
Chapter 4C
The Processor

Chapter 4 — The Processor — 1

Assume Branch Not Taken
 Continue execution down the sequential

instruction stream.
 If taken, an instruction in IF stage must be

discarded.
 Execution continues at the branch target.

Chapter 4 — The Processor — 2

Branch Hazards
 If branch outcome determined in MEM

§4.8 C
ontrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

Chapter 4 — The Processor — 3

Reducing Branch Delay
 Move hardware to determine outcome to ID stage

 Target address adder
 Register comparator

 Example: branch taken
 36: sub $10, $4, $8
40: beq $1, $3, 7 # PC-relative: 40+4+7*4=72
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

Chapter 4 — The Processor — 4

Target address calculation
 PC+4 is already available
 Immediate file in in IF/ID register
 Therefore, we just move the branch adder form

the EX stage to the ID stage.
 The branch target address calculation will be

performed for all instructions
 But used only when needed.

Chapter 4 — The Processor — 5

Branch decision
 Moving the branch test to the ID stage
 Additional forwarding and hazard detection

hardware are needed.
 The bypass source operands can come form

EX/MEM register and MEM/WB register
 If the values in branch comparison is produce

later in time, a data hazard can occur and a stall
will be needed.

Chapter 4 — The Processor — 6

Branch decision
 Moving the branch test to the ID stage
 Additional forwarding and hazard detection

hardware are needed.
 The bypass source operands can come

form EX/MEM register and MEM/WB
register

 If the values in branch comparison is
produce later in time, a data hazard can
occur and a stall will be needed.

Chapter 4 — The Processor — 7

Example: Branch Taken
44 40 36

taken

Chapter 4 — The Processor — 8

Example: Branch Taken
72 36 40 44

? nop

flushed

Chapter 4 — The Processor — 9

PC+4

and is squashed

Branch decision in ID
 Equality: 32 2-input XNOR gates and a 32-input

AND gate
 Additional forwarding may be required for branch

decision in ID.
 The bypassed source operands from EX/MEM or

MEM/WB pipeline registers
 Because the values in a branch comparison are

needed during ID but may be produced later in
time, data hazard should be detected for stalls
 A stall cycle will be needed if one of the operands is the result of

an immediately preceding ALU instruction.
 Two stall cycles will be needed if a load is immediately

preceding followed by a branch.
 Chapter 4 — The Processor — 10

Data Hazards for Branches
 If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding

xxx an instruction

Chapter 4 — The Processor — 11

Data Hazards for Branches
 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding
load instruction
 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

Chapter 4 — The Processor — 12

Data Hazards for Branches
 If a comparison register is a destination of

immediately preceding load instruction
 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Chapter 4 — The Processor — 13

Dynamic Branch Prediction
 In deeper and superscalar pipelines, branch

penalty is more significant
 Use dynamic prediction

 Branch prediction buffer (aka branch history table)
 A small memory indexed by lower portion of the recent branch

instruction addresses
 Stores outcome (taken/not taken)

 To execute a branch with branch prediction table
 Check table, expect the same outcome (1-bit prediction)
 Start fetching from fall-through or target according to

prediction
 If wrong, flush pipeline and flip prediction bit

Chapter 4 — The Processor — 14

1-Bit Predictor: Shortcoming
 Inner loop branches mispredicted twice!

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

1. Mispredict as taken on last iteration of inner
loop change to not taken
2. Then mispredict as not taken on first iteration
of inner loop next time around: wrong!
Even if a branch is almost always taken, we can predict
incorrectly twice, rather than one, when it is not taken.

Chapter 4 — The Processor — 15

2-bit predictor: better
 A ‘predict same as last’

strategy gets two mispredicts
on each loop
 Predict NTTT…TTT
 Actual TTTT…TTN

 Can do much better by
adding inertia to the predictor
 e.g., two-bit saturating counter
 Predict TTTT…TTT
 Actual TTTT…TTN

for(j=0;j<30;j++) {

 …

}

N2 N1 T1 T2

T T T T

N N N N

Chapter 4 — The Processor — 16

2-Bit Predictor
 Only change prediction on two successive

mispredictions

 2-bit counter:
 taken: increment,
 not taken: decrement

 1: 01 (T2)
 0: 00 (T1)
-1: 11 (N1)
-2: 10 (N2)

Chapter 4 — The Processor — 17

Another 2-Bit Predictor
 A little different from the previous version

Chapter 4 — The Processor — 18

Comparison

Actual: N N T N N T N N
State: N* N* N* N*T N* N* N*T N*

Predicted: N N N N N N N N

Actual: T N T T T N T
State: T* T* T*N T* T* T* T*N T*

Predicted: T T T T T T T

Actual: N N T T N N T T N
State: N* N* N* N*T T* T*N N* N*T T*N

Predicted: N N N N ? ? ? ? ?

