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Assume Branch Not Taken 
 Continue execution down the sequential 

instruction stream. 
 If taken, an instruction in IF stage must be 

discarded. 
 Execution continues at the branch target. 
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Branch Hazards 
 If branch outcome determined in MEM 
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Reducing Branch Delay 
 Move hardware to determine outcome to ID stage 

 Target address adder 
 Register comparator 

 Example: branch taken 
 36:  sub  $10, $4, $8 
40:  beq  $1,  $3, 7 # PC-relative: 40+4+7*4=72 
44:  and  $12, $2, $5 
48:  or   $13, $2, $6 
52:  add  $14, $4, $2 
56:  slt  $15, $6, $7 
     ... 
72:  lw   $4, 50($7) 
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Target address calculation 
 PC+4 is already available 
 Immediate file in in IF/ID register 
 Therefore, we just move the branch adder  form 

the EX stage to the ID stage. 
 The branch target address calculation will be 

performed for all instructions 
 But used only when needed. 
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Branch decision 
 Moving the branch test  to the ID stage 
 Additional forwarding and hazard detection 

hardware are needed. 
 The bypass source operands can come form 

EX/MEM  register and MEM/WB register 
 If the values in branch comparison is produce 

later in time, a data hazard can occur and a stall 
will be needed.  
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Branch decision 
 Moving the branch test  to the ID stage 
 Additional forwarding and hazard detection 

hardware are needed. 
 The bypass source operands can come 

form EX/MEM  register and MEM/WB 
register 

 If the values in branch comparison is 
produce later in time, a data hazard can 
occur and a stall will be needed.  
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Example: Branch Taken 
44 40 36 

taken 
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Example: Branch Taken 
72 36 40 44 

? nop 

flushed 
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Branch decision in ID 
 Equality: 32 2-input XNOR gates and a 32-input 

AND gate 
 Additional forwarding may be required for branch 

decision in ID. 
 The bypassed source operands  from EX/MEM or 

MEM/WB pipeline registers 
 Because the values in a branch comparison are 

needed during ID but may be produced later  in 
time, data hazard should be detected for stalls 
 A stall cycle will be needed if one of the operands is the result of 

an immediately preceding ALU instruction. 
 Two stall cycles will be needed if  a load is immediately 

preceding  followed by a branch. 
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Data Hazards for Branches 
 If a comparison register is a destination of 

2nd or 3rd preceding ALU instruction 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

add $4, $5, $6 

add $1, $2, $3 

beq $1, $4, target 

 Can resolve using forwarding 

xxx an instruction 
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Data Hazards for Branches 
 If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding 
load instruction 
 Need 1 stall cycle 

beq stalled 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID 

ID EX MEM WB 

add $4, $5, $6 

lw  $1, addr 

beq $1, $4, target 
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Data Hazards for Branches 
 If a comparison register is a destination of 

immediately preceding load instruction 
 Need 2 stall cycles 

beq stalled 

IF ID EX MEM WB 

IF ID 

ID 

ID EX MEM WB 

beq stalled 

lw  $1, addr 

beq $1, $0, target 
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Dynamic Branch Prediction 
 In deeper and superscalar pipelines, branch 

penalty is more significant 
 Use dynamic prediction 

 Branch prediction buffer (aka branch history table) 
 A small memory indexed by lower portion of the recent branch 

instruction addresses 
 Stores outcome (taken/not taken) 

 To execute a branch with branch prediction table 
 Check table, expect the same outcome (1-bit prediction) 
 Start fetching from fall-through or target according to 

prediction 
 If wrong, flush pipeline and flip prediction bit 
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1-Bit Predictor: Shortcoming 
 Inner loop branches mispredicted twice! 

outer: … 
       … 
inner: … 
       … 
       beq …, …, inner 
       … 
       beq …, …, outer 

1. Mispredict as taken on last iteration of inner 
loop  change to not taken 
2. Then mispredict as not taken on first iteration 
of inner loop next time around: wrong! 
Even if a branch is almost always taken, we can predict  
incorrectly twice, rather than one, when it is not taken. 
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2-bit predictor: better 
 A ‘predict same as last’ 

strategy gets two mispredicts 
on each loop 
 Predict NTTT…TTT 
 Actual  TTTT…TTN 

 Can do much better by 
adding inertia to the predictor 
 e.g., two-bit saturating counter 
 Predict TTTT…TTT 
 Actual  TTTT…TTN 

