
Chapter 5A
Large and Fast:
Exploiting Memory
Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology
 Static RAM (SRAM)

 Fast, expensive
 Dynamic RAM (DRAM)

 In between
 Magnetic disk

 Slow, inexpensive
 Ideal memory

 Access time of SRAM
 Capacity and cost/GB of disk

§5.1 Introduction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality
 Programs access a small proportion of

their address space at any time
 Temporal locality

 Items accessed recently are likely to be
accessed again soon

 e.g., instructions in a loop, induction variables
 Spatial locality

 Items near those accessed recently are likely
to be accessed soon

 E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality
 Memory hierarchy
 Store everything on disk
 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
 Main memory

 Copy more recently accessed (and nearby)
items from DRAM to smaller SRAM
memory
 Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels
 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in
upper level
 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio
 Then accessed data supplied from

upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Memory
 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

§5.2 The B
asics of C

aches

 How do we know if
the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Mapped Cache
 Location determined by address
 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Tags and Valid Bits
 How do we know which particular block is

stored in a cache location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10  11 Mem[10010]  Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Direct mapped Cache
Assumption:
1 block = 1 word

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Example: Larger Block Size
 64 blocks, 16 bytes/block

 To what block number does address 1200
map?

 0000 0000 0000 0000 0000 0100 1011 0000
 Block address = 1200/16 = 75

 0000 0000 0000 0000 0000 0100 1011 0000
 Block number = 75 modulo 64 = 11

 0000 0000 0000 0000 0000 0100 1011 0000

Tag Index Offset
0 3 4 9 10 31

4 bits 6 bits 22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Block Size Considerations
 Larger blocks should reduce miss rate

 Due to spatial locality
 But in a fixed-sized cache

 Larger blocks ⇒ fewer entries
 More competition ⇒ increased miss rate

 Larger miss penalty
 Can override benefit of reduced miss rate

 Hiding transfer time ⇒ reducing effective miss
penalty
 early restart : as soon as available
 critical-word-first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

FIGURE 5.8 Miss rate versus block size. Note that the miss rate actually goes up if the block size is too large relative to
the cache size. Each line represents a cache of different size. (This figure is independent of associativity, discussed
soon.) Unfortunately, SPEC2000 traces would take too long if block size were included, so this data is based on SPEC92.

Miss rate versus Block Size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Instruction Cache Misses
 On cache hit, CPU proceeds normally
 On instruction cache miss

 Stall the CPU pipeline
 Invalidate instruction register
 Send address (PC-4) to the memory
 Fetch a corresponding block from memory
 Write the cache entry

 Put the data from memory in the data portion
 Write its tag
 Turn valid bit on

 Restart Instruction fetch

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Writes into data cache
 The cache and memory can be inconsistent
 How can we keep them consistent?
 The simplest way is to write the data into both the

memory and the cache: write through
 But makes writes take longer

 If base CPI = 1, 10% of instructions are stores, write to
memory takes 10 cycles, Effective CPI = 1 + 0.1×10 = 2
 assuming wait until completion of memory write (write stall)

 A solution: write buffer
 Write the data into the cache and into the write buffer
 Write buffer: holds data waiting to be written to memory
 CPU continues immediately

 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Write-Back (copy back)
 Alternative: On data-write hit, just update the data

is written only to the block in cache
 Keep track of whether each block is dirty (updated)

 When a dirty block is replaced (on a miss)
 Write it back to the lower-level memory
 Can use a write buffer to allow replacing block to be read

first before reading it from the lower level memory
 Write-back schemes can improve performance,

especially when processors generates writes as
fast or faster than the writes can be handled by
main memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Write Allocation
 What should happen on a write miss?
 Write miss for a write-through cache

 No-write allocate: modified only in memory
 Since some programs often write a whole block

before reading it (e.g., initialization)

 Write miss for a write-back cache
 Write allocate: fetch the block, followed by write

hit action. Write misses act like read misses
 Write allocation policy: some computer allow it to

be changed on a per page basis

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Write in a write-through cache
 It can write the data into the cache and read a tag
 What if the tag mismatches? It is a miss.
 Overwriting the block is not catastrophic

 Only need to be invalidated

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Write in a write-back cache
 If we have a cache miss and the data in the cache

is dirty, we must first the block back to memory.
 Overwriting is not possible

 If we simply overwrite the block before we knew
whether the store is hit or not (as we could for a
write-through cache), we would destroy the
contents of the blocks before being backed up in
memory.