} For both
schemes

Actual: N N T T N N T T N
State: N* N* N* N*T T*N N*T N* N*T T*N

Predicted: N N N N T N N N T
Scheme 1

Scheme 2

2 1

Chapter 4 — The Processor — 19

Comparison

Actual: N N T N N T N N
State: N* N* N* N*T N* N* N*T N*

Predicted: N N N N N N N N

Actual: T N T T T N T
State: T* T* T*N T* T* T* T*N T*

Predicted: T T T T T T T

Actual: N N T T N N T T N
State: N* N* N* N*T T* T*N N* N*T T*N

Predicted: N N N N T T N N T

} For both
schemes

Actual: N N T T N N T T N
State: N* N* N* N*T T*N N*T N* N*T T*N

Predicted: N N N N T N N N T
Scheme 1

Scheme 2

2 1

Chapter 4 — The Processor — 20

Dynamic Branch Prediction
 A branch prediction buffer (aka branch history

table (BHT)) in the IF stage addressed by the
lower bits of the PC, contains a prediction bit
passed to the ID stage through the IF/ID pipeline
register
 Prediction bit may predict incorrectly but the doesn’t

affect correctness, just performance
 Branch decision occurs in the ID stage after determining that

the fetched instruction is a branch and checking the
prediction bit

 If the prediction is wrong, flush the incorrect
instruction(s) in pipeline, restart the pipeline with the
right instruction, and invert the prediction bit
 A 4096 bit BHT varies from 1% misprediction (nasa7,

tomcatv) to 18% (eqntott)

Chapter 4 — The Processor — 21

Accuracy of Different Schemes

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

eq
nt

ot
t

gc
c

12%

Chapter 4 — The Processor — 22

Dynamic Predictor (Local)
 Predict branch based on past

history of branch
 Branch history table

 indexed by PC (or fraction of it)
 stores last direction each branch

went
 may indicate if last instruction at this

address was a branch
 table is a cache of recent branches
 Buffer size of 4096 entries are

common

 What happens if:
 Don’t find PC in BHT? update
 Run out of BHT entries?

IM

PC

BHT

ID

Taken or not taken

update

Chapter 4 — The Processor — 23

Two advanced Branch Prediction
 Correlating predictor: a branch predictor that

selects a local behavior of a particular branch
among its 2k choices by using a global (taken or
not taken) behavior of most recently executed k
branches as an index.
 Exploits temporal correlation of a specific branch

 Tournament branch predictor: a branch predictor
with multiple predictions for each branch and a
selection mechanism that chooses which
predictor to enable for a given branch.
 Three predictors: a selection predictor, a global

predictor, and a local predictor
 Chapter 4 — The Processor — 24

Correlating Branch Prediction
 Idea: record k most recently executed branches

as taken or not taken, and use that pattern to
select the proper n-bit branch history table

 Global Branch History: k-bit shift register keeping
Taken/Not_Taken status of last k branches
anywhere.

 In general, (k,n) predictor means use record of last
k global branches to select between 2k local
branch history tables, each with n-bit counters
 Thus, the old 2-bit BHT is a (0,2) predictor

 Each entry (row for given set of PC address bits)
in table has 2k n-bit predictors.

Chapter 4 — The Processor — 25

Correlating Branch Predictors
A (2,2) predictor with
16 sets of four 2-bit

predictions
– Behavior of most

recent 2 branches
selects between four
predictions for next
branch, updating just
that prediction

Branch address selects row of entries

 2-bits per branch predictor

2-bit
prediction

2-bit global branch history

4 address bits 16 entries

Chapter 4 — The Processor — 26

Tournament Branch Predictors
 A tournament (selection) predictor using, say, 4K 2-bit

counters indexed by the LBS 12 bits of a local branch
address, which chooses between a global predictor and a
local predictor.

