
9/20/2007

Loosely Coupled e-Business

Solutions
406.306 Management Information Systems

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

mailto:jonghun@snu.ac.kr

9/20/2007

A Quick Overview of Web Services

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

406.622 Industrial Information Technology

mailto:jonghun@snu.ac.kr

3

Web

Services
XMLApplication

or

Web services

Web services: Towards “programmable” web

 Web services: A software application identified by a URI, whose interfaces and

bindings are capable of being defined, described, and discovered as XML

artifacts

 A Web service supports direct interactions with other software agents using XML-

based messages exchanged via Internet-based protocols (W3C)

 Web based

 Big thrust from major IT vendors

 Interoperability supported by international standards

Web

Application
HTML

4

SOA, SOC, SODA, & SOBA, …

Service

Registry

Service

Requester

Service

Provider

서비스 발견 서비스 등록

서비스 호출

UDDI, WSDL

SOAP, WSDL

UDDI, WSDL

Everything is abstracted as a service!

Service: A procedure, method, or

object with a stable, published

interface that can be invoked by

clients

5

Applications of web services

http://www.sabre-holdings.com/index.html
http://www.amazon.com/exec/obidos/subst/home/redirect.html/ref=nh_gateway/104-7666409-2334335
http://www.daum.net/
http://www.msnbc.msn.com/
http://www.nasdaq.com/
http://www.lge.co.kr/
http://www.samsunglife.com/index.html
http://developer.ebay.com/DevProgram/index.asp
http://terraservice.net/default.aspx
http://www.webservicelist.com/
http://www.webservicex.net/ws/default.aspx
http://searchwebservices.techtarget.com/home/0,289692,sid26,00.html
http://www.xmethods.net/ve2/index.po;jsessionid=UnKMagjm-NNuKlgMdh6dfPU-(QhxieSRM)
http://developer.yahoo.net/

6

대표적웹 서비스제공업체

REST is more popular!

7

Some “real” web services

 Google: http://www.google.com/apis/

 Amazon:

 http://www.amazon.com/gp/browse.html/104-1656612-

4225519?%5Fencoding=UTF8&node=3435361

 http://pages.alexa.com/prod_serv/WebInfoService.html

 eBay: http://developer.ebay.com/DevProgram/preview.asp

 OpenDBLP: http://opendblp.psu.edu/

 Swoogle:

http://swoogle.umbc.edu/modules.php?name=News&file=article&si

d=13&mode=&order=0&thold=0

 Xignite: http://www.xignite.com/

 TerraServer: http://terraservice.net/webservices.aspx

http://www.google.com/apis/
http://www.amazon.com/gp/browse.html/104-1656612-4225519?%5Fencoding=UTF8&node=3435361
http://www.amazon.com/gp/browse.html/104-1656612-4225519?%5Fencoding=UTF8&node=3435361
http://www.amazon.com/gp/browse.html/104-1656612-4225519?%5Fencoding=UTF8&node=3435361
http://www.amazon.com/gp/browse.html/104-1656612-4225519?%5Fencoding=UTF8&node=3435361
http://www.amazon.com/gp/browse.html/104-1656612-4225519?%5Fencoding=UTF8&node=3435361
http://pages.alexa.com/prod_serv/WebInfoService.html
http://developer.ebay.com/DevProgram/preview.asp
http://opendblp.psu.edu/
http://swoogle.umbc.edu/modules.php?name=News&file=article&sid=13&mode=&order=0&thold=0
http://swoogle.umbc.edu/modules.php?name=News&file=article&sid=13&mode=&order=0&thold=0
http://www.xignite.com/
http://terraservice.net/webservices.aspx

8

Web services directories

 Web Service List: http://www.webservicelist.com/

 Remote Methods: http://www.remotemethods.com/

 WebserviceX.NET: http://www.webservicex.net/WS/default.aspx

 SearchWebServices.com:

http://searchwebservices.techtarget.com/bestWebLinks/0,289521,sid26_tax

292848,00.html

 Binding Point: http://www.bindingpoint.com/

 X Methods: http://www.xmethods.com/

 SalCentral: http://www.salcentral.com/Search.aspx

 Google directory:

http://directory.google.com/Top/Computers/Programming/Internet/Web_S

ervices/

http://www.webservicelist.com/
http://www.remotemethods.com/
http://www.webservicex.net/WS/default.aspx
http://searchwebservices.techtarget.com/bestWebLinks/0,289521,sid26_tax292848,00.html
http://searchwebservices.techtarget.com/bestWebLinks/0,289521,sid26_tax292848,00.html
http://www.bindingpoint.com/
http://www.xmethods.com/
http://www.salcentral.com/Search.aspx
http://directory.google.com/Top/Computers/Programming/Internet/Web_Services/
http://directory.google.com/Top/Computers/Programming/Internet/Web_Services/
http://www.xmethods.net/ve2/index.po;jsessionid=UnKMagjm-NNuKlgMdh6dfPU-(QhxieSRM)

9

Lessons learned from past: CONFIRM

 An ambitious software development

initiative that sought to integrate

airline reservations, car rentals, and

hotel reservations, along with their

respective decision support mechanisms

into a single system

 The project development firm: AMRIS

(AMR Information Services, Inc., a

subsidiary of AA)

 The project lasted 3.5 years, spending

$125 million and producing an unusable

system (CACM, 37(10), 1994)

10

In search of killer applications of web services… 

11

Amazon Web Services
(출처: ETRI PEC, 2005)

MS Word

Can support

AWS Features

12

MapPoint

DevicesSolutions

Friend Finder

Yellow Pages

Store Locator

Navigation App

Decision Support

Cartographic

Data

Points of

Interest

Traffic Flow &

Incidents

Road

Construction

Demographics &

Other Data

.NET Alerts &

My Services

Extranet; Reports

Location Features
Maps

Driving Directions

Find Address/Place

Proximity Search

Batch Geocoding

Address Cleansing

Service Features
Privacy Managem’t

Caching

Publish/Subscribe

Synchronization

Database
Account Info

Preferences

Configuration

Custom POI

Logos

Icons

Subscriptions

User Preferences
My maps

My routes

My neighborhoods

My data

My location

Real-Time Location
.NET Framework &

Visual Studio .NET

WAP

HTTP

SOAP

SMS

Voice

In
te

rn
e
t

Notifications (SOAP, SMS)

Custom POI

Custom Icons

Vector

Downloads

Content

Updates

SOAP/HTTP

Requests

http://www.microsoft.com/mappoint/locpower/default.mspx

13

 Revenue for Web-

services-enabled

software and

professional services will

grow from $61 billion

(2003) to $316 billion

(0.7 probability).

 41 percent of enterprise

software purchased in

2007 will be Web-

services-enabled (0.8

probability).

 Services CAGR will be

more than 61 percent in

the next four years (0.8

probability).

2007 년도의 웹 서비스 시장 (Gartner, 2004)

$45

$271

0

100

ꁾ�羀

200

Dollars in

Billions

Web-Services-
Enabled
Software
Products

IT Professional
Services for

Web-Services
Projects

$316 billion

$250

14

SOA에 대한 전망

 By 2007, SOA will be the mainstream

software engineering practice, ending the

40-year domination of monolithic

architecture (0.7 probability; Gartner, 2003)

 No later than year-end 2006, 90 % of

application development staffs in the

Global 2000 will be developing secure,

marketable services for external use (0.8

probability; Gartner, 2003)

 Web services vendors with greater than

$10 million annual revenue will add non-

WS products or collapse by year-end 2006

(0.7 probability; Gartner, 2003)

Gartner predicts that 75% of

companies with more than $100

million in annual revenue will use

Web service by the middle of 2003,

and that the technology will reach

mainstream users by 2004

Web services market will be $21

billion by 2007 and will peak at $27

billion in 2010 (IDC, 2003)

80% of US enterprises will have

some type of Web services project

under way by 2008 (IDC, 2003)

15

Web services platform vendors
(Gartner, 2005)

16

What Functions or Activities Are Common

to Many Web Services Projects? Which Apply to This Project?

% of

Respondents

Integration
w/Internal
Apps. and
Processes

0

20

40

60

80

100%

Security Personal-
ization

Web
Content
Mgmt.

Integration
w/External
Partners

Apps. and
Processes

Order
Fulfill-
ment

Payment
and

Billing

None
of the
Above

웹 서비스의 적용 현황
(Gartner, 2004)

17

웹 기술 관련 표준화 기구

18

Web services standards stack from W3C

<그림 1)-3> W3C의 웹 서비스 기술 스택

19

Another stack from W3C

20

CBDi

21

OASIS’s e-Business stack

Q
u

a
lity

 o
f S

e
rv

ic
e

s

M
a

n
a
g

e
m

e
n

t

S
 e

 c
 u

 r i t y

XML Syntax

Network

Transport

Vertical

Industry Area

XML and Web

Services Area

Generalized Processes

Specialized Processes

Generalized Content

Specialized Content

Messaging

Service Description Language

Presentation Description

Transaction Patterns

Transaction Instance

Repository

Registry / Directory

Process Description Language Content Definition Language

C
o

n
fo

rm
a

n
c
e

 a
n

d
 In

te
ro

p
e

ra
b

ility

22

웹 서비스 관련 OASIS TCs

분류 기술위원회 이름

웹 서비스 관련

TWS; Translation Web Services TC

UDDI; UDDI Specification TC

WSBPEL; Web Services Business Process Execution Language

TC

BTP; Business Transaction Protocol TC

WSDM; Web Services Distributed Management TC

WSIA; Web Services Interactive Application TC

WSRM; Web Services Reliable Messaging TC

WSRP; Web Services for Remote Portlet TC

WSS; Web Services Security TC

ebXML

관련

Business-Centric Methodology TC

ebXML CPPA TC

ebXML Implementation TC

ebXML Messaging TC

ebXML Registry TC

Universal Business Language TC

23

Working Group

생성

이사회의 결정

Working Draft

(작업 초안)작성

3개월 이내에

작업 개정판 작성

이사회의 Working

Draft 심사

Last Call Working

Draft (작업

최종안) 갱신
표준화 활동 중단

Candidate

Recommendation

이사회의 Working

Draft 심사

Proposed

Recommendation

1년 이내

W3C

Recommendation

4주 이내 검토

Evolution of WS-related standards at W3C

24

Evolution of WS-related standards at OASIS

25

A state diagram for standards
(Gartner, 2003)

problem
not well
understood

No
Standard

At All

Overly
Complex
and/or

Abstract

Underpowered
Subset

De facto
“Standard”

“Just
About
Right”

• SGML
•XSD
• BPEL?
• ebXML
•OSI

•JSR-168?
•HTML
•S-HTTP

• TCP/IP
•XML
•SSL
•CSS
• HTTP 1.1
• SOAP 1.2

•COM

fragmented
market

slow
process

big player
moves early

stars
in
alignment

pragmatic
enhancement

try
again

Hidden
Jewel

better
marketing

•XML-RPC
•REST
• RELAX-NG
• BEEP
• Jabber

reduce
& refine

Captive

Standard

market
gorilla

• JCP/JSR

26

웹 서비스 표준 간의 상호의존성
It’ ’

WS- Coordination WS- Transaction

BPEL 1.1

WS- Addressing

WS- ReliableMessaging

WSDL 1.1

WS-PolicyAssertions

WS-PolicyAttachments

WS- Security

WS-SecureConversation

WS-
SecurityAddendum

WS-SecurityPolicy

Xpath 1.0

XML Schema 1.0

XML 1.0XML Infoset XML Namespaces

SOAP 1.2

XML Signature

XML Encryption
X.509

WS- Trust

WS- Policy

WS- Routing

27

Opportunistic SODA Opportunities

(12 to 18 months)

Strategic SODA Opportunities

(18 to 36 months)

Supportive Technology

(Foundational)

Key: Time to Plateau

웹 서비스의 전략적응용 분야
(Gartner, 2004)

As of August 2003

MOM

Transf.
and

Routing

Basic Web
Services

(WSDL, SOAP,
UDDI)

JCA
Mobile

Middleware

Adapters

BPMPackaged
Integrating
Processes

Ontology-Based
Transformation

BAM
XML

RosettaNet

ebXML

Integration Broker Suites
ESB

EDI

Agents

Advanced
Web Services
(BPEL, WSS,

WS TX)

Programmatic
Integ. Servers

CORBA

Bus. Rule Engines

Event
Mgmt.

Technology
Trigger

Peak of
Inflated

Expectations

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Time

Visibility

웹 서비스 표준의 발전과 SOBA
(Gartner, 2004)

Incorporation Prevalent in SOBA and SOA

Increasing

Complexity

Complex

Business

Process Utility

2003 20092004 2005 2006 2007 2008

WSDL: Formal interface description reduces integration effort

UDDI: Web services directory can source SOBA components

WS-RM: Collab. commerce needs reliable messaging

WS-Security/transactions: for mix of uses

BPEL: Orchestrating business processes

Future: Web services management

Future: Choreography

SOAP: Core messaging, unification of XML data, SOBA must have this

Future: Events

Within the Enterprise

향후 웹 서비스 프로젝트의진행 방향
(Gartner, 2004)

1998 2002 2004 2006 2008

N
u

m
b

e
r

o
f

H
ig

h
-V

a
lu

e
 S

c
e

n
a

ri
o

s

Syndicated

Orchestrated

Transactional

Reliable and Secure Messaging

Simple RPC-style interaction (SOAP requests)

Trusted Partners Wide Domain

Adoption of Web Services Protocols

30

Market

Event

Market

Event

Market

Event

Proprietary,

Monolithic

Application Suites &

Modules

Net-Enabled,

Services

Wrapped

Application

SOA- and BPM-

enabled,

Business

Process Fusion

1998: Rigid

but Simple

2003: Flexible

but Complex

2008: Fusion &

Consolidation

Extended enterprise

Enterprise

Trading grid

Business Advantage

Business Advantage

Business Advantage
Agility, Adaptability

Business Response

Process-Driven

Value Network

Business Response

Loosely Coupled

Value Chain

Business Response

Enterprise

Centric

Value Chain Visibility

Proactive Enterprise

Reactive Enterprise

CRM ERP Industry

App
Back

Office

CRM ERP II Back

Office

Industry

App

웹 서비스를 통한 비즈니스환경의 변화
(Gartner, 2004)

Business process fusion aims for transformational change in

business capabilities by coherent IT support for dynamic, time-

sensitive, end-to-end business processes

9/20/2007

web services

406.424 Internet applications

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

mailto:jonghun@snu.ac.kr

32

SOC

기업의 내 /외부 시스템의 통합 및 연계를 용이하게 하며, 기 개발된 서비스를 재사용하는

시스템 아키텍쳐로 진화됨

레거시 애플리케이션을 재사용 가능한 서비스로 활용

표준 기반이므로 IT 시스템의 통합을 쉽고 빠르게 지원

서비스 합성으로 신규 서비스를 생성

(출처: Forrester Research)

http://www.sap.com/index.epx
http://www.oracle.com/index.html
http://www.ibm.com/us/

33

CRM E-Commerce ERP E-Procurement Supply Chain
Management

Challenge
No. 1

Coordination
among
departments

Security BPR BPR Culture

Challenge
No. 2

Integration Integration Inter-
enterprise
integration

Implementation Coordination
among partners,
suppliers,
customers

Challenge
No. 3

BPR BPR Continuous
improvement

High cost Coordination
among business
units

Goals (large
enterprise)

Drive revenue
growth

More revenue,
more
customers,
better loyalty

Operational
efficiency

Cost savings Improve
production costs;
advanced
fulfillment

Goals
(midsize
enterprise)

Improve
productivity,
Single view of
customer

Better
customer
loyalty

Operational
efficiency

Cost savings,
shorten
transaction time

Enable
collaborative
production

Goals
(small
enterprise)

Improve sales
productivity

More revenue,
More
customers

Operational
efficiency

Cost savings Improve
logistics/
production/
warehouse costs

Yellow = Web services target

주요 웹 서비스 적용 분야의 예

34

해외 공공 부문 웹 서비스적용 사례

 미국
 전자정부에 웹 서비스를 도입하기 위해 웹 서비스 워킹그룹을 중심으로

파일럿 프로젝트를 진행한 데 이어, 현재 공공부문 적용을 본격 추진 중
 법무부는 범죄자 지문기록, 범죄이력 등을 웹 서비스로 제공,

교통경찰관이 단말기를 통해 법무성의 데이터를 조회할 수 있도록 하고
있음

 영국
 게이트웨이 프로젝트 (www.gateway.gov.uk)에 SOAP 프로토콜을 이용한

데이터 교환 수준의 웹서비스를 적용, 전자정부 통합을 위한 표준 모델을
제시

 e-GIF (e-Government Interoperability Framework)를 통해 정부기관과 국민,
정부기관과 기업체, 정부기관과 공공기관 등의 원활한 정보교환을 위한
가이드라인을 제시

 호주
 통계청이 XML 스키마를 이용한 데이터 통합과 웹 서비스 기반의 시스템

통합 아키텍처를 도입, 통계청 내ㆍ외부 시스템과의 상호운영성을 확보

35

국내 웹 서비스 시장 및 도입 사례
(Source: 정통부, 2004)

도 입 사 례사 업

주민등록, 토지대장, 지방세 및

자동차납세증명 등 15개 공공

문서 교환에 웹 서비스 초기모델 도입

G4C

다부처 시스템간 연계와 내부시스템

통합에 웹 서비스 도입

(청와대, 인사위 : 업무관리시스템,

정통부 : GPLC)

디지털

청와대

사업

도 입 사 례업 종

은행 및 보험사 등에서 내부 시스템

연계 및 파트너 연계에 웹 서비스 초기

모델 시범사업 실시

금융권

(삼성생명

등)

삼성전자는 해외 비즈니스 파트너와

시스템 연계을 웹 서비스로 연계하여

수발주 업무 처리

전자업계

(LG, 삼성

등)

공공

민간

※ 자료 : IDC IT서비스, Gartner
(„02. 11월)를 기준으로 추정

국내 시장 전망
(단위 : 억원)

36

국내 웹 서비스 현황

 미아정보공유서비스 (경찰청)

 병역의무이행확인 (병무청)

 제주정보통합 IT 프라자포털
구축 (제주도)

 방재기상정보서비스 (기상청)

 e-비즈니스정보중계시스템
(한국통신산업협회)

 중소기업 ASP 사업

 통합국적관리시스템 (법무부)

 영유아보육교사포털 (대전시)

국내 WS 시범 사업:

전자정부의 기관간 시스템
연계표준으로 지정

37

IT839에서의 웹서비스의위상
(Source: 정통부, 2004)

통합 개발 도구 기술
다중 플랫폼 기술

개발 도구 기술

융합 서비스 응용
그리드 웹서비스 응용
모바일 웹서비스 응용
P2P 웹서비스 응용
협업형 웹서비스 응용
비즈니스 웹서비스 응용
차세대 웹서비스 응용
웹서비스 신디케이션 응용

응용 및 서비스 기술

임베디드 웹서비스 기술
웹서비스 디바이스 기술
차세대 인터넷 연동 기술
웹서비스 네트워크 기술
유비쿼터스 미들웨어 통합
시맨틱 웹서비스 기술

유비쿼터스 WS 기술

경량형 미들웨어 기술
협업적 미들웨어 기술

미들웨어 기술

IT839 핵심 연계 기술로의 웹서비스

레지스트리 기술
상호운용성 기술
품질 및 관리 기술

관리 기술

보안 프레임워크 기술
웹서비스 해킹 방지 기술
ID 관리 기술
응용 보안 프로파일 기술

보안 기술

+ Web services?

