
Chapter 5B
Large and Fast:
Exploiting Memory
Hierarchy

One Transistor Dynamic RAM

TiN top electrode (VREF)

Ta2O5 dielectric

W bottom
electrode

poly
word
line

access transistor

1-T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate,
trench, stack)

VREF

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

DRAM Cell Layout: 8F2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

DRAM Cell Layout: 8F2

4F

2F

Source: CMOS Circuit Design , Layout, and Simulation - Baker

DRAM Cell Layout: 6F2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

SRAM Cell Layout: 140F2

Source: CMOS Circuit Design , Layout, and Simulation - Baker

 DRAM Architecture

Ro
w

 A
dd

re
ss

D

ec
od

er

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

D Data

• Bits stored in 2-dimensional arrays on chip
• Modern chips have around 4-8 logical banks on each chip

– each logical bank physically implemented as many smaller arrays

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

DRAM Packaging

 DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals
connected in parallel (sometimes need buffers
to drive signals to all chips)

 Data pins work together to return wide word
(e.g., 64-bit data bus using 16x4-bit parts)

Address lines multiplexed
row/column address

Clock and control signals

Data bus
(4b,8b,16b,32b)

DRAM
chip

~12

~7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

DRAM Packaging, Mobile Devices

[Apple A4 package cross-section, iFixit 2010]

Two stacked
DRAM die

Processor plus
logic die

[Apple A4 package on circuit board]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

DRAM Operation
 Three steps in read/write access to a

given bank
 Row access (RAS)
 Column access (CAS)
 Precharge: charges bit lines to known value,

required before next row access
 Each step has a latency of around 15-20ns in

modern DRAMs
 Various DRAM standards (DDR, RDRAM) have

different ways of encoding the signals for
transmission to the DRAM, but all share same
core architecture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Row Access (RAS)
 decode row address, enable addressed

row (often multiple Kb in row)
 bitlines share charge with storage cell
 small change in voltage detected by

sense amplifiers which latch whole row of
bits

 sense amplifiers drive bitlines full rail to
recharge storage cells

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Column Access (CAS)
 decode column address to select small

number of sense amplifier latches (4, 8,
16, or 32 bits depending on DRAM
package)

 on read, send latched bits out to chip pins
 on write, change sense amplifier latches

which then charge storage cells to
required value

 can perform sequentially multiple column
accesses on same row without another
row access (burst mode)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Double-Data Rate (DDR2) DRAM

[Micron, 256Mb DDR2 SDRAM datasheet]

Row Column Precharge Row’

Data

200MHz Clock 400Mb/s
Data Rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

CPU-Memory Bottleneck

Memory CPU

Performance of high-speed computers is usually
limited by memory bandwidth & latency

• Latency (time for a single access)
Memory access time >> Processor cycle time

• Bandwidth (number of accesses per unit time)

if fraction m of instructions access memory,
⇒1+m memory references / instruction
⇒CPI = 1 requires 1+m memory refs / cycle

(assuming MIPS RISC ISA)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Causes for Cache Misses
 Compulsory miss: first-reference to a block a.k.a. cold
 start misses

- Occurs because all blocks are invalid at the beginning.
 - misses that would occur even with infinite cache

• Capacity miss: cache is too small to hold all data
 needed by the program
 - Occurs if the number of different blocks in requests is
 more than the number of blocks in the cache

• Conflict miss: misses that occur because of collisions
 due to block-placement strategy

- Occurs if the number of requests for a specific set is
more than its way number.

- misses that would not occur with full associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Effect of Cache Parameters

• Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

• Higher associativity
+ reduces conflict misses
- may increase hit time

• Larger block size
+ reduces compulsory and capacity misses
- increases conflict misses and miss penalty

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Virtual Memory
 Use main memory as a “cache” for

secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)
 Programs share main memory

 Each gets a private virtual address space
holding its frequently used code and data

 Protected from other programs
 CPU and OS translate virtual addresses to

physical addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault

§5.4 Virtual M
em

ory

Absolute Addresses

 Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/O devices)

 Addresses in a program depended upon where the
program was to be loaded in memory

 But it was more convenient for programmers to write
location-independent subroutines

EDSAC, early 50’s

How could location independence be achieved?

No absolute address in code; use only relative address

Linker and/or loader modify addresses of subroutines and
callers when building a program memory image

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Bare Machine

 In a bare machine, the only kind of address
is a physical address: no address translation

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Memory Management
 From early absolute addressing schemes, to

modern virtual memory systems with support for
virtual machine monitors (VMMs)

 Can separate into orthogonal functions:
 Translation (mapping of virtual address to physical address)
 Protection (permission to access word in memory)
 Virtual memory (transparent extension of memory space using

slower disk storage)

 But most modern systems provide support for all
the above functions with a single page-based
system

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Protection
 The first motivation for virtual memory
 A set of mechanisms for ensuring that multiple

processes sharing the processor, memory, or I/O
devices cannot interfere with one another by
reading or writing each other’s data.