 A global predictor
 4K entries index by the history of last 12 branches (212 = 4K)
 Each entry is a standard 2-bit predictor

 A local predictor that has two levels
 Top level (a local history table): 1K 10-bit entries recording last 10

branch comes, indexed by the LBS 10 bits of a branch address
 Next level (a local predictor table): The pattern of the last 10

occurrences of that particular branch is used to index a table of 1K
entries with 3-bit saturating counters

 Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits
 (~180K transistors)

Chapter 4 — The Processor — 27

Branch target buffer
 A branch predictor tells us whether a branch is

taken or not
 Still requires the calculation of the branch target
 1-cycle penalty for a taken branch

 In a high-performance pipeline, especially one
with multiple-issue, predicting branch well is not
enough

 Branch target cache
 Cache of branch target addresses
 Indexed by PC when instruction fetched
 If hit and instruction is branch predicted taken, can

fetch target immediately with zero penalty
Chapter 4 — The Processor — 28

Branch Target Buffer
 The predictor predicts whether a branch is taken,

but does not tell where it is taken to!
 A branch target buffer (BTB) in the IF stage can

cache the branch target address
 The branch predictor controls whether the BTB

address or PC+4 is loaded back into the PC

• If the prediction is correct,
stalls can be avoided no matter
which direction they go

Read
Address

Instruction
Memory

PC
 0

BTB

+4

BHT

Chapter 4 — The Processor — 29

BTB: store only taken branches

Chapter 4 — The Processor — 30

CAM or associative memory

(optional)

Branch target cache

BTB operations
A. BTB hit, branch taken→ no penalty

B. BTB hit, misprediction branch
 penalty exists (?) (flush the fetched
 instruction, restart fetch not taken
 instruction, delete the entry from
 BTB)

C. BTB miss, branch taken branch
 penalty exists (?) (detect target at
the ID
 stage and update BTB by entering
 the branch instruction address and
 its target address into BTB after the
 ID stage)

D. BTB miss, not taken 0 cycle
 penalty

Chapter 4 — The Processor — 31

A B C

D

Exceptions and Interrupts
 “Unexpected” events requiring change

in flow of control
 Different ISAs use the terms differently

 Exception: arises within the CPU
 e.g., undefined opcode, overflow, syscall, …

 Interrupt: from an external I/O controller

 Hardware malfunctions: either interrupt or
exception

 It is hard to deal with them without sacrificing
performance.

§4.9 E
xceptions

Chapter 4 — The Processor — 32

Causes of Exceptions
 Asynchronous: an external interrupt

 input/output device service request
 timer expiration
 power disruptions, hardware failure

 Synchronous: an internal exception (traps)
 undefined opcode, privileged instruction
 arithmetic overflow, FPU exception
 misaligned memory access
 virtual memory exceptions: page faults (not in main

memory), TLB misses, protection violations

 software exceptions: system calls (jumps into kernel)
Chapter 4 — The Processor — 33

Handling Exceptions
 In MIPS, exceptions managed by a System

Control Coprocessor (CP0)
 Save PC of offending (or interrupted) instruction

 In MIPS: Exception Program Counter (EPC)
 To help OS take the appropriate action

 Save indication of the problem
 In MIPS: Cause register (a status register)
 We’ll assume 1-bit

 0 for undefined opcode, 1 for overflow

 Transfer control to the OS
 In MIPS: Jump to handler at 8000 00180
 A single entry point for all exceptions
 The OS decodes the status register to find the cause

Chapter 4 — The Processor — 34

OS needs to know two things
 Instruction that caused the exception

 In MIPS: Exception Program Counter (EPC)
 Reason for the exception

 In MIPS: Cause register (a status register)
 Two main methods used to communicated the

reason for an exception
 Using a status register, like in MIPS, which holds a

field that indicate the reason for the exception
 Using a distinct address for a cause of the exception.
 (vectored interrupts)

Chapter 4 — The Processor — 35

Vectored Interrupts
 The address to which the control is transferred is

determined by the cause of the exception
 The addresses are separated by 8 instructions (32

bytes)
 Example:

 Undefined opcode: 8000 0000
 Overflow: 8000 0180

 Instructions either
 Deal with the interrupt, or
 Jump to a real handler

 When the exception is not vectored, a single
entry point for all exception is used, and the OS
decodes the status register to find the cause.