38

국내 웹 서비스 사업 추진 계획 (안)
(Source: 정통부, 2004)

기
술

응
용

/
서

비
스

국내성숙기술

국내개발기술 (초기)

국내미비기술

중요도   

고 저 연구개발전략 기초연구
실용화 개발
국제협력분야
기술도입

웹서비스네트워크 기술


웹서비스 디바이스(WSD) 기술


시맨틱 웹서비스 기술


상호운영성기술


품질 및 관리 기술


임베디드 웹서비스 처리 기술


레지스트리기술


다중 플랫폼 기술


협업적 미들웨어 기술


통합 개발 도구 기술


경량형 미들웨어 기술


차세대 인터넷 연동 기술


ID 관리 기술 보안 프레임워크 기술


유비쿼터스미들웨어 통합 기술


응용 보안 프로파일 기술웹서비스 해킹 방지 기술


IT
 8

3
9

차세대 이동통신 DTV IT SoC

차세대 PC

임베디드SW 디지털콘텐츠 지능형 로봇

BCN USNIPv6WiBro DMB

홈네트워크홈네트워크텔레매틱스텔레매틱스

RFID 활용W-CDMA 지상파DTV VoIP

그리드 웹서비스 응용

모바일 웹서비스 응용

협업형 웹서비스 응용

P2P 웹서비스 응용비즈니스 웹서비스 응용

차세대 인터넷(IPv6) 응용 웹서비스 신디케이션 응용

융합 서비스 응용

기술
수준

39

High-value scenarios in Web services
(Gartner, 2003)

Data Volume

Code
Complexity

Simple Code,
Simple Data

HybridProprietary
Algorithms

Proprietary
Data

Stock Quote
Weather
News Headlines

Fedex/UPS
Package Tracking

Loan Risk
Assessment

Credit Card Validation
Social Security Benefits
Order Status
On- Hand Inventory

HIGH VALUE HIGH VALUE

HIGH VALUECOMMODITY
VALUE

40

Web vs. Web Services

 Increased visibility of web via web services

 Business mind + Technical mind

41
1 5

5

F
e
a
s
ib
ili
ty

Impact

유비쿼터스WS

임베디드WS모바일WS

WS관리

협업WS

WS생산

비즈니스WS

WS사용

웹모바일

웹보안

웹문서파싱

시맨틱WS
지능형정보검색

온톨로지툴개발

시맨틱포탈

추론/질의엔진

웹문서접근

웹질의

XMLDB

웹문서스타일

웹문서구조정의

웹브라우징

웹문서검색
그래픽/멀티미디어

콘텐츠WS
그리드WS

WS기초
온톨로지공학

온톨로지개발방법론

온톨로지/규칙API
시맨틱웹마이닝

온톨로지서버/미들웨어

온톨로지/규칙언어

웹문서편집

시맨틱웹신뢰프라이버시
시맨틱통합/상호운용성

기반기술

웹서비스(WS)

시맨틱웹

웹기술평가결과
(출처: 한국전산원)

42

웹 서비스의 교훈 (2001 – 2005)

 현상
 .COM bubble 때와 같은 business analogy가 성립하지 않았음
 표준의 난립과 기관 간의 주도권 다툼: WS-??

 세상은 생각보다 더 closed 되어 있음
 예: 신라 호텔이 웹 서비스를 제공 해야하는 이유는?

 초기 예상대로 EAI와 B2Bi 관련한 적용 사례가 가장 많았음
 BPMS boom-up으로 인해 한 때 관심이 고조

 막상 전사적으로 도입하기에는 꺼려지지만 무시할 수도 없는 기술
 IT integration 측면의 잠재적 가치

 교훈
 “자동화”적인 특성이 강함
 Increased visibility of web via web services: e.g., product search

 고부가 가치의 웹 서비스 발굴 필요
 사고 싶은 정보: 구하기 힘든 정보 (contents) and / or 처리하기 힘든 정보 (information

processing) and / or 실시간 정보 (real-time)

 일반 대중보다는 기업 대상의 웹 서비스 비즈니스 발굴이 수익성이 있음
 기업 (또는 국가)의 IT 자산으로서의 인프라적 성격 및 공공성이 강함

 예: Increased product visibility under WS-enabled e-Business

 웹 서비스를 “적용하면 좋은” 영역 이외에, “반드시 적용 해야 하는” 영역은
어디인가?

43

And then comes the ubiquitous computing…

 The grand objective: enhance computer use by making many

computers available throughout the physical environment, but

making them effectively invisible to the user (Weiser, CACM, 1993)

 Pushing computational services out of conventional desktop

interfaces into environments characterized by transparent forms of

interactivity

 Recently has been accelerated by improved wireless

telecommunication capabilities, open networks, continued increases

in computing power, improved battery technology, and the

emergence of flexible software architectures

44

유비쿼터스환경
(출처: ETRI PEC, 2005)

Seamless,

Ubiquitous

Experience

SD
MMC

Ｅ-Tower
Game

Telephone

PC

DVD

Audio

TV

STBDVC

Map Info

IC Card

SD
MMC

SD
MMC

SIM

♪
Digital
Contents

Infra
Info

Personal Info

Automobile Service

Mobile

Office

Home

Outdoor

Shop

45

Ubiquitous IT

 사방 어디에나 있고, 보이지 않는
곳에 숨어 있다는 의미

 시간과 장소의 구애를 받지 않고
눈에 보이지 않아도 컴퓨팅을 할
수 있게 함

 물리적 공간과 가상 공간이
합쳐져 새로운 통합 공간을
구현해 냄

 주변 환경 속에 노출된 모든
사람과 사물을 네트워크로 연결,

사용자가 필요로 하는 정보와
서비스를 제공할 수 있는 기반
기술

 e-비즈니스 -> m-비즈니스 -> u-

비즈니스

46

Ubiquitous computing의 특징

Pervasive /

Embedded

Computing

Ubiquitous

Computing

Traditional

Business

Computing

Mobile /

Wearable

Computing

Mobility

Embeddedness

5A: Any time, Any

where, Any device, Any

service, Any network

Computer-

embedded

objects and

devices

47

Characteristics of ubiquitous environments

 In the near future, an enormous number of RFID tags, sensors,

and other heterogeneous small devices will be embedded in the

real world

 Events are provided, or often triggered, based on physical conditions -

> Real-time processing of large amount of data

 Services need to know the real-world status and users situations ->

Context awareness

 Services are provided when a user is not expecting them -> Intrusive or

invisible. Attention focus

 Devices will constitute a global, open, dynamic networking

infrastructure -> The devices need to be coordinated for better

interactions

48

유비쿼터스산업 시장

49

Mobile services

약

책

비디오

음반

Application Service

Provider

약품 성분,

복용법,

부작용 정보
이용

관련 정보의
동영상

정보 이용

비디오에 대한
예고편 감상

음반의 주요
Music Video

감상

RFID

Digital Contents 적용 모델

ANT

P A

MIX

MIX

LPF

LPF

OPA

OPA

DRA

Q_Gain

I_Gain

Tx_Gain

PWR

CLK

LE
LD

Phase

Tx_I

Rx_I

Rx_Q

REF

리더 아날로그 칩

PLL/Syn.

송신부

수신부

주파수합성부

리더 디지털 보드리더 안테나&RF-FE

Data

P.S.

0 +d °

P.S.

90 +d °

6

6

6

6

PSFMIX

MIX PSF
Tx_Q

2

2

D.C.BPF

Tx_P

Tx_M

Rx_P

Rx_M

VDD1

VDD2

VDD3

VDD4

VDD5

GND1

GND3

GND2 Chip Photo Wired Network

50

유비쿼터스홈의예
(출처: ETRI PEC, 2005)

내일 날씨 어때?

RF Reader

웹 기반 URC

서비스 플랫폼

날 씨

교 통

위치 인식

화자인식

명령문, 화자

Navigation(거실)  Speech(날씨)

내일은 비가…

비가 오면1시간후에

깨워줘.
화자인식

명령문, 화자

위치 인식

Navigation(안방)  Speech(깨우기)

일어나세요~~!!

현재 서울까지 소요
시간은?

집이 비면 거실등
꺼줘!

위치인식

위치 인식

51

uIT 기반의 기업 정보화 전망

 새로운 기술은 경쟁에서 우위를 가지기 위해 사용되며 새로운 제품과
서비스에 적용됨

 uIT 기반의 기업 정보화는 현실 세계에서 사실 기반의 실시간 정보를
제공함으로써, 오류를 방지하고, 중요한 정보의 가시화, 정보 수집 및 전달의
실시간화가 가능

 실시간 데이터에 기반한 효과적 의사 결정 및 기업 자원 관리, 가치 사슬 관리,
프로세스 최적화가 가능

 일상생활의 사물, 어플라이언스, 상품, 기업의 생산, 물류, 판매, 고객관리
등의 비즈니스 프로세스를 구성하는 기기나 시스템들이 모두 지능화되고
네트워크로 연결되어 센스와 반응의 실시간화되는 RTE의 구현이 가능

 M2M2 장치들은 사람과 사물 사이에서 상호작용을 하며 부가가치를 창출해
낼 수 있음

 새로운 개념의 “스마트 서비스” 및 새로운 개념의 상거래가 도래

 Ubiquitous connectivity를 통한 고객 서비스의 향상, 새로운 사업 기회의
창출이 가능

52

uIT 기반 기업정보화시스템

구
동

추
적

모니터링

센서 칩

태그 구동체

사람

사물

단말

상품

u-커머스 공간/사물

임베디드 컴퓨팅

Always Active Always Smart

Always AwareAlways Access

센싱

활동
상황인식

환경
상황인식

ID

상황인식
위치

상황인식 u-인증/회계

u-지식포털

u-유지관리

u-현장관리

u-안전관리

u-쇼핑

u-사물쇼핑

u-상황인식마케팅

u-CRM

u-SCM

u-자산추적

u-생산관리
효율적

자산관리
생산적

인력관리

비용 절감
이익 창출

증대

53

Transactions in ubiquitous environment

Data Processing Internet Real Time

•Weeks

•Batch

•Megabytes

•Punch Cards

•Few People

•Days

•Request/Reply

•Terabytes

•Human

•Many People

•Minutes

•Automated

•Exabytes

•Event Driven

•Beyond People

(Still Happening)

54

RFID Middleware Challenges
(Source: Oracle, 2004)

Capture
Capture appropriate, filtered

information from a variety of

different readers and sensors.

Manage
Manage the explosion of data and

events in a scalable, reliable and

secure single source of truth.

Analyze
Analyze the data and events in real-time to provide

business intelligence and business activity

monitoring for continuous process improvement.

Acc

ess
Access the

information

anytime,

anywhere by

all the

appropriate

people,

applications

and business

processes.
Respond
Respond to events and information

automatically and allow for people to

manage by exception.

55

Event Sources Application Server

Applications

Business

Intelligence

Business Process

Monitoring

PortalAlerts

Database Application Server

Sensors, RFID,

System Events
Data Collection,

Cleansing, Dispatch

Scalable Data Archive,

Aggregation, Dissemination

Security, Integration,

Development Tools

Oracle’s sensor-based services

MANAGE

Grid Infrastructure
Event Storage and Distribution

ANALYZE

Business Processes
SBS-Enabled Applications

Agents

ACCESS

Information Access/

Visibility
Collaborative Workplace

Responsive Enterprise

CAPTURE

RESPOND

56

유비쿼터스서비스 (u-Services)

 Ubiquitous computing

 사물들에 칩, 센서, RFID 태그 등을 심거나 부착함으로써 컴퓨팅
능력과 통신 능력을 부여함

 Ubiquitous networks

 유비쿼터스 컴퓨팅 능력을 갖는 개체들을 브로드밴드 네트워크,

위성, 모바일 네트워크, 무선랜 등을 통해 연결함

 Ubiquitous services

 유비쿼터스 컴퓨팅과 유비쿼터스 네트워크 기술을 기반으로
서비스와 콘텐츠가 이음새 없이 연계되고 통합됨으로써 새로운
가치를 창출

 네트워크에 연결된 모든 가치있는 것으로부터 서비스 창출

57

유비쿼터스웹 서비스 (UWS)

 어떠한 단말 / 네트워크 환경에서도 다양한

응용 서비스를 연계 / 융합 / 이용할 수 있도록

하는 웹 서비스 기술

 웹 서비스 기술은 비즈니스 분야 뿐만 아니라

점차 광대역통합망(BcN)의 개방형 API 기반

유무선 통합 응용, 방송 / 통신 융합, 정보 가전,

텔레매틱스, 지능형 로봇, 임베디드 환경 등

다양한 분야에서 핵심 기술로 활용되어가고

있음

 Ubiquitous availability of services: Any time, Any

where, Any devices, Any networks, Any services

58

Service
Requestor

publish

discovery,

interaction

Service
Provider

Discovery
Services

Interoperability

Device embedding

Performance

Service provision

Service consumption

59

u-Services: a big picture
(출처: ETRI PEC, 2005)

CT

CT

CT

CT

CT

CT

CT

CT

CT

Service Service

Network Network Network

Service Service

Core Component

Technology

& Other Technology

Productive

Service Networks

Deployment

Convergence

Technology with

Web Services

Service

Composition &

Differentiate

Internet Services

(New Business

Model)

60

NETCONF

 WG in IETF

 Chartered to produce a

protocol suitable for network

configuration

 draft-ietf-netconf-soap-03 (Sep,

2004): Using the Network

Configuration Protocol

(NETCONF) Over the Simple

Object Access Protocol (SOAP)

 implementing NETCONF

protocol as a SOAP-based

web service

61

OMA’s Mobile Web Services WG

 To provide consistent, standard,

federated access to service

enablers that exist within or

connected to the wireless network

and devices

 2004년 모바일 서비스 호환을
위한 OWSER (OMA Web Service

Enabler)를 발표

 현재 general analysis, network

identity의 WS 응용 등에 관해서
작업 중

62

UPnP 2.0 (http://www.upnp.org/)

63

Parlay group: Parlay X web services

 통신망 사업자나 서비스
사업자들이 유/무선망 등의
네트워크 하부구조에
독립적으로 통신서비스를
정의하고, 구현하기 위한 웹
서비스 기반 표준

 Intended to stimulate the

development of next generation

network applications by IT

developers who are not

necessarily experts in

telecommunications

64

Microsoft’s invisible computing

 A software platform for low cost

embedded systems that

communicate with each other and

with big computers

 XML Web services

 Flexible development for

multiple platforms

 Interoperation with small and big

computers

 Security and privacy

 Real-Time & Energy aware

 Low parts cost (targeted for <=

$5 computer)

에어컨이 창문에게
물었다.

“지금 열려있니?”

65

 웹서비스 레지스트리가 없이 필요한 서비스 검색

 MS에서 WS-Discovery 스펙 개발 중

 WS-Discovery

 Hello, Bye, Probe, Probe Match(PM), Resolve, Resolve Match(RM) 총
6개의 메시지 형태 사용

Service Client

DP

ProbeMatch

Hello/Bye

Hello/Bye

Probe/ProbeMatch

Probe

WS Dynamic Discovery

66

Device Profile for Web Services

 defines a minimal set of implementation constraints to enable secure

Web service messaging, discovery, description, and eventing on

resource-constrained endpoints

67

Example

68

Message Flow, A.K.A., Talk Agenda

Probe Match

Metadata

Get Metadata

Start Print Job

Subscribe

Started

Subscribed

Print Document

Printing

Job Status

Trigger

Pull

Metadata

Get Metadata

Probe

Client Device Hosted

Service

Covered in Part 2

69

XML Processor

XML Content Processor (Tarari)

Content Processing Platform

Storage for high

volume data

Parallel

Processing

engines

Very high

Speed

memory

Dynamic

programmability
Dynamic

Reconfiguration control

70

Web Services for Ubiquitous Devices

 is called “iPC”

 Developed by Samsung and Thinkware

 Goal

 How can a device be connected to the internet in a simple, fast and

standard way ?

 All in the box

71

Web Services on a Single Chip

 Internet Connectivity

 „iPC‟ Applications

72

ZigBee

 Developers of large sensor networks face investing

dozens of man-years into developing common

foundational software services that are unrelated to the

application they seek to build

 Developers can tap Web service "brokers" to provide

the network discovery, extraction, commissioning,

configuration, management, security, event/rule logic,

and data management functions for large, diverse

ZigBee systems

 Tendril Networks has developed service brokers that

work with Ember's ZigBee-based wireless nodes

73

RFID middleware

EPC Network

미들웨어(Savant)

Microsoft 미들웨어
(2005년 출시 예정)

ETRI 자동식별 미들웨어

태그 데이터 식별 코드(EPC) 식별 코드, 이력 정보 식별 코드, 이력 정보

지원 기기 수동형 RFID 리더 수동/능동형 RFID 리더
바코드 리더

수동/능동형 RFID 리더
바코드 리더

표준 준수  EPCglobal 표준  EPC, 웹서비스 표준  EPC, ISO, 웹서비스 표준

데이타
모니터링,관
리

데이타 필터링, 수집,

요약
테스크 관리(스케줄링)

데이타 필터링, 수집,

요약
테스크 관리(스케줄링)

데이타 필터링, 수집, 요약
테스크 관리(스케줄링)

Legacy

시스템 통합

웹서비스 웹서비스
프로세스 자동화(BPEL)

웹서비스(내부시스템 통합)

 ebXML(외부시스템 통합)

검색 서비스  EPC 기반 ONS 연동
 IPV4 연동

UDDI, Active Directory  MDS 연동(멀티 코드 지원)

 IPV4/IPV6 연동

전자태그
객체 정보
관리

 EPC IS

분산된 정적, 이력
데이타

 MS SQL Server

분산된 정적, 이력
데이타

 EPC IS 확장(센서 데이터
관리)

분산된 정적, 이력, 센서
데이타

개발 환경  JAVA 플랫폼  MS 윈도우 플랫폼  JAVA 플랫폼, Open Source

74

Grid computing: The server side

 Ubicomp-RG (at GGF):

focus on using Grid technologies both as a means to interconnect existing and emerging

ubiquitous computing environments and as a core underlying technology for developing

and deploying new ubiquitous computing systems

 OGSI and WS-RF

75

W3C’s Ubiquitous Web WG

 seeks to broaden the capabilities of browsers to enable new kinds of web applications,

particularly those involving coordination with other devices

 Some examples include connecting a camera phone to a nearby printer, using a cell phone

to give a business presentation with a wireless projector, and viewing your mailbox while

listening to your messages

 These applications involve identifying resources and managing them within the context of

an application session

 The resources can be remote as in a network printer and projector, or local, as in the

estimated battery life, network signal strength, and audio volume level

 Ubiquitous Web will provide a framework for exposing device coordination capabilities to

Web applications

76

Requirements & enabling techs for ubiquitous web

 Requirements

 Dynamically adapt to user
preferences, device capabilities
and environmental conditions

 Extend device capabilities
through access to resources
available via the network

 Respond to events over the
network from servers and other
devices

 Enable applications involving
multiple devices

 Use events to coordinate voice
and data to augment human to
human conversations

 Manage resources in terms of
temporary and persistent
sessions

 Enabling technologies

 IDL for describing interfaces for

distributed systems and as used

for the W3C DOM

 URIs for naming resources,

sessions and interfaces

 Semantic Web for ontologies

describing device capabilities

 Web Services for passing

commands and events

 Existing device coordination

mechanisms

77

기타 관련 사례

 Nokia

 Nokia has vowed to build support for web services into all its smart

phones by the end of the year

 By 2006 all Nokia smartphones will be web services enabled

 While Nokia is not planning to offer web services directly, it will

support them and offer tools to help developers design software that

could be used on smart phone

 Cisco

 Cisco will launch products for handling XML traffic in June 2005 that

will bring advanced XML security and management capabilities to large

enterprise networks.