 Therefore, stores either require two cycles or
require a write buffer to hold that data.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Write in a write-back cache
 Two-cycle write

 A cycle to check for a hit
 A cycle to actually perform the write if it is hit

 Write in the store buffer
 Check for a hit and write the data in the store buffer
 Assuming a cache hit, the new data is written from the

store buffer into the cache on the next unused cache
access cycle.

 Many write-back caches also include write buffers
that are used to reduce the miss penalty when a
miss replaces a modified block
 How is the miss penalty reduced?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Example: Intrinsity FastMATH
 Embedded MIPS processor

 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back
 What is a combined (unified) cache?

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.24%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Example: Intrinsity FastMATH
16KB = 256 x 16 x 4

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Unified cache
 A combined cache will usually have a better

hit rate if the total size is equal to the sum of
the two split caches
 3.18%

 Nonetheless, many processors use a split
instruction and data cache to increase
cache bandwidth.

 This observation cautions us that we cannot
use miss rate as the sole measure of cache
performance.
 Memory bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Main Memory Supporting Caches
 Use DRAMs for main memory

 Fixed width (e.g., 1 word = 4 bytes)
 Connected with CPU by fixed-width clocked bus

 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Advanced DRAM Organization
 Bits in a DRAM are organized as a

rectangular array
 DRAM accesses an entire row
 Burst mode: supply successive words from a

row with reduced latency
 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges
 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

ns

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Measuring Cache Performance
 Components of CPU time

 Program execution cycles
 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§5.3 M
easuring and Im

proving C
ache P

erform
ance

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

The Memory Bottleneck
 Typical CPU clock rate

 1 GHz (1ns cycle time)
 Typical DRAM access time

 30ns (about 30 cycles)
 Typical main memory

access
 100ns (100 cycles)

 DRAM (30), precharge (10),
chip crossings (30),
overhead (30).

 Our pipeline designs
assume 1 cycle access (1ns)

 Average instruction
references
 1 instruction word
 0.3 data words

 This problem gets worse
 CPUs get faster
 Memories get bigger

 Memory delay is mostly
communication time
 reading/writing a bit is fast
 it takes time to

 select the right bit
 route the data to/from

the bit

 Big memories are slow
 Small memories can be

made fast

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Cache Memory

 Small fast memory +
 Big slow memory
 Looks like a big fast memory

MC

Small
Fast

MM

Big
Slow

Big
Fast

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Memory Hierarchy: iMac G5

07 Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G
Latency
Cycles,
Time

1,
0.6 ns

3,
1.9 ns

3,
1.9 ns

11,
6.9 ns

88,
55 ns

107,

12 ms

Managed
by compiler

Managed
by hardware

Managed by OS,
hardware,
application

 Goal: Illusion of large, fast, cheap memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

iMac’s G5: All caches on-chip

L1 (32K Data)

reg
file

1/2
KB

1/2
KB

512K
L2

L1 (64K Instruction)

The Memory Hierarchy

Registers

Level 1 Cache

1 cyc 3-10 words/cycle compiler managed
 < 1KB

1-3cy 1-2 words/cycle hardware managed
 16KB -1MB

10-15cy 1-2 word/cycle hardware managed
 1MB - 12MB

50-300cy 0.5 words/cycle OS managed
 64MB - 4GB

106-107cy 0.01 words/cycle OS managed
 40GB+

Level 2 Cache

CPU
Chip

DRAM
Chips

Mechanical Disk

Tape

Latency Bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Cache Performance Example
 Given

 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Average Access Time
 Hit time is also important for performance
 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty
 Example

 CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = (1 + 0.05 × 20) 1ns = 2ns
 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Performance Summary
 When CPU performance increased

 Miss penalty becomes more significant
 Decreasing base CPI

 Greater proportion of time spent on memory
access (consequently, memory stalls)

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Associative Caches
 Fully associative caches

 Allow a given block to go in any cache entry
 Requires all entries to be searched at once
 Comparator per entry (expensive?!)

 n-way set-associative caches
 Set selection: block number determines which set
 Each set contains n entries  n comparators

(more sets  less entries/set  less comparators)
 Allow a given block to go in any entry of the

selected set

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Associative Cache Example

Selected Set = (Block number) modulo (#Sets in cache)

2-way 4 sets 1-way 8 sets 8-way 1 set

The tag of every element in the set must be compared with
the tag of the input address.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Spectrum of Associativity
 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Associativity Example
 Compare 4-block caches (4 one-word blocks)

 Direct mapped, 2-way set associative,
fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block
address

Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Associativity Example
 2-way set-associative: (even: set 0, odd: set 1)

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Replacement policy: LRU (least recently used)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

How Much Associativity
 Increased associativity decreases miss

rate
 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%
 2-way: 8.6%
 4-way: 8.3%
 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Locating a block in the cache
 The index (n bits) is used to select the set

containing the address of interest.
 Direct mapped: index= n bits  Cache size: 2n blocks

 If the total cache size is kept the same (2n blocks),
 increasing associativity (2k-way) reduces the
 number of sets (2n-k sets).

 A 2k-way set-associative cache has an (n-k)-bit index to
select one set among 2n-k sets .

 Fully associative (2n-way) = 1 set = no index
 The number of way = the number of blocks in a set

Associativity up  # of blocks in a set  # of sets down  index bits down  tag bits up

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Set Associative Cache Organization
4-way set-associative cache
1 K blocks = 4 blocks/set x 256 sets

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

CAM
 Content addressable memory

 Input: key (tag)
 Output: address (index)

 SRAM
 Input: address
 Output: data

 CAM mean that cache designers can
afford to implement much higher set
associativity
 than if they needed to build the hardware out

of SRAMs and comparators

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Replacement Policy
 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if available
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Size of tags vs. set associativty

 Increasing associativity requires more
comparators and more tag bits per cache block.

 Assuming a cache of 4K blocks, a 4-word block
size, and a 32-bit address, find the total number of
sets and the total number of tag bits for caches
that are direct mapped, two-way, and four-way set
associative, and fully associative.

 4-word block: 16 bytes per block  (32-4)=28 bits
 28 bits are divided into index and tag

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Size of tags vs. set associativty
 Direct-mapped: 4K blocks  12-bit index (full index)

 (28-12)=16-bit tag  16 x 4K = 64K tag bits
 A 16-bit comparator

 2-way set-associative
 (28-11)=17-bit tag  17 x 2 x 2K = 68K tag bits
 Two 17-bit comparators

 4-way set-associative
 (28-10)=18-bit tag  18 x 4 x 1K = 72K tag bits
 Four 18-bit comparators

 fully set-associative (no index)
 (28-0)=28-bit tag  (16+12) x 4K x 1 = 112K tag bits
 4096 28-bit comparators

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Multilevel Caches
 L1 (primary) cache attached to CPU

 Small, but fast
 L2 cache services misses from primary

cache
 Larger, slower, but still faster than main

memory
 Main memory services L2 cache misses
 Some high-end systems include L3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Miss rate: global and local

 Global cache miss:
 the fraction of references that missed in all

cache levels
 Local cache miss:

 the ratio of all misses in a cache divided by
the number of accesses to it.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Multilevel I Cache Example

 Given
 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache (L1)
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Using a global miss rate
 Now add L-2 cache

 Access time = 5ns
 Global miss rate to main memory = 0.5%
 Local miss rate = 0.5%/2% = 25%