 
 
 

for(j=0;j<30;j++) { 

 … 

} 

 

N2 N1 T1 T2 

T T T T 

N N N N 
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2-Bit Predictor 
 Only change prediction on two successive 

mispredictions 

 2-bit counter:  
 taken: increment,  
 not taken: decrement 

 1: 01 (T2) 
 0: 00 (T1) 
-1: 11 (N1) 
-2: 10 (N2) 
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Another 2-Bit Predictor 
 A little different from the previous version 
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Comparison 

Actual:   N   N   T    N   N   T    N    N 
State: N*  N*  N*  N*T   N*  N*  N*T   N* 

Predicted:  N   N   N    N   N   N    N    N 

Actual:   T   N    T   T   T    N    T 
State: T*  T*  T*N  T*   T*  T*   T*N   T* 

Predicted:  T    T    T   T   T    T    T 

Actual:   N   N   T     T    N    N    T     T      N 
State: N*  N*  N*  N*T   T*   T*N   N*   N*T   T*N 

Predicted:  N   N   N     N    ?     ?    ?      ?      ? 

} For both 
schemes 

Actual:   N   N   T     T     N     N    T     T     N 
State: N*  N*  N*  N*T   T*N   N*T   N*   N*T   T*N    

Predicted:  N   N   N     N     T     N    N     N     T 
Scheme 1 

Scheme 2 

2 1 
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Comparison 

Actual:   N   N   T    N   N   T    N    N 
State: N*  N*  N*  N*T   N*  N*  N*T   N* 

Predicted:  N   N   N    N   N   N    N    N 

Actual:   T   N    T   T   T    N    T 
State: T*  T*  T*N  T*   T*  T*   T*N   T* 

Predicted:  T    T    T   T   T    T    T 

Actual:   N   N   T     T    N    N    T     T      N 
State: N*  N*  N*  N*T   T*   T*N   N*   N*T   T*N 

Predicted:  N   N   N     N    T     T    N     N      T 

} For both 
schemes 

Actual:   N   N   T     T     N     N    T     T     N 
State: N*  N*  N*  N*T   T*N   N*T   N*   N*T   T*N    

Predicted:  N   N   N     N     T     N    N     N     T 
Scheme 1 

Scheme 2 

2 1 
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Dynamic Branch Prediction 
 A branch prediction buffer (aka branch history 

table (BHT)) in the IF stage addressed by the 
lower bits of the PC, contains a prediction bit 
passed to the ID stage through the IF/ID pipeline 
register 
 Prediction bit may predict incorrectly but the doesn’t 

affect correctness, just performance 
 Branch decision occurs in the ID stage after determining that 

the fetched instruction is a branch and checking the 
prediction bit 

 If the prediction is wrong, flush the incorrect 
instruction(s) in pipeline, restart the pipeline with the 
right instruction, and invert the prediction bit 
 A 4096 bit BHT varies from 1% misprediction (nasa7, 

tomcatv) to 18% (eqntott) 
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Accuracy of Different Schemes 
 

0% 
1% 

5% 
6% 6% 

11% 

4% 

6% 
5% 

1% 

0% 

2% 

4% 

6% 

8% 

10% 

12% 

14% 

16% 

18% 

20% 

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2) 

4096 Entries 2-bit BHT 
Unlimited Entries 2-bit BHT 
1024 Entries (2,2) BHT 

0% 

18% 

Fr
eq

ue
nc

y 
of

 M
is

pr
ed

ic
tio

ns
 

eq
nt

ot
t 

gc
c 

12% 

Chapter 4 — The Processor — 22 



Dynamic Predictor (Local) 
 Predict branch based on past 

history of branch 
 Branch history table 

 indexed by PC (or fraction of it) 
 stores last direction each branch 

went 
 may indicate if last instruction at this 

address was a branch 
 table is a cache of recent branches 
 Buffer size of 4096 entries are 

common 

 What happens if: 
 Don’t find PC in BHT? update 
 Run out of BHT entries? 