 Cisco is using Tarari's programmable chip to perform low-level tasks

such as checking XML signatures and verifying XML schemas

http://www.cisco.com/en/US/hmpgs/index.html
http://www.nokia.com/index

78

국내 동향

79

국내 동향

80

The future of business services
Source: Fano and Gershman, CACM, 2002

 The location of your customer becomes the location of your business

 A physical point of presence wherever your products and services are used will become a

competitive necessity

 Mobile devices and appliances become the eyes and ears of remote service providers

 Services we associate with locations become attached to people

 Services will use the customer‟s location resources to provide the best possible service

 Service providers must pay continuous attention to their customers

 Service providers will have to be very selective and precise in their interactions with their

customers

 If we value privacy, someone will sell it to us

 Customers will not necessarily be human

81

General issues in u-Services

 Enhanced middleware

 scalable processing of environmental data, disconnected operation,

efficient resource management and real-time autonomous reaction

 Understanding of the real world

 RFID mitigates the object recognition, but how to understand it?

 Need for ontology

 Understanding the human

 human attention, intention, behavior, preference

 And finally, understanding the services!

 Again, what are services?

82

Challenges in ubiquitous web services

 Interoperability

 Embedding

 Performance

 Service provision

 Service consumption

83

Issues in ubiquitous web services

 Dynamic discovery

 Can the directory based discovery mechanism such as UDDI still work?

 Do we need something like PnP or P2P mechanisms?

 Dynamic binding, composition, and coordination

 How to address the problem of service interface changes?

 How to dynamically compose the ubiquitous services on-the-fly?

 How to efficiently (in a distributed manner) coordinate / broker UWSs?

 What are the effective means to support the collaboration between

UWSs at runtime?

84

Issues in ubiquitous web services (cont.)

 Location-based services

 Support of MIPs

 Fusion of multi-dimensional information

 Context awareness

 Need for ontology on the real-world

 Interoperable semantics between UWSs

 Performance

 Emergence of real-time WS

 What to embed into small devices?

 And how? Web services on chip? (Parser + SOAP processor + Security)

85

Issues in ubiquitous web services (cont.)

 Interoperation with old and new systems

 How to interoperate with the existing (i.e., traditional) web services and

other middleware systems?

 How can we make them work on IPv6?

 Interoperation with portals and portlets

 Ubiquitous web services middleware

 Real-time, event-driven, stream-like messages

 Dealing with heterogeneity between the middleware

 Domain specialization

 USN, telematics, home networking, …

 Leadership in standardization

 Business models and killer services

86

Pros and cons of UWS

 Pros

 The interoperability problem is the crux of ubiquitous computing

 Cons

 Resource constraints: computing power, battery, bandwidth, …

 Security

 Observations

 Web services are getting faster

 Hardware performance and network bandwidth are getting increasing

and cheaper

 Better security mechanisms are emerging

 Remember: “Web services are meant to be consumed by

PROGRAMS”

87

In conclusion

 Internet이 e-Business의 인프라 이었던 것처럼, e-Business는 u-Service를 위한
필수적인 인프라 역할을 할 것으로 판단됨

 다양한 디바이스와 네트워크, 수 많은 종류의 기능들에 의해 야기되는
복잡성을 감출 수 있도록 서비스가 제공되어야 하며, 이러한 서비스들은
표준방식을 통해 연계되고 융합될 수 있어야 함

 각종 국제 표준화 단체 및 유수 기업들은 u-Service에 대한 준비를 이미
시작하였으며, 그 인프라로 Web services를 채택하고 있음

 국내에서는 모바일 웹 서비스, 웹 서비스 chip 및 device, UWS 모니터링, 제어,

이벤팅 기술, UWS 미들웨어 등에 대한 관련 기술 개발 및 국제 표준 주도가
시급

 아울러, 비즈니스 가치가 있는 주요 서비스 모델의 발굴이 필요

88

Yesterday's Computers Filled Rooms …

89

… So Will Tomorrow’s

“During the next five to ten years, ubiquitous computing will

come of age and the challenge of developing ubiquitous

services will shift from demonstrating the basic concept to

integrating it into the existing computing infrastructure and

building widely innovative mass-scale applications that

will continue the computing evolution” (Lyytinen and Yoo,

CACM, 2002)

90

참고: 웹 서비스 비전과 추진전략
(출처: 정통부, 2004)

유비쿼터스 서비스 코리아 건설

목

표

2010년 : 유비쿼터스 서비스 확산

 통합 ·연계시장 : 80% 이상 점유

 세계 웹 서비스 콘텐츠 시장 : 10% 이상 점유

 차세대 웹 서비스 기술 및 표준을 선도

2007년 : 웹 서비스 기반 확립

 통합 ·연계시장 : 30% 이상 점유

 웹 서비스 기술 및 표준화 분야에서 국제경쟁력 확보

시범사업을 추진하여

웹 서비스의

초기시장을 창출

신뢰성과 안전성이

보장된 웹 서비스

유통환경 조성

향후 국제경쟁력을

가질 수 있는

분야를 집중 육성

민 ·관 ·학 ·연간 협력을

통해 웹 서비스

확산 ·발전

91

Web services resources

 Microsoft

 Got dot net: http://gotdotnet.com/

 Developer center: http://msdn.microsoft.com/webservices/

 IBM

 AlphaWorks: http://www.alphaworks.ibm.com/

 Developerworks: http://www-

130.ibm.com/developerworks/webservices/

 Sun: http://java.sun.com/webservices/

 Apache: http://ws.apache.org/

 Coverpages: http://xml.coverpages.org/

 WebServices.Org:

http://www.mywebservices.org/index.php/article/archive/61

 WebServices.XML.Com: http://webservices.xml.com/

http://gotdotnet.com/
http://msdn.microsoft.com/webservices/
http://www.alphaworks.ibm.com/
http://www-130.ibm.com/developerworks/webservices/
http://www-130.ibm.com/developerworks/webservices/
http://www-130.ibm.com/developerworks/webservices/
http://java.sun.com/webservices/
http://ws.apache.org/
http://xml.coverpages.org/
http://www.mywebservices.org/index.php/article/archive/61
http://webservices.xml.com/

9/20/2007

Principles of Service-Oriented

Computing

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

406.622 Industrial Information Technology

mailto:jonghun@snu.ac.kr

93

Benefits of SOC

 SOC enables new kinds of flexible business applications of open

systems that simply would not be possible otherwise

 SOC improves the productivity of programming and administering

applications in open systems

94

Use cases

 Intraenterprise interoperation

 XML as a data format of choice

 SOC provides the tools to model the information and relate the models,

construct processes over the systems, assert and guarantee transactional

properties, add in flexible decision support, and relate the functioning of

the component software systems to the organizations that they represent

 Interenterprise interoperation

 adhoc -> rigid EDI -> XML as a data format of choice

 SOC provides the same benefits as for intraenterprise interoperation. In

addition, it provides the ability for the interacting parties to choreograph

their behaviors so that each may apply its local policies autonomously

and yet achieve effective and coherent cross-enterprise processes

95

Use cases (cont.)

 Application configuration

 Introduction of a new enterprise IT system requires that the right

interface be exposed by the new system and by the existing systems

 Messaging and semantics problem

 SOC enables the customization of new applications by providing a web

service interface that eliminates messaging problems and by providing a

semantic basis to customize the functioning of the application

 Dynamic selection

 business partner can be chosen on the fly

 SOC enables dynamic selection of business partners based on QoS

criteria that each party can customize for itself

96

Use cases (cont.)

 Software fault tolerance

 SOC provides support for dynamic selection of partners as well as abstractions
through which the state of a business transaction can be captured and flexibly
manipulated; in this way, dynamic selection is exploited to yield application-
level fault tolerance

 Grid

 Several resources are made available over a network, and are combined into
large applications on demand

 SOC enables the efficient usage of Grid resources

 Utility computing

 Computing resources are modeled as a utility analogous to electric power or
telecommunications

 Enterprise would concentrate on their core business and outsource their
computing infrastructure to a specialist company (e.g., data centers)

 SOC facilitates utility computing, especially where redundant services can be
used to achieve fault tolerance

97

Use cases (cont.)

 Software development

 SOC provides a semantically rich and flexible computational model that

simplifies software development

98

Requirements of SOAs

 Loose coupling

 High-level contractual relationships through which the interactions among the
components are specified

 Implementation neutrality

 Not to be specific to a set of programming languages

 Flexible configurability

 The system is configured late and flexibly

 The configuration can change dynamically

 Long lifetime

 The components must exist long enough to be able to detect any relevant exceptions, to
take corrective action, and to respond to the corrective actions taken by others

 Granularity

 should be understood at a coarse granularity to reduce dependencies among the
participants and to reduce communications to a few messages of greater significance

 Teams

 Instead of a participant commanding its partners, computation in open systems is more
a matter of business partners working as a team

99

RPC vs. document orientation

 RPC-centric view

 treats services as offering a set of methods to be invoked remotely

 more natural for the use case of making independently developed

applications interoperate

 Document-centric view

 treats services as exchanging documents with one another

 coheres better with the use cases of applying service in open

environments

100

Major benefits of SOC

 Services provide higher-level abstractions for organizing

applications in large-scale, open environments

 The abstractions are standardized

 Standards make it possible to develop general-purpose tools to

manage the entire system lifecycle, including design, development,

debugging, monitoring, and so on

 The standards feed other standards

101

Composing services

 Composition

 Any form of putting services together to achieve some desired

functionality

 Recursive

 Composition leads to the creation of new services from old ones

and can potentially add much value beyond merely a nicer interface

to a single preexisting service

 The fruitful, challenging applications require services to be

combined in ways that yield more powerful and novel uses

 The problem of creating workflows over the existing services

 Web sites can be thought of as not only offering content, but also

providing services

102

Composition examples

 A travel agency web site could combine the services of Southwest
Airlines, Dollar Rent-A-Car, and Sheraton to construct custom travel
packages

 The airline‟s flight schedule might enable a fuel supplier to
anticipate fuel purchases by the airline and to alert its refineries to
adjust their production rates

 Yahoo provides a news service and Amazon provides a book
selection service

 Find the latest news headlines and search for books that match those
headlines

 Take the news from one service, filter it through a service that selects
news based on a given user‟s interests, and pass the selected news items
through a transcoding service to create a personalized web page that a
user could review through a handheld device

103

Simple B2C Web Service Example

 Suppose you want to sell cameras over the Web, debit a credit card, and guarantee next-day
delivery

 Your application must

 update sales database

 debit the credit card

 send an order to the shipping department

 receive an OK from the shipping department for next-day delivery

 update an inventory database

 Problems: Some steps complete but not all

 What if the order is shipped, but the debit fails?

 What if the debit succeeds, but the order was never entered or shipped?

Internet
SellCamera

Web Service

Shipping

Database

Sales

Database

Inventory

Database

User

104

Database Approach

 A traditional database approach works only for a closed environment:

 Transaction processing (TP) monitors (such as IBM‟s CICS,

Transarc‟s Encina, BEA System‟s Tuxedo) can ensure that all or

none of the steps are completed, and that systems eventually reach a

consistent state

 But what if the user‟s modem is disconnected right after he clicks on

OK? Did the order succeed? What if the line went dead before the

acknowledgement arrives? Will the user order again?

 The TP monitor cannot get the user into a consistent state!

105

Approach for Open Environment

 Server application could send email about credit problems, or detect

duplicate transactions

 Downloaded applet could synchronize with server after broken

connection was restored, and recover transaction; applet could

communicate using http, or directly with server objects via

CORBA/IIOP or RMI

 If there are too many orders to process synchronously, they could be

put in a message queue, managed by a Message Oriented

Middleware server (which guarantees message delivery or failure

notification), and customers would be notified by email when the

transaction is complete

 The server behaves like an agent!

106

Other challenges for composition

 Security will be more difficult

 Incompatibilities in vocabularies, semantics, and pragmatics among

the service providers, service brokers, and service requesters

 As services are composed dynamically, performance problems might

arise that were not anticipated

 Dynamic service composition will make it difficult to guarantee the

QoS that applications require

107

Sprit of the approach

 To publish effectively, we must be able to specify services with precision and

with greater structure

 From the perspective of the registry, it must be able to certify the given providers

so that it can endorse the providers to the users of the registry

 Requesters of services should be able to find a registry that they can trust

 The requestor and the provider must develop a finer-grained sharing of

representations

 must be able to participate in conversations to conduct long-lived, flexible

transactions

 how a SLA can be established and monitored

 The key to the next-generation web are cooperative services, systemic trust, and

understanding based on semantics, coupled with a declarative agent-based

infrastructure

108

SOC Overview

 Revolutionary camp

 The web services will facilitate the development of infrastructures that support

programmatic application integration, dynamic B2B marketplaces, and the

seamless integration of IT infrastructures from different corporations

 Evolutionary camp

 Web services are just an additional layer on top of existing middleware and

EAI platforms that provides a set of simple, lowest common denominator

interfaces for interactions across the Internet

 The truth

 Currently web services are mostly used today for conventional EAI

 In the future, Web services may lead to a new computing paradigms and to

dynamic B2B integrations

 But, it remains to be seen whether this “revolutionary” power can be unleashed

109

Web services technology: Current status

 Most of the proposals, except SOAP and WSDL, are still at very
early stages in the standardization process

 UDDI has changed its goals in a significant manner from version to
version

 UBR -> Private repositories

 Currently most of the systems that provide support for SOAP and
WSDL either ignore UDDI or provide only minimal support

 Very strong client/server flavor -> P2P interactions are likely to be
the accepted interoperability paradigm in the future

 A service is offered by a service provider and invoked by a service
requester

 Mainly due to the way SOAP works and is being used today

110

Web services technology: Current status

 SOAP is mainly being used for synchronous interactions -> Not well

suited for B2B

 Asynchronous interaction is not the way the vast majority of

middleware platforms work today

 Adaptation of web services mainly involves transforming the

procedural interfaces into message interfaces

 Need for much more infrastructure to be properly supported (e.g.,

security, transactions, coordination)

111

EAI as a natural fit for today’s web services

 SOAP and WSDL are so close to conventional middleware that they

seem to have been designed with mainly that purpose in mind

 Web services are indeed a natural solution to the standardization

problems that have plagued EAI in the past

 One of the biggest limitations in EAI is the manual and ad hoc

implementation of the wrappers that allow different platforms and

applications to interact with the EAI system

 Web services enable a company to open its IT infrastructure to

external partners

 There‟s a clear lack of support for the more advanced aspects of web

services involved in realistic B2B settings (e.g., conversations,

enforcement of business protocols, delivery guarantees)

112

The holy grail of web services

 Dynamic interaction in a completely open community

 Automated clients browse UDDI registries, find adequate services and

service providers, automatically discover how to interact with the

service, and finally invoke the service, all programmatically without

manual intervention

 Automated interactions among applications that support different

interfaces and protocols previously unknown to the clients

 The layers of extensions and enhancements of web services are being

designed and it will take a quite a while before they are sufficiently

established

 Full dynamism and complete automation will require a real

revolution in technology

113

Complexity of B2B interactions

 Two business partners that decide to engage in a business transaction with each other
according to a well-known, thoroughly designed, and well documented set of specifications

 No exchange between the partners will be possible until they agree on the semantics of
the documents involved

 Imprecise specifications: A “price” field within an XML document

 Different currency units: Assume a given currency?

 How should the currency unit be specified

 Conventions on the decimal symbol

 Inclusive or exclusive of sales tax? VATs?

 Taxation rules?

 All practical situations have their own peculiarities

 Despite the adoption of a specific standard, meetings and discussion among the
interested parties are required before two companies can operate, to agree not only on
the exact meaning of each data item, but also on how to exchange additional
information for which there is no room in the standard specification

 Doing business with previously unknown partners is something that many companies, both
clients and service providers, tend to avoid for many reasons: Trust, Quality, Legal
agreements

114

Bypassing complexity in closed communities

 Many of the limitations of the current technology can be overcome

“by hand”

 Most B2B implementations with web services will be of this kind, at

least in the short and medium terms

 2 approaches

 Joint development teams that cover issues such as business protocols,

semantics of the operations and their parameters, as well as contracts

and legal issues

 Existence of a dominant entity that simply prescribes what to do to

invoke its Web services to anybody wanting to do business with it

115

Toward open communities

 Introducing an intermediary

 The potential gains by acting as an intermediary in web services-based
exchanges are very large!

