of the ALU

 MEM hazard:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Will be explained again later!

Chapter 4 — The Processor — 56

What if both instructions are
accessing the same register?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

add $1,..

add $2,$1,

Chapter 4 — The Processor — 57
• A data hazard? Must read after write (RAW)

What if both instructions are
accessing the same register?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

add $1,..

add $2,$1,

Chapter 4 — The Processor — 58
• A data hazard? Must read after write (RAW)

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

add $1,

add $2,$1,

Today: Register reads/writes take a whole cycle!
So in this case we need to “bypass” the data
from the write to the read in the same cycle.

Chapter 4 — The Processor — 59

Loads Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

• Load-use data hazard
Chapter 4 — The Processor — 60

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!

Chapter 4 — The Processor — 61

Code Scheduling to Avoid Stalls
 Reorder code to avoid use of load result in

the next instruction
 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

Chapter 4 — The Processor — 62

Types of Data Hazards
 RAW (read after write): true dependency

 only hazard for ‘fixed’ pipelines
 later instruction must read after earlier

instruction writes
 WAW (write after write): output dependency

 only hazard for variable-length pipeline
 later instruction must write after earlier

instruction writes
 WAR (write after read): anti dependency or

name dependency
 only hazard for pipelines with late read
 later instruction must write after earlier

instruction reads
 RAR (read after read): no hazard

F R X M W

F R X M W

F R 1 2 3

F R X M W

4 W

F R 1 2 3

F R X M W

4 R 5 W

Chapter 4 — The Processor — 63

	Chapter 4A
	Introduction
	MIPS Microarchitecture
	Instruction Execution
	CPU Overview
	Multiplexers
	Logic Design Basics
	Combinational Elements
	Sequential Elements
	Sequential Elements
	Clocking Methodology
	Building a Datapath
	Fetching Instructions
	Decoding Instructions
	R-Format Instructions
	Executing R-type Operations
	Load/Store Instructions
	Executing lw/sw Operations
	Branch Instructions
	Executing Branch Operations
	Executing Jump Operations
	Composing the Elements
	Assembling the Parts
	Fetching, Register, and �Memory Access Portions
	ALU Control
	ALU Control
	The Main Control Unit
	Datapath With Control
	R-Type Instruction
	Load Instruction
	Store Instruction
	Branch-on-Equal Instruction
	Implementing Jumps
	Datapath With Jumps Added
	Performance Issues
	Pipelining Analogy
	MIPS Pipeline
	Pipeline Performance
	Pipeline Performance
	Pipeline Speedup
	Pipelining and ISA Design
	Other Pipeline Structures
	Sample Pipeline Alternatives
	MIPS Pipeline Datapath
	(Pipeline) Hazards
	Structure Hazards
	A Single Memory ?!
	Dual Memory: I$, D$!
	How About Register File Access?
	A solution!
	Another solution!
	Data Hazards
	Forwarding (aka Bypassing)
	Data Forwarding (Bypassing)
	Forwarding Hardware
	Forwarding Control Conditions
	What if both instructions are �accessing the same register?
	What if both instructions are �accessing the same register?
	How About Register File Access?
	Loads Can Cause Data Hazards
	Load-Use Data Hazard
	Code Scheduling to Avoid Stalls
	Types of Data Hazards