 

IM 

PC 

BHT 

ID 

Taken or not taken 

update 
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Two advanced Branch Prediction 
 Correlating predictor: a branch predictor that 

selects a local behavior of a particular branch 
among its 2k choices by using a global (taken or 
not taken) behavior of most recently executed k 
branches as an index. 
 Exploits temporal correlation of a specific branch 

 Tournament branch predictor: a branch predictor  
with multiple predictions for each  branch  and a 
selection mechanism  that chooses which 
predictor  to enable  for a given branch. 
 Three predictors: a selection predictor, a global 

predictor, and a local predictor 
 Chapter 4 — The Processor — 24 



Correlating Branch Prediction 
 Idea:  record k most recently executed branches 

as taken or not taken, and use that pattern to 
select the proper n-bit branch history table 

 Global Branch History:  k-bit shift register keeping 
Taken/Not_Taken status of last k branches 
anywhere. 

 In general, (k,n) predictor means use record of last 
k global branches to select between 2k local 
branch history tables, each with n-bit counters 
 Thus, the old 2-bit BHT is a (0,2) predictor 

 Each entry (row for given set of PC address bits) 
in table has 2k n-bit predictors. 
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Correlating Branch Predictors 
A (2,2) predictor with  
16 sets of four 2-bit 

predictions 
– Behavior of most 

recent 2 branches 
selects between four 
predictions for next 
branch, updating just 
that prediction 

Branch address selects row of entries 

 2-bits per branch predictor 

2-bit 
prediction 

2-bit global branch history 

4 address bits 16 entries 
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Tournament Branch Predictors 
 A tournament (selection) predictor using, say, 4K 2-bit 

counters indexed by the LBS 12 bits of a local branch 
address, which chooses between a global predictor and a 
local predictor. 

 A global predictor 
 4K entries index by the history of last 12 branches (212 = 4K) 
 Each entry is a standard 2-bit predictor 

 A local predictor that has two levels 
 Top level (a local history table): 1K 10-bit entries recording last 10 

branch comes, indexed by the LBS 10 bits of  a branch address 
 Next level (a local predictor table): The pattern of the last 10 

occurrences of that particular branch is used to index  a table of 1K 
entries with 3-bit saturating counters 

 Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits 
                  (~180K transistors) 
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Branch target buffer 
 A branch predictor tells us whether a branch is 

taken or not 
 Still requires the calculation of the branch target 
 1-cycle penalty for a taken branch 

 In a high-performance pipeline, especially one 
with multiple-issue, predicting branch well is not 
enough 

 Branch target cache 
 Cache of branch target addresses 
 Indexed by PC when instruction fetched 
 If hit and instruction is branch predicted taken, can 

fetch target immediately with zero penalty 
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Branch Target Buffer 
 The predictor predicts whether a branch is taken, 

but does not tell where it is taken to! 
 A branch target buffer (BTB) in the IF stage can 

cache the branch target address 
 The branch predictor controls whether the BTB 

address or PC+4 is loaded back into the PC 

• If the prediction is correct, 
stalls can be avoided no matter 
which direction they go 

Read 
Address 

Instruction 
Memory 

PC
 0 

BTB 

+4 

BHT 
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BTB: store only taken branches 

Chapter 4 — The Processor — 30 

CAM or associative memory 

(optional) 

Branch target cache 



BTB operations 
A. BTB hit, branch taken→ no penalty 
 
B. BTB hit, misprediction  branch    
    penalty exists (?) (flush the fetched     
    instruction, restart fetch not taken  
    instruction, delete the entry from  
    BTB) 
 
C. BTB miss, branch taken   branch  
    penalty exists (?) (detect target at 
the ID  
    stage and update BTB by entering  
    the branch instruction address and  
    its target address into BTB after the  
    ID stage) 
 
D. BTB miss, not taken  0 cycle  
    penalty 
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Exceptions and Interrupts 
 “Unexpected” events requiring change 

in flow of control 
 Different ISAs use the terms differently 

 Exception: arises within the CPU 
 e.g., undefined opcode, overflow, syscall, … 

 Interrupt: from an external I/O controller 

 Hardware malfunctions: either interrupt or 
exception 

 It is hard to deal with them without sacrificing 
performance. 