 L1 miss with L2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 L1 miss with L2 miss
 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance improvement with L2 = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Using a local miss rate
 Hit : 75%, Miss: 25% in 2nd level cache
 CPI = 1 + 0.02 * 0.75 x 20
 + 0.02 * 0.25 x (20 + 400) = 3.4

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Multilevel Caches
 L1 (primary) cache attached to CPU

 Smaller, compared to a single-level cache
 Smaller block size
 Focus on minimizing hit time to yield a shorter clock cycle

or fewer pipeline stages
 L2 cache services misses from L1 cache

 Much larger than a single-level cache, since its access
time is less critical

 Larger block size
 Focus on miss rate to reduce the penalty of long memory

access times
 Often uses higher associativity than the primary cache.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Interactions with Advanced CPUs
 Out-of-order CPUs can execute

instructions during cache miss
 Pending store stays in load/store unit
 Dependent instructions wait in reservation

stations
 Independent instructions continue

 Effect of miss depends on program data
flow
 Much harder to analyze
 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Interactions with Software
 Misses depend on

memory access
patterns
 Algorithm behavior
 Compiler

optimization for
memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Cache Control
 Example cache characteristics

 Direct-mapped, write-back, write allocate
 Block size: 4 words (16 bytes)
 Cache size: 16 KB (1024 blocks)
 32-bit byte addresses
 Valid bit and dirty bit per block
 Blocking cache

 CPU waits until access is complete

§5.7 U
sing a Finite S

tate M
achine to C

ontrol A S
im

ple C
ache

Tag Index Offset
0 3 4 13 14 31

4 bits 10 bits 18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Interface Signals

Cache CPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles
per access

Valid: saying whether there is a
cache operation or not
Ready: saying that the cache
operation is complete Valid: saying whether there is a

memory operation or not
Ready: saying that the memory
operation is complete

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Cache controller: FSM
 Use an FSM to

sequence control steps
 Set of states, transition

on each clock edge
 State values are binary

encoded
 Current state stored in a

register
 Next state

= fn (current state,
 current inputs)

 Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Cache Controller FSM

Could
partition into

separate
states to

reduce clock
cycle time

Both compare the tag and
read/write the data in a cycle

Homework: chapter 5
 Due before starting the midterm exam on

Oct. 27.
 Exercise 5.2
 Exercise 5.3
 Exercise 5.5
 Exercise 5.8
 Exercise 5.12

§1.9 C
oncluding R

em
arks

	Chapter 5A
	Memory Technology
	Principle of Locality
	Taking Advantage of Locality
	Memory Hierarchy Levels
	Cache Memory
	Direct Mapped Cache
	Tags and Valid Bits
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Direct mapped Cache
	Example: Larger Block Size
	Block Size Considerations
	Miss rate versus Block Size
	Instruction Cache Misses
	Writes into data cache
	Write-Back (copy back)
	Write Allocation
	Write in a write-through cache
	Write in a write-back cache
	Write in a write-back cache
	Example: Intrinsity FastMATH
	Example: Intrinsity FastMATH
	Unified cache
	Main Memory Supporting Caches
	Increasing Memory Bandwidth
	Advanced DRAM Organization
	DRAM Generations
	Measuring Cache Performance
	The Memory Bottleneck
	Cache Memory
	Memory Hierarchy: iMac G5
	iMac’s G5: All caches on-chip
	The Memory Hierarchy
	Cache Performance Example
	Average Access Time
	Performance Summary
	Associative Caches
	Associative Cache Example
	Spectrum of Associativity
	Associativity Example
	Associativity Example
	How Much Associativity
	Locating a block in the cache
	Set Associative Cache Organization
	CAM
	Replacement Policy
	Size of tags vs. set associativty
	Size of tags vs. set associativty
	Multilevel Caches
	Miss rate: global and local
	Multilevel I Cache Example
	Using a global miss rate
	Using a local miss rate
	Multilevel Caches
	Interactions with Advanced CPUs
	Interactions with Software
	Cache Control
	Interface Signals
	Cache controller: FSM
	Cache Controller FSM
	Homework: chapter 5

