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Two kinds of TLB Misses 
 Check the valid bit of a page table entry 

 If it is on,  the page is in memory (a simple TLB miss). 
 Otherwise, the page is not in memory (a page fault) 

 A simple TLB miss (refill TLB) 
 Load the PTE into TLB and retry  TLB hit 
 What if the page table is not in memory? 

 A page fault for the page table  
 Could be handled in hardware or in software 

 Little performance difference between the two approaches. 

 A page fault (for instruction or data) 
 OS handles fetching the corresponding page from the 

disc and updating the page table 
 Then restart the faulting instruction 
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A TLB Hit 

If there is no matching     
entry in the TLB for a page, 
the page  table must be      
examined.  
Since the page table has 
an entry for every virtual     
page, no tag field is needed 

A cache that contains a subset of the page table 

in the main memory 
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A simple TLB Miss 

If there is no matching     
entry in the TLB for a page, 
the page  table must be      
examined.  
Since the page table has 
an entry for every virtual     
page, no tag field is needed 

A cache that contains a subset of the page table 

in the main memory 

1 

1. TLB miss handler copy the page 
table entry without checking its  
valid bit. 
 
TLBmiss: 
 mfc0   $k1, Context    # copy PTE address 
 lw       $k1, 0($k1)       # get PTE 
 mtc0   $k1, EtnryLo    # put into a special reg 
 tlbwr                            # put into TLB at random 
 eret                             # return 
 
It takes about a dozen clock cycles 
 
2. re-try the address translation: TLB hit 
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Page fault 
A cache that contains a subset of the page table 

0 

1 

1 

in the main memory 

1. TLB miss handler copy the page 
table entry without checking its  
valid bit. 
 
TLBmiss: 
 mfc0   $k1, Context    # copy PTE address 
 lw       $k1, 0($k1)       # get PTE 
 mtc0   $k1, EtnryLo    # put into a special reg 
 tlbwr                            # put into TLB at random 
 eret                             # return 
 
Context: upper 12 bits: bases address of page table 
              lower 18 bits from BADVaddr 
Tlbwr: copy from EntryLo into the TLB entry selected 
           by Random 
 
2. re-try the address translation: TLB miss again 
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Exception Handler 
 Handling a TLB miss or a page fault requires using 

the exception mechanism 
 Interrupt the active process 
 Transfer control to the OS  
 (exception handling) 
 Resume execution of the interrupted process 

 The OS is particularly vulnerable  
 between the time  we begin executing the exception 

handler and the time that OS has saved all the state of 
the process because another exception can occur. 

 set the supervisor mode and disable the exceptions.  
 After  the OS saves just enough state to allow it to 

recover, then re-enable the exceptions.. 



Handling a TLB Miss 
Software (MIPS, Alpha) 

TLB miss causes an exception and the operating system 
walks the page tables and reloads TLB. 
A privileged “untranslated” (unmapped)  addressing mode 
used for page table walk 
Unmapped: a portion of the address space that cannot have page 
fault. 

Hardware (SPARC v8, x86, PowerPC) 
A memory management unit (MMU) walks the page tables 
and reloads the TLB 
 

If a missing (data or PT) page is encountered during the 
TLB reloading, MMU gives up and signals a Page-Fault 
exception for the original instruction  
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Page Table Walk: SPARC v8 

31          11          
0 

Virtual Address Index 1     Index 2      Index 3       Offset 
31            23            17             11           0 

Context 
Table 
Register 

Context 
Register 

root ptr 

PTP 
PTP 

PTE 

Context Table 

L1 Table 

L2 Table 
L3 Table 

Physical Address PPN           Offset 

MMU does this page table walk in hardware on a TLB miss 
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64 entries 

64 entries 

256 entries 
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A linear Page Table 

 the starting address 

(page table pointer) 

 1 M entries, which 
corresponds to 256 
pages, assuming that 
each entry is 32-bit.  
  too big to be all 
entries in the memory 

1,000,000 entries 



Page-Based Virtual-Memory 

 Assumes page tables held in untranslated  (upmapped) 
physical memory 
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PC 
Inst. 
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Inst.  
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Data  
Cache W + 
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Protection violation? 

Data 
TLB 

Main Memory (DRAM) 

Memory Controller Physical 
Address 

Physical 
Address 

Physical Address 

Physical  
Address 

Page-Table  
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Virtual 
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Physical  
Address 

Virtual  
Address 

Hardware Page  
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Physical  
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read 



Address Translation: detailed? 
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Virtual Address 

TLB 
Lookup 

Page Table 
Walk 

Update TLB Page Fault 
(OS loads page) 

Protection 
Check 

Physical 
Address 
(to cache) 

miss hit 

       the  page is  
∉ memory          ∈ memory denied permitted 

Protection 
Fault 

hardware 
hardware or software 
software 

Segmentation 
fault Retry 

translation 
Retry 
translation 

e.g. A TLB miss takes about 13  
clock cycles, assuming the code  
and  the page table entry are in 
the caches. 
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TLB and Cache Interaction 
 Note that the tag and 

data RAMs are split.  
 By addressing the long 

but narrow data RAM 
with the cache index 
concatenated with the 
block offset, we select 
the desired word in the 
block without a 16:1 
multiplexor. 