§4.9 E
xceptions 
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Causes of Exceptions 
 Asynchronous: an external interrupt 

 input/output device service request 
 timer expiration 
 power disruptions, hardware failure 

 Synchronous: an internal exception (traps) 
 undefined opcode, privileged instruction 
 arithmetic overflow, FPU exception 
 misaligned memory access  
 virtual memory exceptions: page faults (not in main 

memory),  TLB misses, protection violations 

 software exceptions:  system calls (jumps into kernel)  
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Handling Exceptions 
 In MIPS, exceptions managed by a System 

Control Coprocessor (CP0) 
 Save PC of offending (or interrupted) instruction 

 In MIPS: Exception Program Counter (EPC) 
 To help OS take the appropriate action 

 Save indication of the problem 
 In MIPS: Cause register ( a status register) 
 We’ll assume 1-bit 

 0 for undefined opcode, 1 for overflow 

 Transfer control to the OS 
 In MIPS: Jump to handler at 8000 00180 
 A single entry point for all exceptions 
 The OS decodes the status register to find the cause 
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OS needs to know two things 
 Instruction that caused the exception 

 In MIPS: Exception Program Counter (EPC) 
 Reason for the exception 

 In MIPS: Cause register ( a status register) 
 Two main methods used to communicated the 

reason for an exception 
 Using a  status register, like in MIPS, which holds a 

field that indicate the reason for the exception 
 Using a distinct address for a cause of the exception. 
    (vectored interrupts) 
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Vectored Interrupts 
 The address to which the control is transferred is 

determined by the cause of the exception 
 The addresses are separated by 8  instructions (32 

bytes) 
 Example: 

 Undefined opcode: 8000 0000 
 Overflow:  8000 0180 

 Instructions either 
 Deal with the interrupt, or 
 Jump to a real handler 

 When the exception is not vectored, a single 
entry point for all exception is used, and the OS 
decodes the status register to find the cause. 
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Handler Actions 
 Read cause, and transfer to relevant 

handler 
 Determine action required 

 If restartable 
 Take corrective action 
 use EPC to return to program 

 Otherwise 
 Terminate program 
 Report error using EPC, cause, … 
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Exceptions:  altering the normal flow of control 

An exception transfers control to a special handler code run in 
privileged mode. Exceptions are usually unexpected or rare 

from program’s point of view.  

Ii-1 HI1 

HI2 

HIn 

Ii 

Ii+1 

program exception 
handler 
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Interrupts: invoking the interrupt handler 

 An I/O device requests attention by asserting 
one of the prioritized interrupt request lines 

 When the processor decides to process the 
interrupt  
 It stops the current program at instruction Ii, 

completing all the instructions up to Ii-1  (a precise 
interrupt) 

 It saves the PC of instruction Ii in the EPC 
 It disables interrupts and transfers control to a 

designated interrupt handler running in the kernel 
mode 
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A MIPS Interrupt Handler Code 
 Saves EPC before re-enabling interrupts, if 

needed, to allow nested interrupts ⇒    
 need an instruction to move EPC into GPRs  
 need a way to mask further interrupts at least until EPC can be 

saved 

 Needs to read a status register that indicates the 
cause of the interrupt 

 Uses a special indirect jump instruction RFE 
(return-from-exception) to resume user code, 
this: 
 enables interrupts 
 restores the processor to the user mode 
 restores hardware status and control state 
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Synchronous Exception 
 A synchronous exception is caused by a 

particular instruction 
 In general, the instruction cannot be completed 

and needs to be restarted after the exception has 
been handled 
 requires undoing the effect of one or more partially executed 

instructions 

 In the case of a system call trap, the instruction is 
considered to have been completed   
 syscall is a special jump instruction involving a change to 

privileged kernel mode 
 Handler resumes at instruction after system call 
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Exceptions in a Pipeline 
 Another form of control hazard 
 Consider overflow on add in EX stage 

add $1, $2, $1 

 Prevent $1 from being clobbered 
 Complete previous instructions 
 Flush add and subsequent instructions 
 Set Cause and EPC register values 
 Transfer control to handler 

 Similar to mispredicted branch 
 Use much of the same hardware 
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Pipeline with Exceptions 
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Exception Properties 
 Restartable exceptions 

 Pipeline can flush the instruction 
 Handler executes, then returns to the 

instruction 
 Refetched and executed from scratch 

 PC saved in EPC register 
 Identifies causing instruction 
 Actually PC + 4 is saved 

 Handler must adjust by subtracting 4 
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Exception Example 
 Overflow exception on add in 

 40 sub  $11, $2, $4 
44 and  $12, $2, $5 
48 or   $13, $2, $6 
4C add  $1,  $2, $1 
50 slt  $15, $6, $7 
54 lw   $16, 50($7) 
… 

 Handler // overflow 
 80000180 sw   $25, 1000($0)  

 80000184 sw   $26, 1004($0) 
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Exception Example 

overflow 

54 50 4C 
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Exception Example 
54 50 4C 80000180 

Chapter 4 — The Processor — 47 



Multiple Exceptions 
 Pipelining overlaps multiple instructions 

 Could have multiple exceptions at once 
 Simple approach: deal with exception from 

earliest instruction  
 Flush subsequent instructions 
 “Precise” exceptions 

 In complex pipelines 
 Multiple instructions issued per cycle 
 Out-of-order completion 
 Maintaining precise exceptions is difficult! 
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Exception Handling 

 How to handle multiple simultaneous exceptions in 
different pipeline stages? 