 These mechanisms also isolate the OS from a
user process.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Overlay
 Programmers divided program into pieces and

then identified the pieces that were mutually
exclusive.

 These overlays were loaded or unloaded under
user program control during execution, with the
programmer ensuring that the program never
exceeded the total size of the memory.
 Overlays were traditionally organized as modules,

each containing both code and data.
 Sharing was not the reason that virtual memory

was invented!

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Overlay
 The second motivation for virtual memory

 To allow a single user program to exceed the size of
primary memory

 Relocation: the same program can run any
position in physical memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Dynamic Address Translation
Motivation

In the early machines, I/O operations were slow and
each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped.
 How?⇒ multiprogramming with DMA I/O
 devices, interrupts

Location-independent programs
Programming and storage management ease

 ⇒ need for a base register
Protection

Independent programs should not affect
each other inadvertently

 ⇒ need for a bound register
Multiprogramming drives requirement for resident
supervisor software to manage context switches
between multiple programs

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Segmentation vs Paging
 Note that paging uses fixed-size blocks
 Segmentation: a variable-size block scheme

 A segmentation number and a segmentation offset
 A bound check is also needed to make sure that the

offset is within the segment
 The major use of segmentation

 to support more powerful methods of protection and
sharing in an address space

 The major disadvantage of segmentation
 It splits the address space into logically separate

pieces (segments) that must be manipulated as a two-
part address (base and bound addresses).

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Base and Bound Registers

Base and bounds registers are visible/accessible only when
processor is running in the supervisor mode

Load X

Program
Address
Space

Bound
Register ≤ Bounds

Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
Address Effective

Address

Base Physical Address

Segment Length

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Separate Areas for Program and Data

Physical
Address

Physical
Address

Load X

Program
Address
Space

M
ai

n
M

em
or

y

data
segment

Data Bound
Register
Mem. Address
Register

Data Base
Register

≤

+

Bounds
Violation?

Program Bound
Register

Program Counter

Program Base
Register

≤

+

Bounds
Violation?

program
segment

Logical
Address

Logical
Address

What is an advantage of this separation?
 1. protection 2. permit sharing program segments

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Base and Bound Machine

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

≤

+

Logical
Address

Bounds Violation?

Physical
Address

Prog. Bound
Register

Program Base
Register

≤

+

Logical
 Address

Bounds Violation?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Memory Fragmentation

 As users come and go, the storage is external “fragmented”.
 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4
8K

Users 4 & 5
arrive

Users 2 & 5
leave OS

Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Address Translation

shared page
page fault An event that occurs

when an accessed
page is not present
in main memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Address Translation

A page: 4 KB

A address space: 4 GB

A address space: 1 GB

By page tables Which is larger between
a virtual address space
and a physical address
space?

 Processor-generated address can be split
into:

Paged Memory Systems

Page tables make it possible to store the pages of a
program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

• A page table contains the physical address of the base of
each page:

Physical
Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Private Address Space per User

• Each user has a page table
• Page table contains an entry for each user page

VA1 User 1

Page Table

VA1 User 2

Page Table

VA1 User 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Where Do Page Tables Reside?
 Space required by the page tables (PT) is

proportional to the address space, number of
users, ...

 ⇒ Space requirement is huge

 Simple idea: Keep PTs in the main memory

 needs one reference to retrieve the page base address
and another to access the data word

 ⇒ doubles the number of memory references!

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Page Tables in Physical Memory

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT User 1

PT User 2

VA1

Ph
ys

ic
al

 M
em

or
y

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

address translation

memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Page Fault Penalty
 On page fault, the page must be fetched from

disk
 Takes millions of clock cycles
 Handled by OS code (software) because its overhead

is small compared to the disk access time
 Try to minimize page fault rate

 Fully associative placement of pages in memory
 Can be placed anywhere in main memory

 Smart replacement algorithms (e.g. LRU) can be used
 Write-through will not work since writes take too long.

Instead, write-back is used in virtual memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Fully associative replacement
 A page can be anywhere in the main memory

 A full search by comparing a tag is impractical
 In virtual memory we locate pages by using a

table that indexes pages in the memory
 This structure is called a page table.