 Trust and QoS problems could be solved by introducing rating services

 Can also verify and certify compliances to the specifications involved
in the exchange

 Introducing market markers (aka hubs)

 Create and control an e-marketplace, where customers and service
providers meet to conduct business online

 May define rules, constraints, legal bindings and offer a “protected”
environment that makes e-business more reliable

 Can mediate among possible differences in the implementation and
deployment of the standard, and provide robustness to changes

116

Semantic web

 Aims at fully automating all the stages of the web services lifecycle

 Standardize the representation and handling of the semantic metadata

used to describe web services and all aspects of using them (e.g.,

searching for services that are semantically equivalent to each other)

 Specifications

 RDF, RDFS

 DAML+OIL

 OWL

 DAML-S

117

RDF, RDFS

 RDF: Resource Description Framework

 Designed for the representation and processing of metadata about

resources on the web

 Defines a model for describing relationships among resources in terms

of uniquely identified properties and values

 RDFS: RDF Schema

 Extends RDF by defining a class and property system similar to an

object-oriented system

 It is possible to describe complex properties of resources (such as

web services), and complex relations between these resources, using

a notation that resembles that used in an OOS

118

DAML+OIL

 Ontology

 A formal definition of a common set of terms used to describe and represent a domain
of knowledge

 Makes knowledge reusable by encoding formal definitions of basic concepts and the
relationships among them

 Usually expressed in a logic-based language so as to support automated reasoning upon
them

 Provide a means for representing the semantics of documents and for structuring and
defining the meaning of standardized metadata terms

 DAML: DARPA Agent Markup Language

 Extends XML, RDF, and RDFS to enable the creation and instantiation of ontologies
that describe web services

 OIL: Ontology Inference Layer

 A proposal for a web-based representation and an inference layer for ontologies

 DAML+OIL

 A semantic markup language for web resources that extends RDF and RDFS with
richer modeling primitives

119

OWL

 OWL: Ontology Web Language

 A revision of the DAML+OIL web ontology language currently

being designed by W3C Web Ontology Working Group as a

successor to DAML+OIL

 To facilitate greater machine readability of web content than XML,

RDF, and RDFS by providing an additional vocabulary for term

descriptions

 Allows untyped literals and provide a better data typecasting solution

that is compatible with XML Schema and RDFS

 Provides 3 increasingly expressive sublanguages

 OWL-Lite, OWL-DL (Description Logic), OWL-Full

120

DAML-S

 A DAML+OIL language for web services

 A collaborative effort by BBN technologies, CMU, Nokia, Stanford,

SRI International

 To facilitate the description of the semantics of services, their

interfaces, and their behavior

 Provides a means to create descriptions of web services that can be

interpreted programmatically

 Would enable applications such as search engines to utilize the

WSDL descriptions automatically

121

Enterprise application management

 The task of monitoring and controlling applications in an enterprise so that they

can be made resilient to failures, configurable to changing needs of the business,

accountable for billing and auditing, capable of performing under varying

workloads, and secure to intended or unintended attacks

 Efforts for defining standards for interfaces between the management system and

managed applications

 Lifecycle interfaces for configuration management in CORBA

 Java Management eXtensions (JMX) from Sun

 Management Information Bases (MIBs) in SNMP

 Common Information Model (CIM) from DMTF (Desktop Management Task

Force)

 Application Response Measurement (ARM)

 EAMS

 HP OpenView, CA Unicenter, Tivoli

122

Web services management

 Management of applications within an enterprise

 Management of relationships with other web services across

enterprises

 Web services simplify certain aspects of application management

through their standardized abstractions

 In case of web services, additional tier is usually implemented using

SOAP routers, conversation controllers, horizontal protocol handlers,

and composition engines

123

Web services management architecture

 Operation invocations on a web service happen through a SOAP router

 SOAP management can monitor and control the performance of a web service
(e.g., response time thresholds)

 Conversation controller dispatches incoming messages to the right conversation
instance

 Conversation management can analyze conversation bottlenecks, manage their
performance, and perform lifecycle operations, such as suspend and resume, on
ongoing conversations

 Composition engine implements the business logic of web services operations by
invoking them in a particular order

 Composition management can correlate the response times of a web service‟s
operations with the response times of its component web services

 Also, it can analyze the composition model for bottlenecks, compare two
alternative service providers for executing a step in the composition, or
automatically select one of the service providers depending on historical data
analysis

124

Business management

 Web services help bridge the gap between business management and

application management

 Business management involves managing business metrics (e.g.,

revenue, # of completed orders) and business objectives (e.g.,

revenue targets, order targets)

 Application management involves managing the data collected from

instrumenting the software and hardware that constitute the

application

 SLM (Service Level Management): provides a gauge of how clients

perceive the performance or availability of an application

 SLM measurements: Operation response times, SLA violations,

comparison between 2 supplier web services...

125

Cross enterprise management

 Need to manage relationships with web services across enterprise

boundaries

 Requires additional web services protocols to be standardized

 Challenges: limited visibility and control over portions of the

application that are not owned by the same enterprise, lack of trust

 When a web service composes other web services, it is not only the

functional but also the non-functional attributes such as performance,

availability, and security that get composed

 Need to support multi-party conversations

126

Support for multi-party conversations

 Measurements or states

 WSDL is not being used to expose state information or measurements to
clients

 States: e.g., anticipated response time, the state of a conversation

 Clients may need to query the attributes before composition and during
execution

 Events

 When two or more web services interact, a problem in one can affect the
other

 Need for decisions on how to isolate problems without propagating its
effects to other components

 It should be possible for one web service to generate events that are
intended for another web service

127

Support for multi-party conversations

 Policies

 A convenient mechanism to change the behavior of a system

 To indicate what a management system may or may not do and must

and must not do (e.g., no more than 5 unsuccessful login attempts are

permitted)

 SLA (Service Level Agreements)

 A mechanism for expressing constraints between web services

 Similar to the CPA in ebXML

 Trust

 May use trusted 3rd party

 May be resolved by manual mechanisms (e.g., auditing)

128

Management through web services

 Use web services as a mechanism for managing infrastructure within
or across enterprises -> Management is becoming an application of
web services!

 OGSI (Open Grid Services Infrastructure) from GGF

 Resources and clusters of resources are being wrapped with web
services interfaces defined in WSDL

 Open Management Interface (OMI) from OASIS, Common
Information Model (CIM) from DMTF

 Based on web services standards or web services-like standards and are
intended for managing infrastructure components such as devices,
systems, applications, and business platforms in an enterprise

 Biz opp: Management outsourcing

 MSP (Management Service Provider)

129

Web services management standards

 Just beginning to emerge

 Enable interoperability between management systems and managed

resources wrapped as web services

 XMLCIM from DMTF

 Enable interoperability between applications, repositories that store the

CIM data model, and management systems that manage applications

using the data model

 An encoding of CIM data models in XML and a way of transporting

that information using HTTP

 Lagged behind the developments in the web services world

130

Web services management standards

 OMI from OASIS

 Emerging standard that relies on SOAP and HTTP to exchange management

information

 Proposes standardized SOAP messages through which management data and

controls can be exchanged between applications and management systems

 OGSI from GGF

 A distributed computing infrastructure that builds on web services standards

and protocols

 Services created using OGSI are known as grid services

 Proposes extensions to attach attributes (called service data) to port types in

WSDL

 (Note) Currently the only way in which the state of a web service can be exposed to

clients through WSDL is by defining a new set of operations. However, # of

attributes that comprise the state of a web service can be potentially very large

131

In summary

 More is needed before web services technology can be used to

support dynamic business interactions among casual business

partners

 Web services are already being used, and the applicability of this

technology is likely to grow as extensions are added and as

standardization efforts in areas such as reliability, security, and

management finally converge and become generally accepted

 Once completed, this process will generate a robust framework for

taking the Internet to the next level, from a web of unstructured

information to a web of services through which customers and

providers can conduct business in a seamless manner

9/20/2007

Computing with Services

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

406.622 Industrial Information Technology

mailto:jonghun@snu.ac.kr

133

Exchanging information over the Internet

 Internet: a global system of computer networks

 ARPANET

 Stanford Research Institute, UCLA, UCSB, Univ. of Utah in 1969

 TCP, IP

 Before the web

 Telnet, SMTP (& MIME), FTP, Archie, Gopher

134

Web technologies for remote clients

 Motivation: ATM

 B2C: the business allows consumers to access their information

services directly

 Web‟s contribution: provides a universal client

client

client

server
(resource
manager)

middleware
w
id

e
 a

re
a
 n

e
tw

or
k
 (
I
nt

e
rn

e
t) HTTP

client
HTTP
server

135

The web

 HTTP, HTML, Web servers, Web browsers are an evolution of early
technologies

 HTTP

 A generic, stateless protocol that governs the transfer of files across a
network

 A client/server model using TCP/IP

 GET, POST, PUT, DELETE, OPTIONS

 Originally developed at CERN

 HTML

 defines a standard set of special textual indicators (markups) that
specify how a Web page‟s words and images should be displayed by
the web browser

 URI, URL

 W3C

136

Today’s web

 Designed for people to get information

 HTML describes how things appear

 HTTP is stateless

 Sources are independent and heterogeneous

 Processing is asynchronous client-server

 No support for integrating information

 No support for meaning and understanding

 e.g., screen-scraping program that extracts the price of a book from a

search results page on amazon.com

 ...

137

Pragmatic web

 Automation: Human -> Machine

 Richer markup: HTML -> XML -> ?

 Richer activities: Passive -> Active; Data -> Services -> Processes

 Greater interaction: Client-Server -> P2P -> Cooperative

 Accommodating context: Syntax -> Semantics -> Mutual Understanding -> Pragmatics and

Cognition

Syntax, Language, and Vocabulary
- FIPA ACL

Semantics and Understanding
- Ontologies, OWL

Pragmatics (getting work done)
- Workflows, BPEL4WS

Distributed Cognition
- Decisions and Plans

Current Web Services:
focus on individual and small group

Future Web Services:
focus on organization and society

138

Precursors

Mainframe

Terminal3270

Terminal

Terminal

Terminal

Terminal

TerminalTerminal

Terminal

Terminal

Terminal

Terminal

Centralized

E-Mail

Server
Web

Server
Database

Server

PC

Client

PC

Client PC

Client

Workstation

Client

Master-Slave

Client-Server

E-Mail

System
Web

System
Database

System

Application

Application
Application

Application

P2P

E-Mail

System
Web

System

Database

System

Application

ApplicationApplication

Application
Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Cooperative

139

Open Environments: Characteristics

 “Open”: implies that the components involved are autonomous and

heterogeneous, and system configurations can change dynamically

 Cross enterprise boundaries

 Comprise autonomous resources that

 Involve loosely structured addition and removal

 Range from weak to subtle consistency requirements

 Involve updates only under local control

 Frequently involve nonstandard data

 Have intricate interdependencies

140

Autonomy

 The components in an environment function solely under their own

control -> Independence of business partners (users)

 Political reasons

 Ownership of resources

 Control, especially of access privileges

 Payments

 Technical reasons

 Opacity of systems with respect to key features, e.g., precommit

141

Heterogeneity

 The various components of a given system are different in their

design and construction -> Independence of component designers

and system architects

 Political reasons

 Ownership of resources

 Technical reasons

 Conceptual problems in integration

 Fragility of integration

 Difficulty to guarantee behavior of integrated systems

142

Dynamism

 Autonomy -> Participants can behave arbitrarily and may join or

leave an open environment at whim

 Needed because the parties change

 Architecture and implementation

 Behavior

 Interactions

 Make configurations dynamic to improve service quality and

maintain flexibility

143

Locality

 Global information (data, schemas, constraints) causes

 Inconsistencies

 Anomalies

 Difficulties in maintenance

 Global information is essential for coherence

 Locations of services or agents

 Applicable business rules

 Relaxation of constraints works often

 Obtain other global knowledge only when needed

 Correct rather than prevent violations of constraints: often feasible

 When, where, and how of corrections must be specified, but it is easier

to make it local

144

Definitions of web service

 "… a piece of business logic accessible via the Internet using open standards…“ (Microsoft)

 Encapsulated, loosely coupled, contracted software functions, offered via standard protocols

over the web (DestiCorp)

 Loosely coupled software components that interact with one another dynamically via

standard Internet technologies (Gartner)

 Self-contained, modular business applications that have open, Internet-oriented, standards-

based interfaces (UDDI consortium)

 A software application identified by a URI, whose interfaces and bindings are capable of

being defined, described, and discovered as XML artifacts and supports direct interactions

with other software applications using XML-based messages exchanged via Internet-based

protocols (W3C)

 Our working definition: A WS is functionality that can be engaged over the Web

145

And still more: the recent definition from W3C

 Source: Web Services Glossary, Feb. 2004

(http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/)

 “A Web service is a software system designed to support

interoperable machine-to-machine interaction over a network. It

has an interface described in a machine-processable format

(specifically WSDL).

Other systems interact with the Web service in a manner

prescribed by its description using SOAP-messages, typically

conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards.”

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

146

Motivating the need for Web services: B2Bi

web
server

internal
infrastructure

suppliercustomer

warehouse

web
server

internal
infrastructure

internal
infrastructure

internal procurement
requests

B2B interactions
occur by
accessing Web
pages, filling Web
forms, or via
email.

147

Limitations of conventional middleware for “global

workflow”

 No obvious place

where to put the

middleware

 Lack of trust

 Autonomy

 Confidentiality

internal
infrastructure

suppliercustomer

warehouse

internal
infrastructure

internal
infrastructure

internal procurement
requests

message broker

WfMS adapter

WfMS a “global” workflow is executed
here

the combination of message
broker and adapters enables
interoperability

third party

customer’s
adapters

warehouse’s
adapters

supplier’s
adapters

148

An alternative approach: P2P

internal infrastructure

supplier

warehouse

middleware for
supplier-customer

interaction

middleware for
supplier-warehouse

interaction

middleware for
supplier-XYZ
interaction

m
id

d
le
w
a
re

 f
or

 i
nt

e
gr

a
ti
ng

th

e
 m

id
d
le
w
a
re

customer

another party (XYZ)

yet another party
(ABC)

middleware for
supplier-ABC
interaction

supplier’s
adapters

supplier’s
adapters

supplier’s
adapters

149

SOA approach

internal
infrastructure

supplier

customer

warehouse

internal
infrastructure

internal
infrastructure

internal procurement
requests

internal functionality
made available as a
service

Web
service

Web
service

Web
service

interactions based on
protocols redesigned for
peer to peer and B2B
settings

languages and protocols
standardized, eliminating need
for many different middleware
infrastructures (need only the
Web services middleware)

150

Historical View of Services over the Web

Generation Scope Technology Example

First All Browser Any HTML page

Second Programmatic Screen scraper Systematically

generated HTML

content

Third Standardized Web services Formally

described service

Fourth Semantic Semantic Web

services

Semantically

described service

151

The Evolving Web
(B. Joy, former chief scientist of Sun, 2000)

 Near Web: conventional mouse-keyboard-monitor interaction with a

personal computer, typically for purposes such as surfing the Web

 Far Web: interaction with a computer from across a room as with a

TV remote control, typically for entertainment, such as listening to

music or viewing a movie

 Here Web: interaction with a mobile device, with narrow

bandwidths for input and output

 Weird Web: interaction through emerging interface technologies,

such as voice and wearable computing

 Two additional webs without user interactions

 B2B web

 Pervasive web: device-to-device interactions

152

Standards for Web Services

BPEL4WS
OWL-S Service

Model

ebXML

CPA

Process and workflow

orchestrations

QoS: Service

descriptions and bindings

Contracts and

agreements

XLANG

WSCL

WSDL
ebXML

CPP

ebXML

BPSS

XML, DTD, and XML Schema

HTTP, FTP, SMTP, SIP, etc.

SOAP
ebXML

messaging

OWL

UDDI
ebXML

Registries

WSCL
WSCI

WS-Coordination

WS-AtomicTransaction and WS-

BusinessActivity

OWL-S Service

Grounding

OWL-S Service

Profile

BTP

BPML

Discovery

Messaging

Transport

QoS: Conversations

QoS: Choreography

QoS: Transactions

Encoding

WS-Policy

WS-Security

WS-Reliable

Messaging

PSL

RDF

153

Process specifications in the web services stack

BPEL4WS
OWL-S Service

Model

ebXML

CPA

Process and workflow

orchestrations

QoS: Service

descriptions and bindings

Contracts and

agreements

XLANG

WSCL

WSDL
ebXML

CPP

ebXML

BPSS

XML, DTD, and XML Schema

HTTP, FTP, SMTP, SIP, etc.

SOAP
ebXML

messaging

OWL

UDDI
ebXML

Registries

WSCL
WSCI

WS-Coordination

WS-AtomicTransaction and WS-

BusinessActivity

OWL-S Service

Grounding

OWL-S Service

Profile

BTP

BPML

Discovery

Messaging

Transport

QoS: Conversations

QoS: Choreography

QoS: Transactions

Encoding

WS-Policy

WS-Security

WS-Reliable

Messaging

PSL

RDF

154

Standards bodies


IE
T

F


O

M
G


W

3
C


O

A
S

IS


O

M
A


3
G

P
P

/3
G

P
P

2


U

P
n
P


G

G
F


U

N
/C

E
F

A
C

T


W

S
-I


B

P
M

I.o
rg


W

fM
C


E

D
IF

A
C

T


F

IP
A


...

155

W3C’s activities

 Architecture Domain

 develops the underlying technologies of the Web.

 Interaction Domain

 seeks to improve user interaction with the Web, and to facilitate single Web

authoring to benefit users and content providers alike. It also works on formats

and languages that will present information to users with accuracy, beauty, and

a higher level of control.

 Technology and Society Domain

 seeks to develop Web infrastructure to address social, legal, and public policy

concerns.

 Web Accessibility Initiative (WAI)

 is pursuing accessibility of the Web through five primary areas of work:

technology, guidelines, tools, education and outreach, and research and

development.

156

W3C’s architecture domain

 DOM

 Internationalization

 URI

 XML

 Web services

 builds a set of technologies that

allow application-to-

application interactions on the

Web

 was formed by expanding the

former XML Protocol Activity in

January 2002

http://www.w3.org/Architecture/

157

Web services activity

 Objectives

 W3C는 Web Services에 대한 infrastructure와 architecture, core

technologies를 정의한다.

 2000년 9월 XML Protocol Activity가 시작되었고, 2002년 1월 Web

Services Activity가 활동을 개시하였다.

 Groups

 Web Services Architecture Working Group (now closed)

 XML Protocol Working Group.

 Web Services Addressing Working Group.

 Web Services Description Working Group.

 Web Services Choreography Working Group.

 Semantic Web Services Interest Group.

158

Semantic Web Services Interest Group

 to provide an open forum to discuss Web Services topics essentially

oriented towards integration of Semantic Web technology into the ongoing

Web Services work at W3C

 Current open topics

 W3C Web services technologies

 Implementation

 Deployment

 Application design

 Semantic Web technologies in Web services discovery, composition, ...

 Mapping WS technologies to SW (RDF)

 RESTful Web services

 What do you use Web services for? Do you need/use Semantics?

 Web services and agent technologies

 ...

