
Chapter 4B
The Processor

Chapter 4 — The Processor — 1

Control Hazards
 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Next: still at ID stage of branch before calculating

the branch target address

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline
 Add hardware to do it in ID stage

Chapter 4 — The Processor — 2

Branch Instruction

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

When branch decision is made in MEM,

Chapter 4 — The Processor — 3

Branch Instruction

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

When branch decision is made in EXE,

Chapter 4 — The Processor — 4

Stall for a branch (2 cycles)

stall

stall

I
n
s
t
r.

O
r
d
e
r

beq

ALU

IM Reg DM Reg

lw

ALU

IM Reg DM Reg

ALU
 Inst 3 IM Reg DM

Fix branch hazard
by waiting – stall
– but affects CPI

Chapter 4 — The Processor — 5

Branch Instruction

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg
ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

When branch decision is made in ID,

Chapter 4 — The Processor — 6

Stall for a branch (1 cycles)

stall

I
n
s
t
r.

O
r
d
e
r

beq

ALU

IM Reg DM Reg

lw

ALU

IM Reg DM Reg

ALU
 Inst 3 IM Reg DM

Chapter 4 — The Processor — 7

Control Hazards
 When the flow of instruction addresses is not sequential

(i.e., PC = PC + 4); incurred by change of flow
instructions
 Conditional branches (beq, bne)
 Unconditional branches (j, jal, jr)
 Exceptions

 Possible approaches
 Stall (impacts CPI)
 Delayed branch (requires compiler support)
 Move decision point as early in the pipeline as possible, thereby

reducing the number of stall cycles
 Predict and hope for the best !

 Control hazards occur less frequently than data hazards,
but there is nothing as effective against control hazards
as forwarding is for data hazards

Chapter 4 — The Processor — 8

Stall on Branch
 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 9

Two “Types” of Stalls

 Bubble: nop instruction (or bubble)
inserted between two instructions in the
pipeline (as done for load-use situations)

 Flush (or instruction squashing) : an instruction in
the pipeline is replaced with a nop instruction (as
done for instructions located sequentially after j
instructions)
 Zero the control bits for the instruction to be flushed

Chapter 4 — The Processor — 10

Exceptions
 Detect Exception

 Capture exception PC, exception cause
 Flush pipeline
 Begin fetching at new PC

Chapter 4 — The Processor — 11

Delayed Branch
 If the branch hardware has been moved to the ID stage,

then we can eliminate all branch stalls with delayed
branches which are defined as always executing the next
sequential instruction after the branch instruction – the
branch takes effect after that next instruction
 MIPS compiler moves an instruction to immediately

after the branch that is not affected by the branch (a
safe instruction) thereby hiding the branch delay

• With deeper pipelines, the branch delay grows requiring
more than one delay slot
– Delayed branches have lost popularity compared to more expensive

but more flexible (dynamic) hardware branch prediction
– Growth in available transistors has made hardware branch

prediction relatively cheaper

Chapter 4 — The Processor — 12

Branch Delay Slots
 Since we need to have a dead cycle

anyway, let’s put a useful instruction
there

 Advantage:
 Do more useful work
 Potentially get rid of all stalls

 Disadvantage:

 Exposes microarchitecture to ISA
 Deeper pipelines require more

delay slots

ADD $t2,$t3,$t4
BNEZ $t5,_loop
NOP

BNEZ $t5,_loop
ADD $t2,$t3,$t4

Chapter 4 — The Processor — 13

Scheduling Branch Delay Slots

 A is the best choice, fills delay slot and reduces IC
 In B and C, the sub instruction may need to be copied, increasing IC
 In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

sub $4,$5,$6

sub $4,$5,$6

Chapter 4 — The Processor — 14

Branch Delay Slots: A Solution?
 Not really

 Exposes stuff to the ISA that is better kept
hidden

 Not scalable as the pipeline changes

Chapter 4 — The Processor — 15

Branch Prediction
 Longer pipelines can’t readily determine

branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 No stall if prediction is correct
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 16

