
Chapter 4A
The Processor

Chapter 4 — The Processor — 1

Introduction
 CPU performance factors

 Instruction count
 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw
 Arithmetic/logical: add, sub, and, or, slt
 Control transfer: beq, j

§4.1 Introduction

Chapter 4 — The Processor — 2

MIPS Microarchitecture
 Building blocks

 Registers
 Memories (instruction, data)
 ALUs
 Muxes
 Wires

Chapter 4 — The Processor — 3

Instruction Execution
 PC → instruction memory, fetch instruction
 Register numbers → register file, read registers
 Depending on instruction class

 Use ALU to calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory for load/store
 PC ← target address or PC + 4

Fetch
PC = PC+4

Decode Exec

Chapter 4 — The Processor — 4

CPU Overview

Chapter 4 — The Processor — 5

Multiplexers
 Can’t just join

wires together
 Use multiplexers

Chapter 4 — The Processor — 6

Logic Design Basics
§4.2 Logic D

esign C
onventions

 Information encoded in binary
 Low voltage = 0, High voltage = 1
 One wire per bit
 Multi-bit data encoded on multi-wire buses

 Combinational element
 Operate on data
 Output is a function of input

 State (sequential) elements
 Store information

Chapter 4 — The Processor — 7

Combinational Elements

 AND-gate
 Y = A & B
A
B Y

I0
I1 Y

M
u
x

S

 Multiplexer
 Y = S ? I1 : I0

A

B
Y +

A

B

Y ALU

F

 Adder
 Y = A + B

 Arithmetic/Logic Unit
 Y = F(A, B)

Chapter 4 — The Processor — 8

Sequential Elements
 Register: stores data in a circuit

 Uses a clock signal to determine when to
update the stored value

 Edge-triggered: update when Clk changes
from 0 to 1

D

Clk

Q
Clk

D

Q

Chapter 4 — The Processor — 9

Sequential Elements
 Register with write control

 Only updates on clock edge when write
control input is 1

 Used when stored value is required later

D

Clk

Q
Write

Write

D

Q

Clk

Chapter 4 — The Processor — 10

Clocking Methodology
 Combinational logic transforms data during

clock cycles
 Between clock edges
 Input from state elements, output to state

element
 Longest delay determines clock period

Chapter 4 — The Processor — 11

Building a Datapath
 Datapath

 Elements that process data and addresses
in the CPU
 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath incrementally
 Refining the overview design

§4.3 B
uilding a D

atapath

Chapter 4 — The Processor — 12

Fetching Instructions
 Fetching instructions involves

 reading the instruction from the Instruction Memory
 updating the PC to hold the address of the next

instruction

Read
Address

Instruction

Instruction
Memory

Add

PC

4

– PC is updated every cycle, so it does not need an explicit
write control signal

– Instruction Memory is read every cycle, so it doesn’t need
an explicit read control signal

Chapter 4 — The Processor — 13

Decoding Instructions
 Decoding instructions involves

 sending the fetched instruction’s opcode
and function field bits to the control unit

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

Control
Unit

– reading two values from the Register File
• Register File addresses are contained in the instruction

Chapter 4 — The Processor — 14

R-Format Instructions
 Read two register operands
 Perform arithmetic/logical operation
 Write register result

Chapter 4 — The Processor — 15

Executing R-type Operations
 R format operations (add, sub, slt, and, or)

 perform the (op and funct) operation on values in rs and rt
 store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow
zero

ALU control RegWrite

R-type:
31 25 20 15 5 0

op rs rt rd funct shamt

10

– The Register File is not written every cycle (e.g. sw), so we
need an explicit write control signal for the Register File

Chapter 4 — The Processor — 16

Load/Store Instructions
 Read register operands
 Calculate address using 16-bit offset

 Use ALU, but sign-extend offset
 Load: Read memory and update register
 Store: Write register value to memory