Chapter 4 — The Processor — 36

Handler Actions
 Read cause, and transfer to relevant

handler
 Determine action required

 If restartable
 Take corrective action
 use EPC to return to program

 Otherwise
 Terminate program
 Report error using EPC, cause, …

Chapter 4 — The Processor — 37

Exceptions: altering the normal flow of control

An exception transfers control to a special handler code run in
privileged mode. Exceptions are usually unexpected or rare

from program’s point of view.

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program exception
handler

Chapter 4 — The Processor — 38

Interrupts: invoking the interrupt handler

 An I/O device requests attention by asserting
one of the prioritized interrupt request lines

 When the processor decides to process the
interrupt
 It stops the current program at instruction Ii,

completing all the instructions up to Ii-1 (a precise
interrupt)

 It saves the PC of instruction Ii in the EPC
 It disables interrupts and transfers control to a

designated interrupt handler running in the kernel
mode

Chapter 4 — The Processor — 39

A MIPS Interrupt Handler Code
 Saves EPC before re-enabling interrupts, if

needed, to allow nested interrupts ⇒
 need an instruction to move EPC into GPRs
 need a way to mask further interrupts at least until EPC can be

saved

 Needs to read a status register that indicates the
cause of the interrupt

 Uses a special indirect jump instruction RFE
(return-from-exception) to resume user code,
this:
 enables interrupts
 restores the processor to the user mode
 restores hardware status and control state

Chapter 4 — The Processor — 40

Synchronous Exception
 A synchronous exception is caused by a

particular instruction
 In general, the instruction cannot be completed

and needs to be restarted after the exception has
been handled
 requires undoing the effect of one or more partially executed

instructions

 In the case of a system call trap, the instruction is
considered to have been completed
 syscall is a special jump instruction involving a change to

privileged kernel mode
 Handler resumes at instruction after system call

Chapter 4 — The Processor — 41

Exceptions in a Pipeline
 Another form of control hazard
 Consider overflow on add in EX stage

add $1, $2, $1

 Prevent $1 from being clobbered
 Complete previous instructions
 Flush add and subsequent instructions
 Set Cause and EPC register values
 Transfer control to handler

 Similar to mispredicted branch
 Use much of the same hardware

Chapter 4 — The Processor — 42

Pipeline with Exceptions

Chapter 4 — The Processor — 43

Exception Properties
 Restartable exceptions

 Pipeline can flush the instruction
 Handler executes, then returns to the

instruction
 Refetched and executed from scratch

 PC saved in EPC register
 Identifies causing instruction
 Actually PC + 4 is saved

 Handler must adjust by subtracting 4

Chapter 4 — The Processor — 44

Exception Example
 Overflow exception on add in

 40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

 Handler // overflow
 80000180 sw $25, 1000($0)

 80000184 sw $26, 1004($0)

Chapter 4 — The Processor — 45

Exception Example

overflow

54 50 4C

Chapter 4 — The Processor — 46

Exception Example
54 50 4C 80000180

Chapter 4 — The Processor — 47

Multiple Exceptions
 Pipelining overlaps multiple instructions

 Could have multiple exceptions at once
 Simple approach: deal with exception from

earliest instruction
 Flush subsequent instructions
 “Precise” exceptions

 In complex pipelines
 Multiple instructions issued per cycle
 Out-of-order completion
 Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 48

Exception Handling

 How to handle multiple simultaneous exceptions in
different pipeline stages?

 How and where to handle external asynchronous
interrupts?