 The page table stores placement information
 Each page table entry (PTE) is indexed by virtual

page number
 A page table base register in CPU points to the

starting address of the page table in the main
memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

PTE
 If the page is present in memory,

 its PTE stores the physical page number and
 status bits (referenced, dirty, …)

 If the page is not present in memory,
 its PTE can refer to a location in the swap space on disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Mapping Pages to Storage

In many systems, the table of physical page addresses
and disk page addresses, while logically one table, is stored
in two separate data structures.
Dual tables are justified in part because we must keep the
disk addresses of all the pages, even if they are currently in
main memory.

Linear Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

 Page Table Entry (PTE)
contains:
 A bit to indicate if a page

exists in main memory
 PPN (physical page number)

for a memory-resident page
 DPN (disk page number) for

a page on the disk
 Status bits for protection and

usage
 OS sets the Page Table

Base Register whenever
active user process
changes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Replacement and Writes
 To reduce page fault rate, prefer least-

recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on

access to page
 Periodically cleared to 0 by OS
 A page with reference bit = 0 has not been

used recently
 Disk writes take millions of cycles

 Write in Block at once, not in location
 Write through is impractical
 Use write-back
 Dirty bit in PTE set when page is written

Size of Linear Page Table
With 32-bit addresses, 4-KB pages & 4-byte PTEs:

⇒ 220 PTEs, i.e, 4 MB page table per user
⇒ 4 GB (232) of swap needed to back up full virtual address

 space

Larger pages?
• Internal fragmentation (Not all memory in page is used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???

• Even 1MB pages would require 244 8-byte PTEs (35 TB!)

 What is the “saving grace” ?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset

0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

Ph
ys

ic
al

 M
em

or
y

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Two-Level Page Tables

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

VA1

User 1

User1/VA1
User2/VA1

Level 1 PT
User 1

VA1

User 2

Level 2 PT
User 1

Physical
Memory

p2

p1

Virtual
Address
Spaces p1 p2 offset

21 22 31

10-bit
L1 index

0 11 12

10-bit
L2 index

offset

Address Translation & Protection

• Every instruction and data access needs address
 translation and protection checks

 A good VM design needs to be fast (~ one cycle) and space
 efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

 Protection
Check

Exception?

Kernel/User Mode

Read/Write

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Translation Using a Page Table

 the starting address

(page table pointer)

 1 M entries, which
corresponds to 256
pages, assuming that
each entry is 32-bit.
 too big to be all
entries in the memory
 Each entry would
typically be rounded
up to 32 bits for ease
of indexing. The extra
bits for protections.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Fast Translation Using a TLB
 Address translation would appear to require

extra memory references
 One to access the PTE
 Then the actual memory access

 But access to page tables has good (?) locality
 So use a translation cache (a fast cache of the page

table) within the CPU
 Called a Translation Look-aside Buffer (TLB)
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate
 TLB Misses could be handled by hardware or

software

Translation Lookaside Buffers
Address translation is very expensive!

In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
 TLB hit ⇒ Single-Cycle Translation
 TLB miss ⇒ Page-Table Walk to refill TLB

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

TLB hit?

TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Fast Translation Using a TLB

If there is no matching
entry in the TLB for a page,
the page table must be
examined.
Since the page table has
an entry for every virtual
page, no tag field is needed

A cache that contains a subset of the page table

	Chapter 5B
	One Transistor Dynamic RAM
	DRAM Cell Layout: 8F2
	DRAM Cell Layout: 8F2
	DRAM Cell Layout: 6F2
	SRAM Cell Layout: 140F2
	 DRAM Architecture
	DRAM Packaging
	DRAM Packaging, Mobile Devices
	DRAM Operation
	Row Access (RAS)
	Column Access (CAS)
	Double-Data Rate (DDR2) DRAM
	CPU-Memory Bottleneck
	Causes for Cache Misses
	Effect of Cache Parameters
	Virtual Memory
	Absolute Addresses
	Bare Machine
	Memory Management
	Protection
	Overlay
	Overlay
	Dynamic Address Translation
	Segmentation vs Paging
	Base and Bound Registers
	Separate Areas for Program and Data
	Base and Bound Machine
	Memory Fragmentation
	Address Translation
	Address Translation
	Paged Memory Systems
	Private Address Space per User
	Where Do Page Tables Reside?
	Page Tables in Physical Memory
	Page Fault Penalty
	Fully associative replacement
	PTE
	Mapping Pages to Storage
	Linear Page Table
	Replacement and Writes
	Size of Linear Page Table
	Hierarchical Page Table
	Two-Level Page Tables
	Address Translation & Protection
	Translation Using a Page Table
	Fast Translation Using a TLB
	Translation Lookaside Buffers
	Fast Translation Using a TLB