Chapter 4 — The Processor — 17

Executing lw/sw Operations
 Load and store operations involves

 compute memory address by adding the base register (read from
the Register File during decode) to the 16-bit signed-extended
offset field in the instruction

 store value (read from the Register File during decode) written to
the Data Memory

 load value, read from the Data Memory, written to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

overflow
zero

ALU control RegWrite

Data
Memory

Address

Write Data

Read Data

Sign
Extend

MemWrite

MemRead

16 32

Chapter 4 — The Processor — 18

Branch Instructions
 Read register operands
 Compare operands

 Use ALU, subtract and check Zero output
 Calculate target address

 Sign-extend displacement
 Shift left 2 places (word displacement)
 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 19

Executing Branch Operations
 Branch operations involves

 compare registers + compute branch target

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

zero

ALU control

Sign
Extend 16 32

Shift
left 2

Add

4 Add

PC

Branch
target

address

(to branch
control logic)

Chapter 4 — The Processor — 20

Executing Jump Operations
 Jump operation involves

 replace the lower 28 bits of the PC with the lower 26
bits of the fetched instruction shifted left by 2 bits

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Shift
left 2

Jump
address

26

4

28

Chapter 4 — The Processor — 21

Composing the Elements
 First-cut data path does an instruction in

one clock cycle
 Each datapath element can only do one

function at a time
 Hence, we need separate instruction and data

memories
 Use multiplexers where alternate data

sources are used for different instructions

Chapter 4 — The Processor — 22

Assembling the Parts
 Assemble the datapath segments and add

control lines and multiplexors as needed
 Single cycle design – fetch, decode and

execute each instructions in one clock cycle
 no datapath resource can be used more than once

per instruction, so some must be duplicated (e.g.,
separate Instruction Memory and Data Memory,
several adders)

 multiplexors needed at the input of shared
elements with control lines to do the selection

 write signals to control writing to the Register File
and Data Memory

Chapter 4 — The Processor — 23

Fetching, Register, and
Memory Access Portions

MemtoReg

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf
zero

ALU control RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend 16 32

ALUSrc

Chapter 4 — The Processor — 24

ALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtract
 R-type: F depends on funct field

§4.4 A S
im

ple Im
plem

entation S
chem

e

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

Chapter 4 — The Processor — 25

ALU Control
 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 26

The Main Control Unit
 Control signals derived from instruction

0 rs rt rd shamt funct
31:26 5:0 25:21 20:16 15:11 10:6

35 or 43 rs rt address
31:26 25:21 20:16 15:0

4 rs rt address
31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

base
register

Chapter 4 — The Processor — 27

Datapath With Control

Chapter 4 — The Processor — 28

rs

rt

rd

imm

opcode

funct

R-Type Instruction
0 rs rt rd shamt funct

31:26 5:0 25:21 20:16 15:11 10:6
R-type

Chapter 4 — The Processor — 29

Load Instruction

1

35 rs rt address

31:26 25:21 20:16 15:0

Load

base register

Chapter 4 — The Processor — 30

rs

rt

Store Instruction

1

43 rs rt address

31:26 25:21 20:16 15:0

Store

base register

Chapter 4 — The Processor — 31

rs

rt

Branch-on-Equal Instruction
4 rs rt address

31:26 25:21 20:16 15:0

Branch

Chapter 4 — The Processor — 32

Implementing Jumps

 Jump uses word address
 Update PC with concatenation of

 Top 4 bits of old PC
 26-bit jump address
 00

 Need an extra control signal decoded from
opcode

2 address
31:26 25:0

Jump

Chapter 4 — The Processor — 33

Datapath With Jumps Added
2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 34

Performance Issues
 Longest delay determines clock period

 Critical path: load instruction
 lw: Instruction memory → register file → ALU
→ data memory → register file

 Not feasible to vary period for different
instructions

 Violates design principle
 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 35

Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining Four loads:
 Speedup

= 8/3.5 = 2.3
 Non-stop:

 Speedup
= 2n/(0.5n + 1.5) ≈ 4
= number of stages

Chapter 4 — The Processor — 36

MIPS Pipeline
 Five stages, one step per stage

1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register

Chapter 4 — The Processor — 37

Pipeline Performance
 Assume time for stages is

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 38

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

write read

Chapter 4 — The Processor — 39

Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time
 Time between instructionspipelined

= Time between instructionsnonpipelined
 Number of stages

 If not balanced, speedup is less
 Speedup due to increased throughput

 Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 40

Pipelining and ISA Design
 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage
 Alignment of memory operands

 Memory access takes only one cycle

Chapter 4 — The Processor — 41

Other Pipeline Structures
 What about the (slow) multiply operation?