159

Other notable work

 Many interesting submissions related to web services can be found

from Acknowledged Member Submissions

(http://www.w3.org/Submission/)

 2004

 OWL Web Ontology Language for Services (OWL-S)

 Semantic Web Rule Language (SWRL)

 WS-MessageDelivery

 2002

 Web Service Choreography Interface (WSCI)

 Web Services Conversation Languages (WSCL)

 2001

 Tentative Hold Protocol (THP)

 …

http://www.w3.org/Submission/

160

Visions for the web

 Today, the components are primarily web pages, but increasingly

they will be programs in general

 A dilemma: More distributed and independently managed that

resources on the web become, the greater is their potential value, but

the harder it is to extract that value

 Web as a provider for content and services

9/20/2007

Process Specifications

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

406.622 Industrial Information Technology

mailto:jonghun@snu.ac.kr

162

Processes

 A composite activity geared to serve some purpose

 Some combination of services that correspond to queries,

transactions, applications, and administrative activities

 may be distributed within (intra-enterprise) or across enterprises

(inter-enterprise)

 Technical challenges

 Exceptions and revisions in process modeling

 Long running -> the information they take as input may be subject to

revision and thereby causing their own results to be invalidated

 Interfacing a process to underlying functionalities

163

Process Abstractions

 Orchestration

 views a process as a partial order of operations that need to be executed

 views a process from the perspective of one orchestrating engine

 corresponds best to the workflow representations

 example: BPEL4WS, OWL-S

 Choreography

 views a process as a set of message exchanges between participants

 message exchanges are constrained to occur in various sequences and may be required to be grouped into various
transactions

 example: WSCL, WSCI, WS-CDL

 Collaboration

 views a process as a collaboration among business partners

 The business partners not only send messages to one another, but also enter into business relationships such as
contracts and obligations

164

Evolution of orchestration and choreography standards

Source: Decision Support Systems, 2004

165

Service composition

 Implementation of web services whose business logic involves the

invocation of operations offered by other web services

 Composite service: a service implemented by combining the

functionality provided by other web services

 Service composition: the process of developing a composite web service

 Web services composition middleware

 provides abstractions and infrastructures facilitating the definition and

execution of a composite service

166

Basics of service composition

 The business logic of a client can be realized by composing multiple services, and

by executing a different conversation with each of them

 A client can itself be exposed as a web service

 Service composition can be iterated, allowing the definition of increasingly

complex applications by progressively aggregating components, at increasingly

higher levels of abstraction

 It is the responsibility of a client to implement all the protocols needed to

communicate with the invoked services

 Composition of web services is not based on the physical integration of all

components -> Based on interfaces

 Composition of web services equates to specifying which services need to be

invoked, in what order, and how to handle exceptional situations

167

Composition example

requestQuote

orderGoods

makePayment

customer
(client)

supplier
(Web service)

The internal business logic of clients and
Web services is quite sophisticated, as it
must support the execution of different
conversations so that each party can
properly interact with every other party.

A client engages in different
conversations with several Web services.
In general, these conversations may be
regulated by different protocols, and
each invoked Web service may not be
aware that the client is invoking other
Web services.

approval
(Web service)

another
supplier

(Web service)

requestQuote

notifyPayment

168

Need for service composition middleware

 Conventional programming languages were not designed with web service composition in mind

 In the absence of web service composition middleware, the business logic and these low-level details

are intermingled in the code

development
environment

composite service
execution data

schema
definitions

House hunting
service

Packaging service
Flight reservation

service

Shipment service
Phone line

installation service

Internet DSL line
installation service

service composition model and language
(usually characterized by a graphical and
a textual representation)

run-time environment
(composition engine)

schema
designer

the run-time environment executes
the Web service business logic by
invoking other services (through
SOAP and HTTP modules)

Web service composition middleware

other Web services middleware (e.g., SOAP engine
and conversation controller)

supplier

services offered
by other providers

warehouse

accountinga service provider

169

Composition vs. coordination middleware

 Composition: Internal

 The specification of a composite service is done by a company and is kept
private

 The specification of the composition is for the consumption of the WS
middleware

 Whether a service is basic or composite is irrelevant from the client‟s
perspective

 Determines the conversations that a composite service is able to execute

 Coordination protocols: External

 Are public documents

 Meant to be advertised in WS registries

 Support design-time discovery and run-time binding

 Impose requirements on how the composition is to take place, since the order in
which operations are invoked has to be compliant with the protocol definition

170

Scopes of composition and coordination

supplier

customer

1:requestQuote

2:orderGoods

4:makePayment

3:confirmOrder

C
on

ve
rs

a
ti
on

co

nt
ro

ll
e
r House hunting

service

Packaging service
Flight reservation

service

Shipment service
Phone line

installation service

Internet DSL line
installation service

composition
engine

the procurement business
protocol executed among Web
services

another Web service,
possibly offered by
another company

yet another Web
service

if the supplier is implemented by means of
composition technologies, then its
business logic is defined by a composition
schema and its execution is driven by a
composition engine.

depending on the implementation of
the (composite) service, the supplier
may contact other Web services.
The customer is unaware of these
interactions, that may occur
according to other protocols.

171

Dimensions of a WS composition model

 Component model

 Defines the nature of the elements to be composed in terms of the
assumptions that the model makes on such components

 Orchestration model

 Defines abstractions and languages used to define the order in which services
are to be invoked

 Data and data access model

 Defines how data is specified and how it is exchanged between components

 Service selection model

 Defines how static or dynamic binding takes place

 Transactions

 Defines which transactional semantics can be associated with the composition,
and how this is done

 Exception handling

 Defines how exceptional situations occurring during the execution of the
composite service can be handled

172

Component model

 The components implement a specific set of web service standards

such as HTTP, SOAP, WSDL, and WS-Transaction

 Limits heterogeneity -> Makes composition easier

 The components interact by exchanging XML messages in either a

synchronous or asynchronous fashion

 The model is more general

 Increased heterogeneity of the components

173

Orchestration model

 Deals with how different services are composed into a coherent

whole

 Alternative representations: UML, Statecharts, Petri nets, p-calculus,

Activity hierarchies, Rule-based orchestration

invoke
checkLocalStock

invoke
checkShipAvailabl

e

send confirmOrder

inStock=false

send cancelOrder

inStock=tru
e

shippingAvail=t
rue

shippingAvail=false

receive
orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

local service
offered by
the supplier

checkLocalStock

174

Orchestration model

 Activities in the orchestration model

 Send activity (e.g., send cancelOrder)

 Notification of messages to other web services

 Nonblocking

 Invoke activity (e.g., invoke checkLocalStock)

 Invocations of synchronous (request/reply) operations offered by another web

service

 Blocking

 Receive activity (e.g., receive orderGoods)

 Receipts of messages, corresponding to component services invoking one-way or

request/reply operations offered by the composite service

 Blocking

 Reply activity

 If the received message is invoking a request/reply operation, then the composition

schema will also include a reply activity, that will send a response to the invoking

client

175

Statecharts

started

start on new order request

local search complete(insStock)
[inStock=false]/start “invoke
checkShipAvailable”

searching for products
at other supplier

external search
complete(shippingAvail)
[shippingAvail =false]/start
“send caneclOrder”

order completed

searching for products locally

/start “invoke checkLocalStock”

order canceled

local search complete(insStock)
[inStock=true]/start “send
confirmOrder”

external search
complete(shippingAvail)
[shippingAvail =true]/start
“send confirmOrder”

176

Petri nets

inStock=true

inStock=false

invoke checkLocalStock

invoke checkShipAvailable

send confirmOrder

Do nothing

EXTERNAL SUPPLIER
ACCESSED

LOCAL SYSTEM
ACCESSED

READY TO SEND
CONFIRMATION

COMPLETE
(CONFIRM)

START (upon
invocation of

orderGoods operation)

shippingAvail=false

send cancelOrder
shippingAvail=true

Do nothing

COMPLETE
(CANCEL)

177

p-Calculus

 A=receiveOrderGoods.invokeCheckLocalStock

B=[shippingAvail=false]sendCancelOrder+

[shippingAvail=true]sendConfirmOrder

C=invokeCheckShipAvailable.B

Procurement=A.(([inStock=false]C) +

([inStock=true]sendConfirmOrder)

)

178

Activity hierarchies

receive orderGoods

invoke checkShipAvailable

invoke checkLocalStock

inStock=false

process order

sequence

search external
supplier
sequence

discriminate based on
local search

choice

send confirmOrder

discriminate based on
external search

choice

send cancelOrdersend confirmOrder

shippingAvail=true shippingAvail=false

inStock=true

179

Rule-based orchestration

ON receive orderGoods

IF true

THEN invoke checkLocalStock;

ON complete(checkLocalStock)

IF (inStock==true)

THEN send confirmOrder;

ON complete(checkLocalStock)

IF (inStock==false)

THEN invoke checkShipAvailable;

ON complete(checkShipAvailable)

IF (shippingAvail ==true)

THEN send confirmOrder;

ON complete(checkShipAvailable)

IF (shippingAvail ==true)

THEN send cancelOrder;

180

Data types and data transfer model

 Service composition models need explicit ways to define and access data

 Data types

 Control flow data (process variables)

 Used to evaluate branching conditions, and in general those accessed by the

composition engine to determine how the execution should proceed

 Usually restricted to a few basic types such as string, integer, or real

 Application-specific data

 The parameters sent or received as part of message exchanges

 Application data are more complex and involve more sophisticated data types

 Can be treated as a black box (e.g., exchanging only URLs) or can be explicit by

including appropriate data definitions as part of the composition schema

181

Data types and data transfer model

 Data transfer

 Refers to how data is passed from one operation
invocation to the next

 Blackboard approach

 Analogous to conventional programming language

 All data involved in the execution of the composite service
is explicitly named and listed

 Each composition instance has its own blackboard

 Explicit data flow approach

 Makes the data flow between activities an explicit part of
the composition

 Used in several workflow engines like MQSeries
Workflow and BioOpera

 More flexible and richer than the blackboard approach, but
more complex

A

B

C

quantity

quantity

price

182

Service selection

 To execute the composition logic, the engine must be informed which specific service (e.g., which URL) is to be the
target of a message

 Static binding

 Hardcode the URL as part of the composite service specification

 Not robust to changes of the service URI

 Dynamic binding by reference

 Activities determine the URIs of the services to be invoked from the value of specified process variables

 Dynamic binding by lookup

 Allows the definition, for each activity, of a query whose result will be used to determine the service to be
invoked, to be executed on some directory

 May cause multiple URIs to be returned

 Dynamic operation selection

 Does not explicitly specify the operation to be invoked. Instead, the operation is selected at run-time, along with
the serviced

 The signature of the operation to be invoked may vary with the selected service

 Very difficult to implement

Book a plane Book a boat …Book a car

183

Service selection by reference

UDDI Registry

Newly added node that accesses a
(statically specified) UDDI registry to
determine which warehouse should be
contacted for the product being
ordered. The result is stored into the
warehouse process variable. Note that
in practice several invocations of the
UDDI API may be needed to get the
desired information

Variables:
warehouse: URI
inStock, shippingAvail: bool
customer: String
…

Subsequent nodes can use the
reference approach and
determine the URI based on
the value of the warehouse
variable

invoke
checkLocalStock

invoke
checkShipAvailable

send confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=true

shippingAvail=false

receive orderGoods

supplier

invoke
get_bindingDetail

184

Transactions

 Enables the definition of atomic regions within an orchestration

schema

 The atomic region typically surrounds a set of activities that should

exhibit the all-or-nothing property

 Used when the composite service wants to explicitly define the

business logic executed to perform compensation

A

B

C

atomic region

D

185

Compensation

 Allows long-lived transactions to be broken down into a set of sub-transactions to be
executed in some predefined order

 The sub-transactions have the ACID properties

 Each subtransaction Sk is associated with a compensating transaction CSk, whose
execution semantically undoes the effect of the sub-transaction

 A rollback is performed by aborting all active sub-transactions, and by then
compensating for committed sub-transactions in the reverse order of execution

 The development of the compensation logic is left entirely to the designer of the
composition

 The better way

 Placing the burden for implementing the compensation on the web service developer,
i.e., on the component side instead of the composition side

 A component includes the definition of the transaction and compensation logic (e.g.,
operation o can be compensated for by operation c)

 Composition designers can simply invoke operation c whenever they need to
compensate for o

186

Compensation

Subtransaction S1

Subtransaction S2

…

Subtransaction Sn

Long-lived transaction T (saga)

Compensating
Subtransaction CS1

Compensating
Subtransaction CS2

…

Compensating
Subtransaction CSn

Forward execution Compensation flow

187

Exception handling

 Exception refers to a deviation from the expected or desired execution of the
composition

 Flow-based approaches

 At the end of each operation invocation, the result is tested for errors, and
appropriate actions are taken if an error has been detected

 May require the definition of timeouts associated with activities

 Try-catch-throw approaches

 Similar to what is done in Java

 Associate exception-handling logic to an activity or to a group of activities

 Enables the clear separation of the normal and exceptional logic

 Useful if the orchestration model is hierarchically structured

 Rule-based approaches

 The exception handling logic is specified by means of ECA rules, where the
event defines the exceptional event

 Applicable only if the number of rules is very small

188

Example of an flow-based approach

Variables:
warehouse: URI
inStock, shippingAvail: bool
customer: String
…

invoke
checkLocalStock

invoke
checkShipAvailable

send confirmOrder

inStock=false AND no
errors returned

send cancelOrder

inStock=true AND
no errors returned

shippingAvail=true

shippingAvail=false

receive orderGoods

supplier

Some exception-
handling logic here

an error is returned
or a timeout expired

repeat the execution, if
the exception handling
logic so requires

189

Coordination protocols and composition schemes

 The definition of a coordination protocol imposes constraints on

the composition schema of web services implementing the protocol

logic

 The composition schema must include activities that receive and

send messages as prescribed by the protocol, and in the appropriate

order

 How can protocol definitions be used to drive the design of

composition schemes that send and receive the messages in a way

that is compliant with the protocol?

190

Example

requestQuote
(to supplier)

checkShipAvailable
(to warehouse)

confirmOrder
(to customer)

orderGoods
(to supplier)

cancelOrder
(to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

getShipmentDetails
(to customer)

confirmShipment
(to warehouse)

confirmShipment
(to supplier)

supplier warehousecustomer

warehouse
confirms

warehou
se
cancels

191

Developing a WS for the supplier role

 Create the role-specific view of the protocol

 Includes all the message exchanges that involve a certain role

requestQuote
(to supplier)

checkShipAvailable
(to warehouse)

confirmOrder
(to customer)

orderGoods
(to supplier)

cancelOrder
(to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

supplier warehousecustomer

warehouse
confirms

warehous
e
cancels

confirmShipment
(to supplier)

192

Developing a WS for the supplier role

 Switch from the role-specific view of the protocol to the definition of a process
that exchanges messages as prescribed by role-specific view

 A skeleton of a process that includes all the activities that send and receive
messages as prescribed by the protocol

 Steps

 Request/reply operations invoked by a role R on the supplier are mapped into a
receive and a reply activity
 requestQuote -> receive requestQuote and reply requestQuote

 One-way operations invoked by another role on the supplier are modeled as
receive activities
 orderGoods -> receive orderGoods

 One-way operations invoked by the supplier are modeled as send activities
 confirmOrder -> send confirmOrder

 Request/reply operations initiated by the supplier are modelled as invoke
activities
 checkShipAvailable -> invoke checkShipAvailable

 The other constructs are mapped as is into the process skeleton

193

Developing a WS for the supplier role

invoke
checkShipAvailable

receive requestQuote

reply requestQuote

receive orderGoods

send confirmOrder

receive makePayment

send orderShipment

receive confirmShipment

send cancelOrder

194

Abstract process

 The process skeleton (also called abstract process or public process) is essentially a

dual representation of the role-specific protocol view

 describes a protocol -> Does not include any internal and confidential business

logic

 Not executable

 Make it easy to understand how composition is constrained by the protocol and to

define a composition schema that implements a protocol

 Executable process

 Can be obtained by specifying other activities to invoke other services as well

as defining anything left undetermined in the abstract process, such as

branching conditions, data assignments, and data transfer rules

 Private and can be enacted by a composition engine

195

Sample of an executable process

invoke
checkShipAvailable

send confirmOrder
send cancelOrder

shippingAvail=trueshippingAvail=false

receive requestQuote

invoke lookupQuote

reply requestQuote

receive orderGoods

receive makePayment

send orderShipment

invoke collectPayment

supplier

receive confirmShipment

196

On the composition and coordination

 A web service may need to support several protocols and carry on

many concurrent conversations

 How to establish dependencies between the different protocols that

are independently defined?

 e.g., to define that a manufacturer is to be contacted whenever the order

comes from premium customers and the warehouse does not have goods

in stock

 A hot research topic in the very near future

 Yet another approach

 One can first design the internal process and then generate the

corresponding abstract process and role-specific protocol

197

Conversation controllers and composition engines

 Service composition architectures following an engine-based approach are faced
with a conversation routing problem

 The conversation controller verifies protocol compliance and routes messages to
the composition engine

 The engine has to figure out the composition instance to which a message is
directed

 Two cases

 If the conversation controller and the SOAP router leave header information in
the message when routing it to the engine, then the coordination context can be
used to determine the target instance

 If the conversation controller strips header information from the SOAP
message and just delivers the payload, then the engine has to find some way to
correlate messages with instances

 Have the composition schema explicitly include correlation information by defining
the logic by which messages can be associated with composition instances, based on
the message parameters (e.g., orderID)

198

Conversation controllers and composition engines

another Web
service

conversation controller

composition engine

service provider

object
(Web service implementation)

object
(Web service implementation)

Instance of a
composition schema

instance of a
composition schema

checkLocalStock

checkShipAvailable

confirmOrder

inStock=false

cancelOrder

inStock=true

shippingAvail=true

shippingAvail=false

receive requestQuote

lookupQuote

reply requestQuote

receive orderGoods

messages related to
protocols implemented by
basic Web services (or
anyway services implemented
by means of conventional
programming languages)

messages related to
protocols implemented
through service
composition technologies

the engine has to match
messages with instances,
just like the conversation
controller has to match
messages with objects

199

Web services management architecture

SOAP router

+

Conversation

Controller

Horizontal

protocol handlers

Composition

engine

Underlying

application

objects

SOAP

management

Conversation

management

Composition

management

Application

management

SOAP messages

management data

& control actions

Web services mgmt. system

(can also be physically embedded

into corresponding middleware

components)

200

Business processes

 Business process

 A collection of activities performed by human users or software applications that
together constitute the different steps to be completed to achieve a particular business
objective

 e.g., travel expense reimbursement, hiring a new employee

 Distinguished by being possibly long-running, involving multiple autonomous
participants, and having correctness and completion guarantees

 Process model

 describes the structure of a business process in the real world

 defines all possible paths through the business process, including the rules that define
which paths should be taken and all actions that need to be performed