 How and where to handle external asynchronous 
interrupts? 

 Exceptions raised from memory access account for 
6 out of 8 cases 

PC 
Inst. 
Mem D Decode E M 

Data 
Mem W + 

Illegal 
Opcode Overflow Data address 

Exceptions 
PC address 
Exception 

Asynchronous Interrupts 
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Exception Handling 

PC 
Inst. 
Mem D Decode E M 

Data 
Mem W + 

Illegal 
Opcode 

Overflow Data address 
Exceptions 

PC address 
Exception 

Asynchronous 
Interrupts 

Exc 
D 

PC 
D 

Exc 
E 

PC 
E 

Exc 
M 

PC 
M 

C
au

se
 

EP
C
 

Kill D 
Stage 

Kill F 
Stage 

Kill E 
Stage 

Select 
Handler 

PC 
Kill 

Writeback 

Commit 
Point 
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Exception Handling 
 Hold exception flags in pipeline until 

commit point (MEM stage) 
 Exceptions in earlier pipe stages override 

later exceptions for a given instruction 
 Inject external interrupts at commit point 

(override others) 
 If exception at commit: update Cause and 

EPC registers, kill all stages, inject handler 
PC into fetch stage 

Chapter 4 — The Processor — 51 



time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4 I5   
ID  I1 I2 I3  nop  I5 
EX         I1 I2 nop  nop  I5 
MEM         I1 nop  nop  nop  I5 
WB         nop  nop  nop  nop  I5 
 

Exception Pipeline Diagram 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 nop    
(I2) 100: XOR   IF2 ID2 EX2 nop  nop 
(I3) 104: SUB    IF3 ID3 nop  nop  nop 
(I4) 108: ADD                    IF4 nop  nop  nop nop 
(I5) Exc. Handler code                   IF5 ID5 EX5 MA5 WB5 
 
 

Resource  
Usage 
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Speculating on Exceptions 
 Prediction mechanism 

 Exceptions are rare, so simply predicting no 
exceptions is very accurate! 

 Check prediction mechanism 
 Exceptions detected at end of instruction execution 

pipeline, special hardware for various exception types 
 Recovery mechanism 

 Only write architectural state at commit point, so can 
throw away partially executed instructions after 
exception 

 Launch exception handler after flushing pipeline 
 Flushing is required because bypassing allows 

use of uncommitted instruction results by 
following instructions 
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Imprecise Exceptions 
 Just stop pipeline and save state 

 Including exception cause(s) 
 Let the handler work out 

 Which instruction(s) had exceptions 
 Which to complete or flush 

 May require “manual” completion 

 Simplifies hardware, but more complex handler 
software 

 It is not feasible for complex multiple-issue 
out-of-order pipelines 

 Precise exceptions is required to support virtual 
memory (in chapter 5) 
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MIPS 4K Processor  
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System Control Coprocessor 
 CP0 is responsible for  

 virtual-to-physical address translation (TLB),  
 cache control,  
 the exception control system,  
 diagnostic capability,  
 operating mode selection (kernel vs. user 

mode),  
 enabling/disabling interrupts,  
 configuration such as cache size and 

associativity 
 32 32-bit CP0 registers 
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General  
Exception  
Handler  
(HW) yes no 

1. The processor records EPC, Cause, etc 
2. Change to the kernel mode. 
3. Interrupt disable 
4. Jump to the exception handler 
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General  
Exception  
Handler  
(SW) 

1. Save some registers on the system stack 
2. Check the exception type (ExcCode) 
3. Use ExcCode with a jump table to go to  
       a correct service location  
4. Execute the service code 
5. Restore registers saved in step 1 
6. Atomically 
       * restore previous kernel/user mode 
       * re-enable interrupts 
       * jump back to the user program 
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