 Make the clock twice as slow or …
 let it take two cycles (since it doesn’t use the DM stage)

ALU

IM Reg DM Reg

MUL

ALU

IM Reg DM1 Reg DM2

• What if the data memory access is twice as slow as the
instruction memory?
– make the clock twice as slow or …
– let data memory access take two cycles (and keep the

same clock rate)

Chapter 4 — The Processor — 42

Sample Pipeline Alternatives
 ARM7

 StrongARM-1

 XScale

ALU

IM1 IM2 DM1 Reg
DM2

IM Reg EX

PC update
IM access

decode
reg
access

ALU op
DM access
shift/rotate
commit result
 (write back)

ALU

IM Reg DM Reg

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write

Chapter 4 — The Processor — 43

MIPS Pipeline Datapath
 What do we need to add/modify in our MIPS datapath?

 State registers between each pipeline stage to isolate them

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data IF

et
ch

/D
ec

D
ec

/E
xe

c

Ex
ec

/M
em

M
em

/W
B

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

System Clock

Sign
Extend

Chapter 4 — The Processor — 44 What is wrong here?

(Pipeline) Hazards
 Situations that prevent starting the next

instruction in the next cycle
 Structure hazards

 A required resource is busy
 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control (branch) hazard
 Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 45

Structure Hazards
 Conflict for use of a resource
 In MIPS pipeline with a single memory

 Load/store requires data access
 Instruction fetch would have to stall for that

cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Chapter 4 — The Processor — 46

A Single Memory ?!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

ALU

Mem Reg Mem Reg

ALU

Mem Reg Mem Reg

ALU

Mem Reg Mem Reg
ALU

Mem Reg Mem Reg

ALU

Mem Reg Mem Reg

Reading data from
memory

Reading instruction
from memory

Chapter 4 — The Processor — 47

• A structure hazard!

Dual Memory: I$, D$!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

ALU

Reg D$ Reg

ALU

Reg Reg

ALU

Reg Reg
ALU

 I$ Reg Reg

ALU

Reg Reg

• Fix with separate instrution and data memories (I$ and D$)

Chapter 4 — The Processor — 48

I$

I$

I$

I$

D$

D$

D$

D$

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add $1,

Inst 1

Inst 2

add $2,$1,
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

Chapter 4 — The Processor — 49

writing data to a register

Reading data from a register

• Another structure hazard!

A solution!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

Fix register file access
hazard by writing in the
first half of the cycle
and reading in the
second half

add $1,..

add $2,$1,

clock edge that controls
register reading

clock edge that controls
reading of pipeline state
registers and register writing

Chapter 4 — The Processor — 50

Is it OK?

Another solution!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

Fix register file access
hazard by writing in the
second half of the cycle
and reading in the first
half

add $1,..

add $2,$1,

clock edge that controls
register writing

clock edge that controls
reading of pipeline state
registers and register file

Chapter 4 — The Processor — 51

Is it OK?