 Process instance: the instances that are created from process models

 Can be described in two ways

 Executable BP

 models the actual behavior of a participant in a business interaction

 Abstract BP

 uses process descriptions that specify the mutually visible message exchange
behavior of each of the parties involved in the protocol, without revealing their
internal behavior

 cannot be executed

201

BPEL4WS

 Business Process Execution Language for Web Services

 serve as both an implementation language for executable processes and a description language for
nonexecutable business protocols

 defines a model and a grammar for describing how multiple web service interactions among the
process‟s participants, termed partners, are coordinated to achieve a business goal, as well as the state
and the logic necessary for the coordination to occur

 Interactions with each partner occur through lower-level web service interfaces, as might be defined in
WSDL

 can define mechanisms for dealing with exceptions and processing faults, including how individual or
composite process components are to be compensated when exceptions and faults occur or when a
partner requests an abort

 An executable BPEL4WS is a new web service composed of existing services

 The interface of the composite service is a collection of WSDL portTypes

 can be translated into and from UML

 History
 Initially proposed in July 2002 by BEA, Microsoft, and IBM

 WSBPEL TC: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

 Version 1.1 released in May 2003: http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

 Now being revised for Version 1.2

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

202

WSBPEL관련 표준 간의 상호의존성

WS- Coordination WS- Transaction

BPEL 1.1

WS- Addressing

WS- ReliableMessaging

WSDL 1.1

WS-PolicyAssertions

WS-PolicyAttachments

WS- Security

WS-SecureConversation

WS-
SecurityAddendum

WS-SecurityPolicy

Xpath 1.0

XML Schema 1.0

XML 1.0XML Infoset XML Namespaces

SOAP 1.2

XML Signature

XML Encryption
X.509

WS- Trust

WS- Policy

WS- Routing

203

Sample BP specification in UML

check if
offered product

check if
worth proceeding

get quote from
quotation system

get quote
from supplier

enter quote
in forecasting system

send quote
to customer

ContractExists=true

ContractExists=false

Offered=true

Offered=false

GoAhead=true

update quotation system

else

204

A BPEL4WS process as a composite web service

Web Service

portType

portType

portType

<receive>

<receive>

<reply>

<reply>

BPEL4WS

Process

205

BPEL4WS Metamodel

-name

-property

CorrelationSet
CompensationHandler

-name

Process Activity

-myRole

-serviceLinkType

-name

Partner

-messageType

-name

Container

-faultContainer

-faultName

FaultHandler
Reply

206

BPEL4WS metamodel (full)

207

BPEL4WS structure

 partners: a list of the web services invoked as part of the process

 containers: the data containers used by the process, providing their definitions in

terms of WSDL message types

 variables: the variables that are used and flow through the process

 faultHandlers: the exception handling routines

 compenstationHandlers: compensation to perform when a transaction rollback

occurs

 eventHandlers: routines for handling external, asynchronous events

 correlationSets: precedences and correlations among web service invocations that

cannot be expressed as part of the main process logic

 main process logic: a series of nested control flow structures that combine

primitive activities into more complex algorithms

 sequence, while, switch, pick, flow

208

Atomic actions in BPEL4WS

 invoke: invoking a specific web serivce

 receive: a server waiting to receive a message from a client, which

would invoke the server‟s service

 reply: generating the response to an invocation request

 wait: waiting either for a deadline or some amount of time

 assign: assigning a value, which might have come from a received

message, to a variable

 throw: indicating that something went wrong

 terminate: terminating an entire service instance

 empty: doing nothing

209

BPEL

 Assumes that both the process and the partners that interact with it are described as WSDL abstract

services (port types and operations)

invoke
checkLocalStock

invoke
checkShipAvailable

invoke confirmOrderinvoke cancelOrder

receive orderGoods

supplier

customer

warehouse

local service
offered by the

supplier

port types

Abstract and/or executable process
orchestration,
variables and data transfers,
exception handling,
correlation information (for instance routing)

Variables:
warehouse: URI
inStock, shippingAvail: bool
customer: String
…

roles

210

Component model

 BPEL has a fine-grained component model, consisting of activities, which can be

basic or structured

 Structured activities are used for defining the orchestration

 Basic activities represent the actual “components”, and correspond to the

invocation of a WSDL operation performed by a service playing a role onto a

service playing a different role

 Offers

 invoke activities: the invocation of a request/reply or a one-way operation

offered by a service

 receive activities: the receipt of a message from a client

 reply activities: a message sent by the process in response to an operation

invoked by a client

 assign activities: assigning data to variables

 wait activities: defining points in the process where the execution should block

for a certain period of time

211

Orchestration model

 BPEL allows the definition of structured activities, which can group a set of

other structured or basic activities to define ordering constraints among them

 Structured activities

 Sequence: Contains a set of activities to be executed sequentially

 Switch: Includes a set of activities, each associated with a condition

 Pick: Includes a set of events, each associated with an activity

 While: Includes exactly one (basic or structured) activity, which is executed

repeatedly while a specified condition is true

 Flow: Groups a set of activities to be started in parallel. Considered complete

when all the included activities are completed

212

Example of BPEL orchestration model

receive orderGoods

invoke checkShipAvailable

invoke checkLocalStock

inStock=false

processOrder

sequence

searchExternal
sequence

chooseLocal
switch

invoke confirmOrder

chooseExternal
switch

invoke cancelOrderinvoke confirmOrder

shippingAvail=true shippingAvail=false

inStock=true

213

Orchestration model

 A flow activity can include the specification of links

 A link l can be used to connect one and only one source activity S to one and only
one target activity T

 The target activity T cannot be started until the source activity S has been
completed

 An activity may have multiple incoming and outgoing links

 Links can also be associated with a transition condition, evaluated when the
link‟s source activity completes

 The set of links can only generate acyclic graphs

 Links may require the definition of join conditions (to further define when an
activity should be executed in case it has multiple incoming links) and of
attributes denoting the behavior when a transition condition is false

 The possibility of specifying the same orchestration logic in two different ways

 The sequence of invocation of activities, A, B, and C can be defined as a
sequence or a flow and links between A and B and between B and C

214

Data types and data transfer

 BPEL maintains the state of the process and manipulates control data
by means of variables

 Variables are characterized by a name and by a type, specified as a
reference to a WSDL message type, XML schema simple types, or
XML schema elements

 Variables can be used as input or output parameters in operation
invocations, and are referred to by conditions

 XPath 1.0 can be used to identify a particular value in the variable

 BPEL follows the blackboard approach

 In the abstract process, the source of the data for variable
assignment is left unspecified -> Enable non-deterministic
specifications both in the orchestration and in the data transfer
between activities

215

Service selection

 Revolves around the notion of partner link types, partner links, and endpoint
references

 Partner link types identify a pair of roles that exchange messages during process
execution and the WSDL port types that the services playing these roles are
required to implement

 Once roles, relationships, and port types have been defined by means of partner
link types, the next step consists of specifying partner links

 While partner link types identify roles, partner links identify services invoked
during the execution of a process, and are therefore bound to specific endpoints

 The definition of a partner link references a partner link type, and then states the
role played by the process and the one played by the partner with respect to that
link -> A specific endpoint reference can be then associated to the partner link,
identifying a specific customer

 Example: invoking the web services from several warehouses

 Activity definitions can then refer to partner links

216

Service selection

supplier

customer

warehouse

local service
offered by the

supplier

partner link definition: it further qualifies the interactions
occurring through a partner link type. Its definition refers to a partner
link type and specifies the role played by the composite service as well
as the one played by the other partner

<partnerLink name="customerP"

partnerLinkType=“orderLT"

myRole=“supplier”

partnerRole=“customer”>

</partner>

partner link type
orderLT port type

supplierPT

217

Exceptions

 BPEL follows a try-catch-throw approach

 Each activity implicitly defines a scope or scopes can be explicitly

declared

 Any scope-defining element can include the specification of one or

more fault handlers

 Faults can be generated during the execution of an activity within the

scope, either by the invoked operation or by the execution engine, or

within the orchestration schema

 In addition to the try-catch-throw, the event handler, which enables

continuous monitoring for a certain event and executes an activity in

response to the event can be used for handling exceptions

218

Exception handling

receive orderGoods

invoke checkShipAvailable

invoke checkLocalStock

inStock=false

processOrder

sequence

searchExternal
sequence

chooseLocal
switch

invoke confirmOrder

chooseExternal
switch

invoke cancelOrderinvoke confirmOrder

shippingAvail=true shippingAvail=false

inStock=true

scope of the searchExternal
activity

due to the behavior of the default handler, implicitly associated
with each activity, a fault F occurring in activity send confirmOrder would

propagate up until activity searchExternal, where the handler resides

includes fault
handler for fault F

219

Transactions

 It is possible to define, for each scope, the logic required to

semantically undo the execution of activities in that scope

 The compensation logic is specified by a compensation handler,

consisting of a single (basic or structured) activity, that will take care

of performing whatever actions are needed to compensate for the

execution

 Every scope has a default compensation handler, whose behavior

consists of invoking the compensation handler for each enclosed

scope in the reverse order of execution

220

Instance routing

 BPEL includes instance routing support to cater to the cases in which routing is not

transparently managed by the infrastructure

 Defines how to correlate messages with instances, based on the message data

 A composition schema may include the definition of correlation sets, a construct

that essentially identifies a set of data items (e.g., a customer ID)

 Correlation sets can be associated with messages sent or received by the

composite service within invoke, reply, or receive activities

 If the messages have the same value for the correlation set, they belong to the

same instance

 Correlation set is used to uniquely identify a composition instance

 Multiple correlation sets can be defined

221

Correlation set

supplierwarehouse

message checkAvailability
orderID
requestedDeliveryDate
deliveryLocation
…

message availability
orderID
shippingAvail

the orderID can be used
for correlating the two
messages

222

Abstract BPEL4WS process

 describes just public aspects of the protocol

 e.g., roles, service links

 restricted to manipulation of values contained in message properties,

and use nondeterministic values to reflect the results of hidden

private behavior

223

Example BPEL4WS Specification for a Stock Quotation Composite

Service

<process name="simple" targetNamespace="urn:stockQuoter" xmlns:tns="urn:stockQuoter"
xmlns:sqp="http://tempuri.org/services/stockquote" xmlns=&BPEL;/>

<containers>

<container name="request" messageType="tns:request"/>

<container name="response" messageType="tns:response"/>

<container name="invocationRequest" messageType="sqp:GetQInput"/>

<container name="invocationResponse" messageType="sqp:GetQOutput"/>

</containers>

<partners>

<partner name="caller" serviceLinkType="tns:StockQuoteSLT"/>

<partner name="provider" serviceLinkType="tns:StockQuoteSLT"/>

</partners>

<sequence name="sequence">

<receive name="receive" partner="caller" portType="tns:StockQuotePT"

operation="wantQuote" container="request" createInstance="yes"/>

<assign> <copy>

<from container="request" part="symbol"/>

<to container="invocationRequest" part="symbol"/>

</copy> </assign>

<invoke name="invoke" partner="provider" portType="sqp:StockQuotePT"

operation="getQuote" inputContainer="invocationRequest" outputContainer="invocationResponse"/>

<assign> <copy>

<from container="invocationResponse" part="quote"/>

<to container="response" part="quote"/>

</copy> </assign>

<reply name="reply" partner="caller" portType="tns:StockQuotePT" operation="wantQuote" container="response"/>

</sequence>

</process>

224

BPEL4WS Example
(Source: IBM developerWorks)

225

BPEL4WS Example: LoanDefinitions.wsdl

226

BPEL4WS Example: LoanApprover.wsdl

227

BPEL4WS Example: LoanApproval.wsdl

228

BPEL4WS Example: LoanApproval.bpel

229

BPEL4WS Example: LoanApproval.bpel (cont.)

230

상용 BPEL 엔진

 Collaxa BPEL server

 Java based

 On top of JBoss or WebLogic

 OpenStorm ChreoServer

 .NET & J2EE based

 Transferred from Momentum software

 Not yet released

 IBM AlphaWorks BPWS4J

 Java based

 Requires WebSphere AS and Eclipse

 Microsoft BizTalk 2004

 Oracle: Acquired Collaxa

 WebMethods: Soon to be included

 FiveSight‟s PXE

 ReadiMinds

http://alphaworks.ibm.com/
http://www.microsoft.com/windowsserversystem

231

Open source BPEL engines

 ActiveBPEL

 Twister

 uEngine

 Note: BPELJ (BPEL for Java)

 a combination of BPEL and the Java programming language

allowing the two languages to be used together to build business

process applications

 http://www-

106.ibm.com/developerworks/webservices/library/ws-bpelj/

http://www.activebpel.org/index.html
http://www.smartcomps.org/twister/
http://uengine.sourceforge.net/main.html
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelj/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelj/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelj/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelj/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelj/

232

BPEL4J

233

Oracle BPEL

234

Current status of WSBPEL

235

BPML

 Business Process Modeling Language

 has roots in web services (SOAP, WSDL, and UDDI)

 takes advantage of the XML technologies (XPath and XML Schema)

 designed to leverage other specifications (WS-Security, WS-

Transaction)

 supports modeling of real-world business processes through its

support for advanced semantics, such as nested processes and

complex compensated transactions

 builds on the foundation of WSCI for expressing public interfaces

and choreographies

236

Electronic Business Extensible Markup Language (ebXML)

 Established by UN-CEFACT (United Nations Centre for Trade

Facilitation and Electronic Business) and OASIS (Organization for

the Advancement of Structured Information Standards)

 Provides specifications to define standard business processes and

trading agreements among different organizations

 Also specifies the business messages that are exchanged as part of a

business process

 The objective: to be a global standard for governmental and

commercial organizations of all sizes to find business partners and

interact with them

237

ebXML Vocabulary

 Unified Modeling Methodology (UMM)

 Specialized UML for Business Processes

 Process specification document

 describes the activities of the parties in an ebXML interaction

 Collaboration Protocol Profile (CPP)

 describes an organization‟s profile, i.e., which business processes it supports,

its roles in those processes, the messages exchanged, and the transport

mechanism for the messages (e.g., HTTPS)

 Collaborative Partner Agreement (CPA)

 An intersection of two CPPs

 represents a technical agreement between two or more partners

 May be legally binding

 The CPP and CPA serve as configuration files (e.g., messaging headers) for

ebXML business service interface software

238

Design of an ebXML System

Business

Organization A

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Publis
h C

olla
bora

tio
n

Pro
to

col P
ro

fil
e

Request ebXML

Specs

Receive ebXML

Info

Business

Process

Business

Scenarios

Business

Profiles

ebXML Repository

Business Process

and Information

Model

(UMM or PSL)

Business

Organization B

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Business Process

and Information

Model

(UMM or PSL)

Request ebXML

Specs

Receive ebXML

Info
Publish Collaboration

Protocol Profile

CPA Information

239

An example ebXML BPSS document

<ProcessSpecification

xmlns="http://www.ebxml.org/BusinessProcess"

name="PIP3A4RequestPurchaseOrder">

<!-- The request document and its XML Schema -->

<BusinessDocument name="PO Request"

nameID="Pip3A4PORequest"

specificationLocation="PurchaseOrderRequest.xsd"/>

<!-- The confirmation document and its XML Schema -->

<BusinessDocument name="PO Confirmation"

nameID="Pip3A4POConfirmation"

specificationLocation="PurchaseOrderConfirmation.xsd"/>

<!-- This process specification has one business -->

<!-- transaction consisting of a requesting and -->

<!-- a responding business activity-->

<BusinessTransaction name="Request PO"

nameID="RequestPO_BT">

<RequestingBusinessActivity

name="PO Request Action"

nameID="PORequestAction"

isAuthorizationRequired="true"

isNonRepudiationRequired="true"

timeToAcknowledgeReceipt="PT2H">

<DocumentEnvelope

businessDocument="PO Request"

businessDocumentIDRef="Pip3A4PurchaseOrderRequest"/>

</RequestingBusinessActivity>

<RespondingBusinessActivity

name="PO Confirmation Action"

nameID="POConfirmationAction"

isAuthorizationRequired="true"

isNonRepudiationRequired="true"

timeToAcknowledgeReceipt="PT2H">

<DocumentEnvelope

businessDocument="PO Confirmation"

businessDocumentIDRef="Pip3A4PurchaseOrderConfirmation"/>

</RespondingBusinessActivity>

</BusinessTransaction>

<!-- The binary collaboration asserts that the buyer is -->

<!-- the initiator of the above business transaction and -->

<!-- the seller is the responder, and the process begins -->

<!-- in the Request PO state -->

<BinaryCollaboration name="Request PO"

nameID="RequestPO_BC">

<InitiatingRole name="Buyer" nameID="BuyerId"/>

<RespondingRole name="Seller" nameID="SellerId"/>

<Start toBusinessState="Request PO"/>

<BusinessTransactionActivity name="Request PO"

nameID="RequestPO_BTA"

businessTransaction="Request PO"

businessTransactionIDRef="RequestPO_BT"

fromAuthorizedRole="Buyer"

fromAuthorizedRoleIDRef="BuyerId"

toAuthorizedRole="Seller"

toAuthorizedRoleIDRef="SellerId"

timeToPerform="PT1D"/>

</BinaryCollaboration>

</ProcessSpecification>

240

An example of an ebXML CPP

<cp:CollaborationProtocolProfile

xmlns:cp="http://www.ebxml.org/specs/cpp-cpa-v2_0.xsd"

xmlns:xlink="...">

<cp:PartyInfo cp:partyName="PCInc"

cp:defaultMshChannelId="asyncChannelA1">

<cp:PartyId

cp:type="urn:ebxml-cppa:partyid-type:duns">

123456789

</cp:PartyId>

<cp:PartyRef

xlink:href="http://PCInc.com/about.html"/>

<cp:CollaborationRole cp:id="BuyerId">

<cp:ProcessSpecification cp:version="2.0"

cp:name="PIP3A4RequestPurchaseOrder“ xlink:type="simple“ xlink:href= "http://www.rosettanet.org/processes/3A4.xml"/>

<cp:Role cp:name="Buyer"

xlink:href=

"http://www.rosettanet.org/processes/3A4.xml#Buyer"/>

<cp:ServiceBinding>

<cp:Service>

bpid:icann:rosettanet.org:3A4v2.0

</cp:Service>

<cp:CanSend>

<cp:ThisPartyActionBinding cp:id="PCInc_ABID1"

cp:action="PO Request Action"

cp:packageId="PCInc_RequestPackage">

<cp:ChannelId>asyncChannelA1</cp:ChannelId>

<cp:BusinessTransactionCharacteristics

cp:isNonRepudiationRequired="true“ cp:isSecureTransportRequired="true"

cp:isAuthorizationRequired="true“ cp:timeToAcknowledgeReceipt="PT2H“ cp:timeToPerform="PT1D"/>

</cp:ThisPartyActionBinding>

</cp:CanSend>

</cp:ServiceBinding>

</cp:CollaborationRole>

</cp:PartyInfo>

</cp:CollaborationProtocolProfile>

241

Discover Partner Information and Negotiate

Request

Information on

Oranization B

Business

Organization A

Negotiate

Terms

Business

Oranization B

Negotiate

Terms

Request Oranization B뭩
Profiles, Scenarios

Receive Organization B뭩
Information

Business

Process

Business

Scenarios

Business

Profiles

ebXML RepositoryExchange Partner Agreement

(CPA)
Accept Partner

Agreement

242

An example SOAP message header for sending a PO

<SOAP:Envelope

xmlns:SOAP="http://schema.xmlsoap.org/soap/envelope/">

<SOAP:Header

xmlns:eb="http//www.ebxml.org/msg-header-2_0.xsd">

<eb:MessageHeader id="123" eb:version="2.0"

SOAP:mustUnderstand="1">

<eb:From><eb:PartyId>123456</eb:PartyId></eb:From>

<eb:To>

<eb:PartyId eb:type="someType">987654</eb:PartyId>

<eb:Role>

http://rosettanet.org/processes/3A4.xml#seller

</eb:Role>

</eb:To>

<eb:CPAId>uri:companyA-and-companyB-cpa</eb:CPAId>

<eb:ConversationId>987654321</eb:ConversationId>

<eb:Service eb:type="anyURI">

bpid:icann:rosettanet.org:3A4v2.0

</eb:Service>

<eb:Action>Purchase Order Request Action</eb:Action>

<eb:MessageData>

<eb:MessageId>UUID-2</eb:MessageId>

<eb:Timestamp>2000-07-25T12:19:05</eb:Timestamp>

<eb:RefToMessageId>UUID-1</eb:RefToMessageId>

</eb:MessageData>

<eb:DuplicateElimination/>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body

xmlns:eb="http//www.ebxml.org/msg-header-2_0.xsd">

<eb:Manifest eb:version="2.0">

...