 Exceptions raised from memory access account for
6 out of 8 cases

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

Chapter 4 — The Processor — 49

Exception Handling

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se

EP
C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler

PC
Kill

Writeback

Commit
Point

Chapter 4 — The Processor — 50

Exception Handling
 Hold exception flags in pipeline until

commit point (MEM stage)
 Exceptions in earlier pipe stages override

later exceptions for a given instruction
 Inject external interrupts at commit point

(override others)
 If exception at commit: update Cause and

EPC registers, kill all stages, inject handler
PC into fetch stage

Chapter 4 — The Processor — 51

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 nop I5
EX I1 I2 nop nop I5
MEM I1 nop nop nop I5
WB nop nop nop nop I5

Exception Pipeline Diagram
 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 nop
(I2) 100: XOR IF2 ID2 EX2 nop nop
(I3) 104: SUB IF3 ID3 nop nop nop
(I4) 108: ADD IF4 nop nop nop nop
(I5) Exc. Handler code IF5 ID5 EX5 MA5 WB5

Resource
Usage

Chapter 4 — The Processor — 52

Commit point Overflow!

Speculating on Exceptions
 Prediction mechanism

 Exceptions are rare, so simply predicting no
exceptions is very accurate!

 Check prediction mechanism
 Exceptions detected at end of instruction execution

pipeline, special hardware for various exception types
 Recovery mechanism

 Only write architectural state at commit point, so can
throw away partially executed instructions after
exception

 Launch exception handler after flushing pipeline
 Flushing is required because bypassing allows

use of uncommitted instruction results by
following instructions

Chapter 4 — The Processor — 53

Imprecise Exceptions
 Just stop pipeline and save state

 Including exception cause(s)
 Let the handler work out

 Which instruction(s) had exceptions
 Which to complete or flush

 May require “manual” completion

 Simplifies hardware, but more complex handler
software

 It is not feasible for complex multiple-issue
out-of-order pipelines

 Precise exceptions is required to support virtual
memory (in chapter 5)

Chapter 4 — The Processor — 54

MIPS 4K Processor

Chapter 4 — The Processor — 55

System Control Coprocessor
 CP0 is responsible for

 virtual-to-physical address translation (TLB),
 cache control,
 the exception control system,
 diagnostic capability,
 operating mode selection (kernel vs. user

mode),
 enabling/disabling interrupts,
 configuration such as cache size and

associativity
 32 32-bit CP0 registers

Chapter 4 — The Processor — 56

General
Exception
Handler
(HW) yes no

1. The processor records EPC, Cause, etc
2. Change to the kernel mode.
3. Interrupt disable
4. Jump to the exception handler

Chapter 4 — The Processor — 57

General
Exception
Handler
(SW)

1. Save some registers on the system stack
2. Check the exception type (ExcCode)
3. Use ExcCode with a jump table to go to
 a correct service location
4. Execute the service code
5. Restore registers saved in step 1
6. Atomically
 * restore previous kernel/user mode
 * re-enable interrupts
 * jump back to the user program

Chapter 4 — The Processor — 58

	Chapter 4C
	Assume Branch Not Taken
	Branch Hazards
	Reducing Branch Delay
	Target address calculation
	Branch decision
	Branch decision
	Example: Branch Taken
	Example: Branch Taken
	Branch decision in ID
	Data Hazards for Branches
	Data Hazards for Branches
	Data Hazards for Branches
	Dynamic Branch Prediction
	1-Bit Predictor: Shortcoming
	2-bit predictor: better
	2-Bit Predictor
	Another 2-Bit Predictor
	Comparison
	Comparison
	Dynamic Branch Prediction
	Accuracy of Different Schemes�
	Dynamic Predictor (Local)
	Two advanced Branch Prediction
	Correlating Branch Prediction
	Correlating Branch Predictors
	Tournament Branch Predictors
	Branch target buffer
	Branch Target Buffer
	BTB: store only taken branches
	BTB operations
	Exceptions and Interrupts
	Causes of Exceptions
	Handling Exceptions
	OS needs to know two things
	Vectored Interrupts
	Handler Actions
	Exceptions: altering the normal flow of control
	Interrupts: invoking the interrupt handler
	A MIPS Interrupt Handler Code
	Synchronous Exception
	Exceptions in a Pipeline
	Pipeline with Exceptions
	Exception Properties
	Exception Example
	Exception Example
	Exception Example
	Multiple Exceptions
	Exception Handling
	Exception Handling
	Exception Handling
	Exception Pipeline Diagram
	Speculating on Exceptions
	Imprecise Exceptions
	MIPS 4K Processor
	System Control Coprocessor
	General �Exception �Handler �(HW)
	슬라이드 번호 58