Data Hazards
 An instruction depends on completion of

data access by a previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3

write

read

Chapter 4 — The Processor — 52

Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

Chapter 4 — The Processor — 53

Data Forwarding (Bypassing)
 Take the result from the earliest point that it exists in any

of the pipeline state registers and forward it to the
functional units (e.g., the ALU) that need it that cycle

 For ALU functional unit: the inputs can come from any
pipeline register rather than just from ID/EX by
 adding multiplexors to the inputs of the ALU
 connecting the Rd write data in EX/MEM or MEM/WB to either (or

both) of the EX’s stage Rs and Rt ALU mux inputs
 adding the proper control hardware to control the new muxes

 Other functional units may need similar forwarding logic
(e.g., the DM)

 With forwarding can achieve a CPI of 1 even in the
presence of data dependencies

Chapter 4 — The Processor — 54

Forwarding Hardware
PCSrc

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

Branch

B

A

Forward
Unit

ID/EX.RegisterRt

ID/EX.RegisterRs

EX/MEM.RegisterRd

MEM/WB.RegisterRd

Chapter 4 — The Processor — 55

00

01

10

00

01

10

rt
rd

rs

Forwarding Control Conditions
 EX hazard:
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

Forwards the
result from the
previous instr.
to either input
of the ALU

Forwards the
result from the
second
previous instr.
to either input
of the ALU

 MEM hazard:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Will be explained again later!

Chapter 4 — The Processor — 56

What if both instructions are
accessing the same register?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

add $1,..

add $2,$1,

Chapter 4 — The Processor — 57
• A data hazard? Must read after write (RAW)

What if both instructions are
accessing the same register?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

add $1,..

add $2,$1,

Chapter 4 — The Processor — 58
• A data hazard? Must read after write (RAW)

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

add $1,

add $2,$1,

Today: Register reads/writes take a whole cycle!
So in this case we need to “bypass” the data
from the write to the read in the same cycle.

Chapter 4 — The Processor — 59

Loads Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

• Load-use data hazard
Chapter 4 — The Processor — 60

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!

Chapter 4 — The Processor — 61

Code Scheduling to Avoid Stalls
 Reorder code to avoid use of load result in

the next instruction
 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

Chapter 4 — The Processor — 62

Types of Data Hazards
 RAW (read after write): true dependency

 only hazard for ‘fixed’ pipelines
 later instruction must read after earlier

instruction writes
 WAW (write after write): output dependency

 only hazard for variable-length pipeline
 later instruction must write after earlier

instruction writes
 WAR (write after read): anti dependency or

name dependency
 only hazard for pipelines with late read
 later instruction must write after earlier

instruction reads
 RAR (read after read): no hazard

F R X M W

F R X M W

F R 1 2 3

F R X M W

4 W

F R 1 2 3

F R X M W

4 R 5 W

Chapter 4 — The Processor — 63

	Chapter 4A
	Introduction
	MIPS Microarchitecture
	Instruction Execution
	CPU Overview
	Multiplexers
	Logic Design Basics
	Combinational Elements
	Sequential Elements
	Sequential Elements
	Clocking Methodology
	Building a Datapath
	Fetching Instructions
	Decoding Instructions
	R-Format Instructions
	Executing R-type Operations
	Load/Store Instructions
	Executing lw/sw Operations
	Branch Instructions
	Executing Branch Operations
	Executing Jump Operations
	Composing the Elements
	Assembling the Parts
	Fetching, Register, and �Memory Access Portions
	ALU Control
	ALU Control
	The Main Control Unit
	Datapath With Control
	R-Type Instruction
	Load Instruction
	Store Instruction
	Branch-on-Equal Instruction
	Implementing Jumps
	Datapath With Jumps Added
	Performance Issues
	Pipelining Analogy
	MIPS Pipeline
	Pipeline Performance
	Pipeline Performance
	Pipeline Speedup
	Pipelining and ISA Design
	Other Pipeline Structures
	Sample Pipeline Alternatives
	MIPS Pipeline Datapath
	(Pipeline) Hazards
	Structure Hazards
	A Single Memory ?!
	Dual Memory: I$, D$!
	How About Register File Access?
	A solution!
	Another solution!
	Data Hazards
	Forwarding (aka Bypassing)
	Data Forwarding (Bypassing)
	Forwarding Hardware
	Forwarding Control Conditions
	What if both instructions are �accessing the same register?
	What if both instructions are �accessing the same register?
	How About Register File Access?
	Loads Can Cause Data Hazards
	Load-Use Data Hazard
	Code Scheduling to Avoid Stalls
	Types of Data Hazards