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

243

Implementing ebXML

 ebXML is just a set of specifications of collaborations and repositories for

discovering business partners

 An enterprise may build and deploy its own ebXML-compliant application to

implement necessary roles in different collaborations

 Use COTS ebXML compliant applications and components (from ERP vendors)

 Business Service Interface (BSI): a wrapper that enables a given party to

participate properly in an ebXML exchange

ebXML World
Legacy

Application

Transform

Layer

Business

Service

Interface

Message

Layer

(TR & P)

CPA

Document

Business

Process

244

Characteristics of ebXML

 BPSS enables us to express collaboration protocols and agreements

about protocols in a nice manner -> facilitates interoperation in

cross-enterprise settings

 Limitations

 Expressiveness: BPSS is limited to simple request-response protocols

 Semantics: BPSS lacks a formal semantics, and it is not clear if

specifications constructed by one party would have the same

interpretations by another party

245

RosettaNet

 A consortium of information technology, semiconductor

manufacturing, and telecommunications companies working to

create and implement open e-business process standards

 The standards comprise a common e-business language that can

align the interoperations among supply-chain partners on a global

basis

 Each process is expressed as a PIP (Partner Interface Process) that

defines the process of exchanging messages between two partners

 Distinction between PIP and BPSS

 PIPs define specific processes (like a purchase-order process)

 BPSS is a language for defining processes

246

RosettaNet PIP for Creating a Purchase Order: The Content for

ebXML

Back-end application

Create Order Log order confirmation

Order instance

(object)

Semantic Web enabled RosettaNet

Semantic Web enabled RosettaNet

Send PO Receive POA

PO instance POA instance

Create PO Request Analyze POA

PO instance POA instance

Receive PO Send POA

Analyze PO Create POA

Back-end application

Confirm PO (some or all line

items may be rejected)

Ontologies of

data structures,

business logic

and message

exchange

protocols

Mediation of

data structures,

business logic

and message

exchange

protocol

247

PSL

 Process Specification Language

 http://www.mel.nist.gov/psl/

 Designed for describing or exchanging information among models of discrete processes, i.e.,

processes consisting of individually distinct events, tasks, or service invocations

 has a formally defined semantics in the language of first-order logic and represented using

the Knowledge Interchange Format (KIF)

Fig 13.15 here

http://www.mel.nist.gov/psl/

9/20/2007

Coordination Frameworks for Web

Services

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering

Seoul National University

406.622 Industrial Information Technology

mailto:jonghun@snu.ac.kr

249

Business Interchange Requirements

 The parties must agree on the documents to be exchanged, and the

semantics of the documents (defined by XML, XML Schema, RDF,

and OWL)

 The parties must agree on the protocol used to transmit a document

(such as SOAP-RPC, asynchronous SOAP, or ebXML transport), the

routing for the transmission, and the packaging of the document

 The parties must know each other‟s location

 An ordering of the documents to be transmitted must be specified: a

conversation

250

Need for service coordination protocols

 The basic web services infrastructure supports interactions where the client

invokes a single operation on a Web service

 When the interaction involves coordinated sequences of operations, additional

abstractions and tools are needed to ensure the correctness and consistency

 Moving from simple, independent invocations to sequences of operations where

their order matters has important implications

 Internal: The client must be able to execute relatively complex procedures to

perform the different operations in the appropriate order. Furthermore, the

client must be capable of maintaining context information

 External: The interaction between the client and the server has to obey certain

constraints. If these constraints are not followed, the Web service will be

unable to process the messages and will return an error to the client

251

Example

1: requestQuote

2: orderGoods

3: makePayment

customer
(client)

supplier
(Web service)

House hunting
service

Packaging service
Flight reservation

service

Shipment service
Phone line

installation service

Internet DSL line
installation service

invoke
checkLocalStock

invoke
checkShipAvailable

send confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=true

receive orderGoods

The internal business logic of clients and Web
services must support the conversation, and
maintain the state across different operation
invocations belonging to the same conversation.

The interaction between clients and services is
often formed by a set of operation invocations
(i.e., it is a conversation).
A service provider may support some
conversations while disallowing others.

252

Issues

 Conversation: the sequences of operations (i.e., message exchanges)

that could occur between a client and a service as part of the

invocation of a Web service

 Coordination protocol: the specification of the set of correct and

accepted conversations

 The problems

 How to make it easy for developers to specify complex procedures that

can implement the logic required to conduct a conversation

 How a Web service can describe the set of coordination protocols it

supports and make the clients aware of this information -> Needs to be

advertised in registries

253

Conversation specification

 A state machine

 The states define each possible stage of a correct conversation (e.g.,

quote requested, goods ordered)

 Each state can have one or more output transitions, each labeled with a

different operation name corresponding to one of the operations offered

by the Web service interface

 A conversation is in one and only one state at any time

 Given the set of operations provided by a Web service interface, the

state machine determines the set of correct conversations by defining

which interface operation can be invoked, based on the conversation

state

254

Conversation specification example

quote requested

goods ordered

requestQuote

cancelOrder

order canceled order completed

orderGoods

makePayments

255

Conversations among multiple WSs

 Multi-party conversations

 Both sides impose constraints on how the conversation must proceed

 Independent of the number of Web services involved

suppliercustomer

1:requestQuote

2:orderGoods

5:makePayment

warehouse

3:checkShipAvailable
7:getShipmentDetail

8:confirmShipment
9:confirmShipment

6:orderShipment

4:confirmOrder

256

Specification of multi-party conversations

 Introduce the definition of a protocol in terms of roles and of message exchanges

among entities playing those roles, along with constraints on the order in which

such exchanges should occur

 Use state machine

 Associate each transition of a state machine not just an operation name, but a

triplet <invoker, operation, provider>, meaning that the state transition

occurs when the invoker calls the specified operation offered by the provider

 Use sequence diagrams

 Limitation: when the protocol becomes complex, one sequence diagram does

not suffice -> Multiple sequence diagrams for alternative conversations

 Use activity diagrams

 Can model alternative executions as well as parallel executions

257

A sequence diagram example

requestQuote

orderGoods

confirmOrder

getShipmentDetail

confirmShipment

suppliercustomer warehouse

checkShipAvailable

makePayment

orderShipment

confirmShipment

258

An activity diagram example

requestQuote
(to supplier)

checkShipAvailable
(to warehouse)

confirmOrder
(to customer)

orderGoods
(to supplier)

cancelOrder
(to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

getShipmentDetails
(to customer)

confirmShipment
(to warehouse)

confirmShipment
(to supplier)

supplier warehousecustomer

warehouse
confirms

warehous
e cancels

259

Classification of Web service protocols

 Vertical protocols

 Specific to business areas

 xCBL, RosettaNet, ebXML, …

 Horizontal protocols

 Define a common infrastructure

independent of the application area

 WS-Coordination, WS-Transaction,

…

m
a
nu

fa
ct

ur
in
g

h
e
a
lt
h
 c

a
re

…

te
le
co

m

fi
na

nc
e

support for protocols such as
transactionality, reliability, security,…

Web services executing vertical
protocols. The main focus of
standards such as RosettaNet,
xCBL, and part of ebXML is to
describe protocols at this level.

other Web services middleware (e.g.,
SOAP routers)

service provider

middleware for horizontal protocols
provides properties and guarantees to
the execution vertical protocols.
Standards such as WS-Coordination,
WS-Transaction, and part of ebXML
fit here.

SOAP messages

260

Infrastructure for coordination protocols

 Conversation controllers

 Generic protocol handlers

 Standardization requirement for coordination protocols

261

Conversation controllers

 Tools facilitating the execution of conversations

 Provides

 conversation routing: the problem of dispatching messages to the

appropriate internal object

 protocol compliance verification: if an operation invoked by a client in

the context of a conversation is not allowed, then the conversation

controller can return an error message

262

Conversation routing

 A web service that is engaged in several different executions of a

coordination protocol P

 If all clients invoke operations provided by the same port, then they

are sending messages to the same Web address

 When the Web service receives the message, it must determine to

which conversation the message belongs, as each conversation has

a state, and the way each message is processed depends on the

conversation state

 Alternatives

 A single object implementation

 A conversation controller

263

Conversation controller

 Creating one object for each conversation and letting the

infrastructure handle the routing of messages to the appropriate

object

 The controller can handle the dispatching of messages pertaining to

each conversation instance to the appropriate EJB

 The controller can accomplish this by

 generating an identifier each time a message that starts a new

conversation is received

 including a unique identifier in the header of all messages exchanged

within a conversation

 requiring standardization: all interacting parties are expected to know

how the conversation identifier is embedded into the messages and to

insert it in every message they send

264

Conversation controller

P1

P2, P3

P4, P5

conversation
controller

object for P1

object for P2

object for P3

object for P4

object for P5

P1

P2

P3

P4

P5

service
requestor

service
requestor

service
requestor

service provider

clients invoke operations
at the same address

the controller dispatches
messages to the appropriate
implementation object

265

The role of conversation controller

 The controller, based on a <conversation identifier, object reference> mapping,

determines the EJB to which the message should be delivered

service provider

HTTP server

SOAP router
(with conversation controller)

SOAP messages on
HTTP transport

EJB EJB EJB

EJB container

conversation
ID/object mapping

266

Generic protocol handlers

 A module that can include protocol-specific logic to act and

generate messages in accordance with the rules defined by the

protocol

 The protocol handler can support protocol execution in two forms

 The handler receives, interprets, and sends protocols messages

automatically, without intervention by the Web service (e.g., reliable

message delivery)

 The handler and the Web service share the burden of implementing the

protocol (e.g., in 2PC, the logic for implementing the decision of

whether to commit or abort is left to the participating Web services)

267

Interaction among conversation controllers, protocol handlers, and

Web services
 The conversation controller routes business protocol messages to the appropriate

Web services implementation, which contains the business logic implementing the
protocol

 Messages related to horizontal protocols are instead routed to the protocol handlers

service
requestor

B

B

conversation routing,
compliance verification

horizontal protocol
implementation

HH

H

B: conversation compliant with a business protocol
H: conversation compliant with an horizontal protocol

object (Web service implementation)object (Web service implementation)

horizontal protocol
implementation

service provider

268

Port references

 When the infrastructure handles the protocol implementation automatically, it
should be told the role it has to take in implementing the protocol

 W1 and W2, both delegating the execution of a protocol to the protocol handlers A
and B in their infrastructure

 Before A and B can exchange the protocol messages with each other, A needs to
know the port reference of B and vice-versa

object (W1)

horizontal protocol
handler (A)

object (W2)

horizontal protocol
handler (B)

A’s port reference

B’s port reference

B’s port reference A’s port referenceA’s role B’s role

conversation
controller

conversation
controller

protocol messages

269

Standardization requirements

 A way to generate and transport unique conversation identifiers in

the headers of SOAP messages (e.g., ebXML)

 A framework and a set of protocols (i.e., meta-protocols) whose

purpose is to agree on such aspects as which protocol should be

executed and how it is coordinated

 Horizontal protocols to be standardized, so that additional properties

can be provided by the WS middleware

 A standard protocol languages, so that conversation controllers can

interpret protocol specifications and verify protocol compliance

270

WSCL

 Web services conversation language

 A submission by HP in 2002

 W3C Note: http://www.w3.org/TR/wscl10/

 allows the business level conversations or public processes supported by a web
service to be defined

 specifies the sequencing of XML documents (as well as specifications for the
documents themselves) being exchanged between a web service and a user of that
service

 can provide protocol binding information for abstract interfaces or can specify the
abstract interfaces supported by a concrete service

 describes the interactions with just one service

 WSCL conversation definitions are themselves XML documents

 models only business-level interactions and not how an exchange of business-level
documents is carried out by lower-level messaging protocols

 the exchange of one business document might require several actual messages
to be exchanged

 expected to be replaced by WS-CDL

http://www.w3.org/TR/wscl10/

271

Concepts in WSCL

272

Structure of a WSCL specification

 Document type definitions

 specify what types of XML documents will be exchanged by parties

 Interactions

 exchanges of documents between a service and a client

 one of the 5 types: Empty, Send, Receive, SendReceive, ReceiveSend

<Interaction interactionType="SendReceive"

id="Payment">

<OutboundXMLDocument id="Invoice"

hrefSchema="http://sc.edu/InvoiceRS.xsd"/>

<InboundXMLDocument id="Payment"

hrefSchema="http://ncsu.edu/Payment.xsd">

</InboundXMLDocument>

</Interaction>
 Transitions

 the order of the interactions
<Transition>

<SourceInteraction href="Quote"/>

<DestinationInteraction href="Purchase"/>

</Transition>

<Transition>

<SourceInteraction href="Quote"/>

<DestinationInteraction href="CatalogInquiry"/>

</Transition>

 Conversation: a list of all interactions and transitions in it, a starting interaction,
and an ending interaction

273

Well-Formed Conversations

 All interactions are reachable from the initial interaction

 The final interaction is reachable from all interactions

 If a transition from interaction A to interaction B specifies a

SourceInteractionCondition, then all transitions from A to B do so

 The final interaction and transitions to the final interaction

unambiguously clarify for each participant when a conversation is

finished

274

Example Conversation Definition

<<ReceiveSend>>

Registration

in: RegistrationRQ

out: RegistrationRS

<<ReceiveSend>>

Login

in: LoginRQ

out:ValidLoginRS

out: invalidLoginRS

<<ReceiveSend>>

CatalogInquiry

in: CatalogRQ

out: CatalogRS

<<Send>>

Shipping

out: ShippingInformation

<<ReceiveSend>>

Logout

in: LogoutMessage

InvalidLoginRS

InvalidLoginRS

ValidLoginRS

<<ReceiveSend>>

Quote

in: QuoteRQ

out: QuoteRS

InvalidPaymentRS

<<ReceiveSend>>

Purchase

in: PurchaseRQ

out: PurchaseAcceptedRS

out: InvalidPaymentsRS

out: OutOfStockRS

PurchaseAcceptedRS

OutOfStockRS

InvalidPaymentRS

275

Example WSCL Specification

<Conversation name="StoreFrontServiceConversation" xmlns="http://www.w3.org/2002/02/wscl10" initialInteraction="Start"
finalInteraction="End" >

<ConversationInteractions>

<Interaction interactionType="ReceiveSend" id="Login">

<InboundXMLDocument hrefSchema=“http://conv1.org/LoginRQ.xsd”

id="LoginRQ"/>

<OutboundXMLDocument hrefSchema=“http://conv1.org/ValidLoginRS.xsd”

id="ValidLoginRS"/>

<OutboundXMLDocument id="InvalidLoginRS"
hrefSchema=“http://conv1.org/InvalidLoginRS.xsd”/>

</Interaction>

…

<Interaction interactionType="Empty" id="Start" />

<Interaction interactionType="Empty" id="End" />

</ConversationInteractions>

<ConversationTransitions>

<Transition>

<SourceInteraction href="Start"/>

<DestinationInteraction href="Login"/>

</Transition>

…

<Transition>

<SourceInteraction href="Login"/>

<DestinationInteraction href="Registration"/>

<SourceInteractionCondition href="InvalidLoginRS"/>

</Transition>

<Transition>

<SourceInteraction href="Logout"/>

<DestinationInteraction href="End"/>

</Transition>

</ConversationTransitions>

</Conversation>

http://conv1.org/LoginRQ.xsd
http://conv1.org/ValidLoginRS.xsd
http://conv1.org/InvalidLoginRS.xsd

276

Limitations of WSCL

 Limited to two participants

 WSCL provides excellent graph primitives for describing control

flows, but does not have specific constructs for iteration or

recursion

 Conversations are modeled as scripted procedures (graphs), but the

procedures are not flexible

 Cooperation is not supported

 Exception handling is done only at low level

277

WSCI: Web Service Choreography Interface

 An interface description language for business processes

 provides a global message-oriented view of the choreographed interactions among a collection of web

services

 describes the flow of messages exchanged by a web service that is interacting with other services

according to a choreographed pattern

 characterizes the externally observable behavior of the web service, not its internal operation

 offers interoperability across BPML, BPEL4WS, ebXML‟s BPSS, and WfMC‟s XPDL

 is an enhancement to WSDL, and a WSCI specification is intended to be part of a WSDL document

describing a web service

 A service can participate in several different conversations at the same time, with the correlate element

used to manage them and associate messages with the proper conversation

 supports both atomic transactions and open-nested transactions, the latter of which can be compensated

when exceptions occur

278

Example WSCI Add-In to WSDL

<correlation name="quotationCorrelation“ property="tns:quotationID“/>

<interface name="StockQuoteWS">

<process name="ProvideStockQuote" instantiation="message">

<sequence>

<action name="ReceiveLogin“ role="tns:StockQuoteWS“

operation="tns:QuoteToUser/LogIn"/>

<action name="ReceiveStockQuoteRequest" role="tns:StockQuoteWS"

operation="tns:QuoteToUser/ProvideQuote">

<correlate correlation="tns:quotationCorrelation"/>

<call process="tns:LookupPrice"/>

</action>

<action name="ReceiveLogout“ role="tns:StockQuoteWS“

operation="tns:QuoteToUser/LogOut"/>

</sequence>

</process>

<process name="LookupPrice" instantiation="other">

<action name="QueryNYSE" role="tns:StockQuoteWS“

operation="tns:QuoteToUser/QueryNYSE"/>

</process>

</interface>

279

WSCI Example for Transaction Compensation

<sequence>

<context>

<transaction name="buyStock" type="atomic">

<compensation>

<action name="NotifyUnavailable" role="NYSE“ operation="tns:NYSEtoBroker/NotifyUnavailable"/>