Static Branch Prediction
 Resolve branch hazards by assuming a given outcome

and proceeding without waiting to see the actual branch
outcome

 Predict not taken – always predict branches will not be
taken, continue to fetch from the sequential instruction
stream, only when branch is taken does the pipeline stall
 If taken, flush instructions after the branch (earlier in the pipeline)

 in IF and ID stages if branch logic in EX – two stalls
 in IF stage if branch logic in ID – one stall

 ensure that those flushed instructions haven’t changed the
machine state – automatic in the MIPS pipeline since machine
state changing operations are at the tail end of the pipeline
(MemWrite (in MEM) or RegWrite (in WB))

 restart the pipeline at the branch destination

Chapter 4 — The Processor — 17

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

flush

Chapter 4 — The Processor — 18

Flushing if Taken

flushed

4 beq $1,$2,1 I
n
s
t
r.

O
r
d
e
r

ALU

IM Reg DM Reg

16 and $6,$1,$7

20 or r8,$1,$9

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg

ALU

IM Reg DM Reg 8 sub $4,$1,$5

 To flush the IF stage instruction, assert IF.Flush to
zero the instruction field of the IF/ID pipeline register
(transforming it into a nop)

Chapter 4 — The Processor — 19

Branching Structures
 Predict not taken works well for “top of the loop”

branching structures Loop: beq $1,$2,Out
 1nd loop instr
 .
 .
 .
 last loop instr
 j Loop
Out: fall out instr

– But such loops have jumps at the
bottom of the loop to return to
the top of the loop – and incur
the jump stall overhead

• Predict not taken doesn’t work well for “bottom of
the loop” branching structures Loop: 1st loop instr

 2nd loop instr
 .
 .
 .
 last loop instr
 bne $1,$2,Loop
 fall out instr

Chapter 4 — The Processor — 20

More-Realistic Branch Prediction
 Static branch prediction

 Based on typical branch behavior
 Example: loop and if-statement branches

 Predict backward branches taken
 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Will be explained later again!

Chapter 4 — The Processor — 21

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

The BIG Picture

Chapter 4 — The Processor — 22

MIPS Pipelined Datapath
§4.6 P

ipelined D
atapath and C

ontrol

WB

MEM

Right-to-left
flow leads to
hazards

Chapter 4 — The Processor — 23

jump

Pipeline registers
 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 24

Pipeline Operation
 Cycle-by-cycle flow of instructions through

the pipelined datapath
 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle
 Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams
for load & store

Chapter 4 — The Processor — 25

IF for Load, Store, …

Chapter 4 — The Processor — 26

ID for Load, Store, …

Chapter 4 — The Processor — 27

EX for Load

Chapter 4 — The Processor — 28

MEM for Load

Chapter 4 — The Processor — 29

WB for Load

Wrong
register
number

Chapter 4 — The Processor — 30

Corrected Datapath for Load

Chapter 4 — The Processor — 31

EX for Store

Chapter 4 — The Processor — 32

MEM for Store

Chapter 4 — The Processor — 33

WB for Store

Chapter 4 — The Processor — 34

Multi-Cycle Pipeline Diagram
 Traditional form

Chapter 4 — The Processor — 35

Single-Cycle Pipeline Diagram
 State of pipeline in a given cycle

Chapter 4 — The Processor — 36

Another Pipeline Diagram
 Form showing resource usage

Chapter 4 — The Processor — 37

Pipelined Control (Simplified)

rd

rt

rs
rt
rd

Chapter 4 — The Processor — 38

Pipelined Control
 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 39

Pipelined Control

rd

rt

rs
rt
rd

Chapter 4 — The Processor — 40

Data Hazards in ALU Instructions
 Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding
 How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. S

talling

Chapter 4 — The Processor — 41

Dependencies & Forwarding

Chapter 4 — The Processor — 42

Detecting the Need to Forward
 Pass register numbers along pipeline

 e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Chapter 4 — The Processor — 43