</compensation>

</transaction>

</context>

<action name="BuyShare" role ="Broker“ operation="tns:BrokerToNYSE/BuyShare"/>

<while name="BuyShares">

<condition>defs:fundsRemain</condition>

<action name="BuyShare" role ="Broker“ operation="tns:BrokerToNYSE/BuyShare">

<correlate correlation="defs:buyingCorrelation"/>

</action>

</while>

</sequence>

<!-- Compensating Behavior for the Above Transaction -->

<exception>

<onTimeout property="tns:expiryTime" type="duration" reference="tns:BuyShares@end">

<compensate transaction="tns:buyStock"/>

</onTimeout>

</exception>

280

Web services coordination

 Coordination service: A service whose job is to coordinate the

activities of the web services that are part of the business process

 Multiple participants can hide their proprietary protocols that reach

agreement on the outcome of their activities

 Protocol

 A set of well-defined messages that are exchanged between the web

services participating in a process

 Context

 A uniquely identified, conceptually coherent activity that includes the

services being coordinated

 Application

 An executing program instance at one site

281

WS-Coordination

 Initially proposed by IBM, MS, and BEA in Aug. 2002

 a framework for supporting coordination protocols

 Defines SOAP extensions that are necessary to achieve coordination

 Defines meta-protocols for creating coordination contexts (Activation) and for

binding coordinators and participants to each other (Registration)

 Defines a basic set of middleware components as well as their interfaces for

implementing central or distributed coordination

 Standardizes

 A method for passing a unique identifier between interacting Web services ->

coordination context

 A method for informing a protocol handler about the port of a Web service that

participates in a conversation -> registration interface

 A method for informing a protocol handler about the role it should assume in a

conversation -> activation interface

 But, it is not a language for describing coordination protocols

282

WS-Coordination Service

Coordinator

Activation

Service

Registration

Service

Protocol

Service X

Protocol

Service Y

CreateCoordinationContext Register

Protocol YProtocol X

283

Components of WS-Coordination

 Basic entities: coordinator(s), participants

Web service Web service Web service

coordinator coordinator coordinator

Web service Web service Web service

coordinator

(a) central coordination

(b) distributed coordination

284

Abstractions in WS-Coordination

 Coordination protocol

 A set of rules governing conversations between a coordinator and its

participants (e.g., 2PC)

 Coordination type

 A set of coordination protocols, logically related to each other

 Example: Atomic transaction coordination type = 2PC + outcome notification

protocol

 Coordination context

 A data structure used to mark messages belonging to the same conversation

 Included in the message headers

 Contains a field that identifies the coordination type and a field that uniquely

identifies the instance of that coordination type

285

Forms of interactions in WS-Coordination

 Activation

 A participant requests a coordinator to create a new coordination

context

 Registration

 A participant registers as a coordination protocol participant with a

coordinator

 Protocol-specific interactions

 The coordinator and its participants exchange messages that are

specific to a coordination protocol

 Note: Interactions for activation and registration are independent of

the type of coordination

286

Port types in WS-Coordination: Activation

 Activation

 ActivationCoordinatorPortType (by coordinator)

 ActivationRequestorPortType (by participant)

CreateCoordinationContext
- ...
- coordination type
- current context CreateCoordinationContextResponse

- ...
- coordination context

- identifier
- coordination type
- registration service
- ...ActivationCoordinatorPortType

coordinator

ActivationRequestorPortType

Web service

287

Port types in WS-Coordination: Registration

 Registration

 RegistrationCoordinatorPortType

 RegistrationRequestorPortType

register
- ...
- protocol identifier
- participant protocol service

registerResponse
- ...
- coordinator protocol service

RegistrationCoordinatorPortType

coordinator

RegistrationRequestorPortType

Web service

288

Port types in WS-Coordination: Protocol-Specific

 For each protocol X

 XCoordinatorPortType

 XParticipantPortType

protocol-specific messages
from participant to coordinator

protocol-specific messages
from coordinator to participant

XCoordinatorPortType

coordinator

XParticipantPortType

Web service

289

Central coordination

 All the participating Web services need to agree on who the

coordinator for a particular conversation is

 Consider Web services A and B that participate in a coordination

protocol X

 Assume a single coordinator C

290

Example of central coordination

1. A initiates a coordination instance

by asking C to create a new

coordination cotext

2. C returns a coordination context

X1 to A. X1 contains a reference to

C‟s RCPT

3. A registers itself as a participant

of protocol X with C by passing a

reference to its XPPT

4. C returns a reference to its XCPT

to A

5. A sends a message to B within

the scope of the coordination. To

indicate the scope, it includes X1 as

part of the SOAP header

6. B retrieves C‟s RCPT reference

from X1 and uses it to register with

C as a participant of X. B also

passes its own XPPT to C as part

of registration

7. C returns a reference to its XCPT

to B

Operational messages: dotted lines

WS-Coordination messages: solid lines

Protocol-specific messages: dashed lines

Web service A

activat
ion

partici
pant registra

tion
particip

ant

protoco
l

partici
pant

coordinator C

activation
coordinator

registration
coordinator

protocol
coordinator

Web service B

activation
participant

registration
participant

protocol
participant

1. create CC

2. X1

3. register

4. protocol coordinator

5. operational message

6. register

7. protocol coordinator

8. protocol-specific message

9. protocol-specific message

Web
service

implement
ation

Web
service

implement
ation

291

Distributed coordination

1. A initiates a coordination instance by asking Ca to

create a new coordination context

2. Ca returns a coordination context X1 to A. X1

contains a reference to Ca‟s RCPT

3. A registers itself as a participant of protocol X with Ca

by passing a reference to its XPPT

4. Ca returns a reference to its XCPT to A

5. A sends a message to B within the scope of the

coordination. To indicate the scope, it includes X1 as

part of the SOAP header

6. B notices X1 in the SOAP message it receives. It

asks Cb to create a new coordination context, which

should be a sub-context of X1

7. Cb returns a coordination context X2 to B. X2

contains a reference to Cb‟s RCPT

8. B registers with Cb as a participant of X. B also

passes X2 and its own XPPT to Cb as part of the

registration

9. Cb registers as a participant of X with Ca. By doing

so, Cb informs Ca about who its counterpart is with

respect to X1, and can receive and forward all

messages from Ca to B

10. Ca returns to Cb with a reference to its XCPT. Cb

uses it to forward protocol messsages from B to Ca

11. Cb returns to B with a reference to its XCPT

- Cb acted as a proxy to Ca: All the

messages between Ca and B passed

through Cb

Web service A coordinator Ca Web service B coordinator Cb

1. create CC

2. X1

3. register

4. protocol coordinator

5. operational message

6. create CC

7. X2

8. register

9. register

10. protocol coordinator

11. protocol coordinator

12. protocol message

13. protocol message

14. protocol message

15. protocol message

292

Example

WStravel CoordinatorT CoordinatorH WShotel

CreateCoordContext(ACIDTrans)

Ct(A1,ACIDTrans,RSt)

ReserveRoom(Ct)

CreateCoordContext(Ct)

Ch(A1,Ct,RSh)

Reg(2PC,PortH)

Register(2PC,PortPSh)

RegisterResponse(AddACK,PortPSt)

RegResponse(RemoveACK,PortPSh)

Activation

Service

Activation

Service

Registration

Service

Registration

Service

Protocol

Service

Protocol

Service
RoomConfirmation(2PC)

2PC Protocol

ReservationConfirmed

293

WS-Transaction

 A set of specifications built on top of the WS-Coordination

 Initially proposed in Aug. 2002 by IBM, MS, and BEA

 Specifies a standard protocol for long-running transactions, called

business activities

 Also provides a set of specifications for short-duration

transactions, called atomic transactions

 WS-AtomicTransaction and WS-BusinessActivity leverage WS-

Coordination by defining two particular coordination types: a short-

term atomic transaction and a long-duration business activity

 For a long-running transaction, WS-Transaction uses a compensation

scheme where participants provide an undo operation that is used if

the transaction does not complete

294

Transactions in Web services

 Transactions implemented through Web services are often long-
running

 Since Web services implement business applications, completing a
transaction may involve manual intervention or executing lengthy
business processes

 e.g., Validating an order by checking that goods are in stock

 It may not always possible to preserve ACID properties using 2PC
(too long lock duration)

 The lack of a fixed resource and operation model

 WSDL can represent anything from database insertions to sending a
letter to a customer

 e.g., Rolling back the delivery of a letter to a customer

295

Transactions in web services

 To relax the rigidity of ACID properties and to leverage
compensation mechanisms

 Each of the participating Web services can update its persistent storage
after each step of the transaction (i.e., atomicity and isolation constraints
are relaxed)

 If, for some reason, the transaction must be abort, then the Web services
execute a compensation operation that semantically undoes the effects
of the (partial) transaction execution

 Each operation may have a different compensation logic

 Providers may or may not impose a time limit for cancellation or
impose cancellation fees

296

Relationship with WS-Coordination

 WS-Transaction assumes the existence of a set of Web services that

participate in a transaction and of one or more coordinators that

coordinate the transaction

 WS-Coordination protocols are used by the following parties

 By the initiating Web service, to create a new coordination context

 By a participating Web service, to pass the coordination context to

another Web service

 By a participating Web service, to register for a transaction protocol

with a central transaction coordinator or with its own coordinator

 By a proxy coordinator, to chain with a primary coordinator

297

Atomic transactions

 Five protocols make up the coordination type:

 Completion: To inform the coordinator that it should start a 2PC protocol to
verify the outcome of the transaction and ask the participants to either commit
or abort

 2PC: The standard two-phase commit protocol with a prepare phase and a
commit or abort phase

 PhaseZero: To let all participants know that a 2PC protocol is about to
commence

 OutcomeNotification: A participant can query the coordinator about the
outcome of the transaction at any point during or after the execution of a 2PC
protocol

 CompletionWithAck: The coordinator has to remember the outcome of a
transaction without discarding it, until the requesting Web service sends an
acknowledgement that it has received the outcome

 Defines a structure for the transaction coordination context

 The value of the coordination type entry in the transaction context:
http://schemas.xmlsoap.org/ws/2002/08/wstx

http://schemas.xmlsoap.org/ws/2002/08/wstx

298

Port types in atomic transactions

 The reason for having coordinators implement the participant port types is that in
this way coordinator chaining can be accomplished

atomic transaction
coordinator

CompletionCoordinatorPortType

CompletionWithAckCoordinatorPortType

PhaseZeroCoordinatorPortType

2PCCoordinatorPortType

OutcomeNptificationCoordinatorPortType

CompletionParticipantPortType

CompletionWithAckParticipantrPortType

PhaseZeroParticipantrPortType

2PCParticipantPortType

OutcomeNptificationParticipantPortType

ActivationCoordinatorPortType RegistrationCoordinatorPortType

RegistrationParticipantPortType

WS-Coordination interfaces

WS-Coordination interfaces
needed for chaining

WS-Transaction interfaces

WS-Transaction interfaces
needed for chaining

299

Port types

 A web service that initiates a transaction:
CompletionParticipantPortType or
CompletionWithAckParticipantPortType

 A web service executing database state changes that must be either
committed or rolled back at the end of a transaction:
2PCParticipantPortType

 A web service that executes other forms of state changes (e.g., in-
memory changes) and wishes to be notified before commencement
of a 2PC: PhaseZeroParticipantPortType

 A Web service that would like to check the outcome of a transaction:
OutcomeNotificationParticipantPortType

300

Example scenario for atomic transaction

Web service A
coordinator Ca Web service B coordinator Cb

create CC

T1

register for Completion
completion coordinator

operational message
create CC

T2

register for PhaseZero

register for PhaseZero

PhaseZero coordinator

PhaseZero coordinator

complete
PhaseZero

PhaseZero

register for 2PC

2PC coordinator

2PC coordinator

register for 2PC

PhaseZeroComplete

PhaseZeroComplete

prepare

prepare

prepared

prepared

commit

commit

committed

committed

completed

301

Example

The travel agency and the airline can perform 2PC, but the
museum can perform only a simple, zero-phase update

WSmuseum

Pm-2PC-v

Museum Server

WStravel

Pb-CP

Ct-CP

Ct-2PC-d

Travel Agency Server

WSairline

Pc-2PC

CoordA

Ca-2PC

Pa-2PC-d

Airline Server

Ct-2PC-v

(10) Committed

(9) Commit

(2) Prepare

(7) ReadOnly

(1) Commit T

(12) Committed T (4) Prepare

(5) Prepared

(8) Commit

(11) Committed

(3) Prepare

(6) Prepared
CoordT

302

Business activities

 A coordination type that does not require locking resources

 Two protocols make up the coordination type: BusinessAgreement and

BusinessAgreementWithComplete

 The BusinessAgreement protocol is initiated by a participating web service to

inform the coordinator about the status of its execution (Exited, Completed, or

Faulted)

 After reaching a consensus on whether to go forward with the transaction or to

abort it, the coordinator responds with a Close, Complete, Compensate, or Forget

message to all the participants

 The BusinessAgreementWithComplete protocol is similar to the

BusinessAgreement protocol with the addition that the coordinator has to tell a

participant when all the tasks expected from the latter as part of the transaction

have been requested

303

Port types

 BusinessAgreeementParticipantPortType and BusinessAgreementCoordinatorPortType

 BusinessAgreementWithCompleteParticipantPortType and
BusinessAgreementWithCompleteCoordinatorPortType

 The coordinator should also implement the participant port types so that coordinator chaining can be
accomplished

 The value of the coordination entry in the context for business activities should be set to
http://schemas.xmlsoap.org/ws/2002/08/wsba

business activity
coordinator

BusinessAgreementCoordinatorPortType

BusinessAgreementWithCompleteCoordinatorPortT
ype

BusinessAgreementParticipantPortType

BusinessAgreementWithCompleteParticipantrPortType

ActivationCoordinatorPortType RegistrationCoordinatorPortType

RegistrationParticipantPortType

WS-Coordination interfaces

WS-Coordination interfaces
needed for chaining

WS-Transaction interfaces

WS-Transaction interfaces
needed for chaining

http://schemas.xmlsoap.org/ws/2002/08/wsba

304

An execution scenario of Business activity protocol

1. A initiates a business activity

conversation and passes the context

to B and C. B and C register for the

BusinessAgreement protocol with R

2. B successfully finishes its tasks, but

C encounters a failure. So, it sends

a Faulted message to R

3. By the time R receives the Faulted

message from C, it may or may not

have received the Completed

message from B. If it has received

the Completed message from B, R

sends a Compensate message to B.

If not, it sends a Cancel message to

B

4. R also sends a Forget message to

C, denoting that the protocol is

terminated and no further actions

are required form C

Web service A Web service B Web service C Coordinator R

create CC

A1

operational message

register for BusinessAgreement

BusinessAgreement coordinator

operational message

register for BusinessAgreement

BusinessAgreement coordinator

completed

faulted

compensate

forget

305

BTP: Business Transaction Protocol

 Developed by OASIS to automate and manage long-running web-

based collaborative business applications

 To support interactions that cross application and administrative

boundaries, thus requiring extended transactional support beyond the

classical ACID properties

 relaxes the ACID properties via two subprotocols:

 atoms, where isolation is relaxed

 cohesions, where both isolation and atomicity are relaxed

 More suitable for loosely coupled applications

306

BTP example for cohesion

Investment

Manager
BTP

Composer

Dell Stock

Preferred

Ford Stock

Preferred

IBM Stock

Preferred

Federal

TBond

Century

Real Estate

Begin

Begun(context)

BuyStockRequest(context)

BuyBondRequest(context)

BuyRealEstateRequest(context)

EnrollPrice

Enroll Enroll
Enroll

Price Price Price

Confirm Dell & Century

Cancel Ford & TBond

Prepare

Prepared

Confirm(context)
Confirm(context)

Cancel(context) Cancel(context)

Confirmed(context)Confirmed(context)

Cancelled(context)Cancelled(context)

Confirmed(context)

307

Web Services Choreography Working Group

 2003년 1월 활동 시작으로 2004년 12월까지
활동을 완료할 계획

 Web Services의 상호간의 메시지를 기술하는 WS-

CDL 1.0 표준을 4월에 제안하고 10월에 수정

 OASIS의 WS-BPEL 등 타 choreography 기술
언어와 표준 선점에 경쟁 중임

 To specify a declarative, and WSDL 1.2 based

language that describes cross enterprise

collaborations of Web Services participants by

defining their common observable behavior, where

synchronized information exchanges through their

shared contact points occur, when the commonly

defined ordering rules are satisfied.

308

Documents by WS Choreography WG

 Working Drafts

 Web Services Choreography Requirements 1.0 (Working Draft)

 WS Choreography Model Overview (Working Draft)

 Web Services Choreography Description Language Version 1.0

309

WS-CDL

 An XML-based language that describes

peer-to-peer collaborations of Web Services

participants by defining from a global

viewpoint their common and complementary

observable behavior where ordered message

exchanges result in accomplishing a

common business goal

 Supports SOAP Version 1.2, WSDL 2.0,

and the Web's architectural layers

 The first working draft was released 27

April 2004

 New working draft of WS-CDL version 1.0

in October, 2004

310

Travel agent example

1. The client interacts with the travel agent to request information

about various services.

2. Prices and availability matching the client requests are returned to

the client. The client can then perform one of the following actions:

1. The client can refine their request for information, possibly selecting

more services from the provider (Repeat step 2). OR

2. The client may reserve services based on the response,

OR

3. The client may quit the interaction with the travel agent.

3. When a customer makes a reservation, the travel agent then checks

the availability of the requested services with each service provider.

311

Travel agent example (cont.)

4. Either

1. All services are available, in which case they are reserved. OR

2. For those services that are not available, the client is informed.

1. Either

1. Given alternative options for those services.

OR

2. Client is advised to restart the search by going back to step 1.

2. Go back to step 3.

5. For every relevant reserved service the travel agent takes a

deposit for the reservation. A credit card can be used as a form

of deposit.

6. The client is then issued a reservation number to confirm the

transaction.

312

Example

The example right shows a

Choreography that involves one

Interactions. The Interaction

happens from Role Type

“Customer” to Role Type

“Retailer” on the Channel

“retailer-channel” as a

request/response message

exchange.

313

Example (cont.)