Another Pipeline Diagram
 Form showing resource usage

Chapter 4 — The Processor — 44

Detecting the Need to Forward
 But only if forwarding instruction will write

to a register!
 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not
$zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 45

Forwarding Paths

Chapter 4 — The Processor — 46

Forwarding Conditions
 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Chapter 4 — The Processor — 47

Double Data Hazard
 Consider the sequence:

 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur
 Want to use the most recent
 EX hazard condition does not need to revise

 Revise MEM hazard condition
 Only fwd if EX hazard condition isn’t true

Chapter 4 — The Processor — 48

Revised Forwarding Condition
 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Chapter 4 — The Processor — 49

Datapath with Forwarding

Chapter 4 — The Processor — 50

Control for Forwarding Muxes

Chapter 4 — The Processor — 51

Load-Use Data Hazard

Need to stall
for one cycle

Chapter 4 — The Processor — 52

Another Pipeline Diagram
 Form showing resource usage

Chapter 4 — The Processor — 53

Need to stall a cycle: not yet available

Load-Use Hazard Detection
 Check when using instruction is decoded

in ID stage
 ALU operand register numbers in ID stage

are given by
 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 54

How to Stall the Pipeline
 Force control values in ID/EX register

to 0
 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again
 IF/IDWrite=0

 Following instruction is fetched again
 PCWrite=0
 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

Chapter 4 — The Processor — 55

Datapath with Hazard Detection

Chapter 4 — The Processor — 56

Stall/Bubble in the Pipeline

Stall inserted
here

and

or

or

and

and

and is stalled a cycle in ID
or is stalled a cycle in IF

Chapter 4 — The Processor — 57

Another Pipeline Diagram
 Form showing resource usage

Chapter 4 — The Processor — 58

and and

or

or

and

$2

becomes

$4

nop nop nop

Another Pipeline Diagram
 Form showing resource usage

Chapter 4 — The Processor — 59

and and

or

or

and

$2

becomes

$2

$4

equal values

Stalls and Performance

 Stalls reduce performance
 But are required to get correct results

 Compiler can arrange code to avoid
hazards and stalls
 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 60

	Chapter 4B
	Control Hazards
	Branch Instruction
	Branch Instruction
	Stall for a branch (2 cycles)
	Branch Instruction
	Stall for a branch (1 cycles)
	Control Hazards
	Stall on Branch
	Two “Types” of Stalls
	Exceptions	
	Delayed Branch
	Branch Delay Slots
	Scheduling Branch Delay Slots
	Branch Delay Slots: A Solution?
	Branch Prediction
	Static Branch Prediction
	MIPS with Predict Not Taken
	Flushing if Taken
	Branching Structures
	More-Realistic Branch Prediction
	Pipeline Summary
	MIPS Pipelined Datapath
	Pipeline registers
	Pipeline Operation
	IF for Load, Store, …
	ID for Load, Store, …
	EX for Load
	MEM for Load
	WB for Load
	Corrected Datapath for Load
	EX for Store
	MEM for Store
	WB for Store
	Multi-Cycle Pipeline Diagram
	Single-Cycle Pipeline Diagram
	Another Pipeline Diagram
	Pipelined Control (Simplified)
	Pipelined Control
	Pipelined Control
	Data Hazards in ALU Instructions
	Dependencies & Forwarding
	Detecting the Need to Forward
	Another Pipeline Diagram
	Detecting the Need to Forward
	Forwarding Paths
	Forwarding Conditions
	Double Data Hazard
	Revised Forwarding Condition
	Datapath with Forwarding
	Control for Forwarding Muxes
	Load-Use Data Hazard
	Another Pipeline Diagram
	Load-Use Hazard Detection
	How to Stall the Pipeline
	Datapath with Hazard Detection
	Stall/Bubble in the Pipeline
	Another Pipeline Diagram
	Another Pipeline Diagram
	Stalls and Performance