 While the cache is 
direct mapped, the TLB 
is fully associative.  

4 KB page 
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TLB and Cache Interaction 
 If the valid bit of the 

matching TLB entry is on, 
the access is a TLB hit. 
 Bits from the physical page 

number together with bits 
from the page offset form 
the index that is used to 
access the cache. 

 If the cache tag uses 
physical address 
 Need to translate it  before 

cache lookup 
 Alternative: use virtual 

address tag (?) 
 No need to translate for cache 

access 
4 KB page 
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TLB and Cache Interaction 

Notice that a TLB hit and a cache 
hit are independent events, but a 
cache hit can only occur after a 
TLB hit occurs, which means that 
the data must be present in 
memory before being loaded into  
the cache.  

from main memory 



 a TLB miss, a page fault, and  a cache miss 
 Assuming that the cache is physically  
    indexed and physically tagged 
Three of these combinations are impossible 
 One is possible (TLB hit, virtual memory hit,  
    cache miss) but never detected.  

Possible Combination of Events 
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Memory Protection 
 Different tasks can share parts of their virtual address 

spaces 
 But need to protect against errant access 
 Requires OS assistance 

 Hardware support for OS protection 
 Privileged supervisor mode (aka kernel mode) 
 Privileged instructions (e.g.  writes for TLB and page table register) 
 Page tables and other state information only accessible in 

supervisor mode 
 System call exception (e.g., syscall in MIPS), which is a special 

instruction that transfers control from  user mode to a dedicated 
location in supervisor  code space., invoking the exception 
mechanism  in the process. 

 Return from exception (ERET): change to user mode as well as 
restoring PC 
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Page Fault Handler 
 Transfer control to the OS to deal with a page fault. 

 Detect a page fault by checking the valid bit of the page table 
entry 

 Use faulting virtual address to find PTE 
 Locate page on disk 
 Choose page to replace 

 If dirty, write to disk first: very slow 

 Read page into memory and update page table: very slow 

 OS select another process to execute in the processor 
until the disk access completes: context switching 

  OS can restore the state of the process originally caused 
the page fault and execute ERET 
 The user process restart from faulting instruction 
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Context switch 
 Change the internal state of the processor to allow a 

different process to use the processor that includes 
saving the state needed to return to the currently 
executing process. 
 When the OS decides to change from running process P1 to 

running process P2. 

 If there is no TLB, it suffices to change the page table 
register to  point to P2’s page table. 

 With a TLB, we must clear the TLB entries that belong to  
P1. –  not efficient if process switch rate were high. 

 Alternative: extend the virtual address space by adding a 
process identifier (task identifier) : e.g. 8-bit address 
space ID (ASID) 
 Similar problems can occur for a cache. 
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MIPS R3000 
 Kernal mode address 

 0xx : kuseg 2GB: mapped like user process 
 100 : kseg0 0.5GB: cached and unmapped 
 101 : kseg1 0.5GB: uncached and unmapped 
 11x : kseg2 1GB: mapped cachable (user page table) 

 Address mapping:  31 bits (top bit is 0)+ 6-bit process id 
 Upper 19 bits + 6-bit process id  physical page # 
 Use a linear page table in kseg2 
 We also use paging kseg2 using a linear page table 
 The page table for kseg2 is stored in kseg0 

 Given a 32-bit virtual address from kuseg, 
 Top 9 bits: index of kseg2 page table stored in kseg0 (unmapped) 
 After this lookup, if the page table is not resident in kseg2, read it 

back from disk 
 Middle 10 bits: index of the page table 
 After this lookup of the physical page #, , if the page table is not 

resident in kuseg, read it back from disk 
 Lower 12 bits: offset of the physical page in kuseg 
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The Memory Hierarchy 

 Common principles apply at all levels of 
the memory hierarchy 
 Based on notions of caching 

 At each level in the hierarchy 
 Block placement 
 Finding a block 
 Replacement on a miss 
 Write policy 

§5.5 A C
om
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The BIG Picture 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21 

Block Placement 
 Determined by associativity 

 Direct mapped (1-way associative) 
 One choice for placement 

 n-way set associative 
 n choices within a set 

 Fully associative 
 Any location 

 Higher associativity reduces miss rate 
 Increases complexity, cost, and access time 
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Finding a Block 

 Hardware caches 
 Reduce comparisons to reduce cost 

 Virtual memory 
 Full table lookup makes full associativity feasible 
 Benefit in reduced miss (page fault) rate 

Associativity Location method Tag comparisons 
Direct mapped Index 1 
n-way set 
associative 

Set index, then search 
entries within the set 

n 

Fully associative Search all entries #entries 
Full lookup table 0 (page table) 
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Replacement 
 Choice of entry to replace on a miss 

 Least recently used (LRU) 
 Complex and costly hardware for high associativity 

 Random 
 Close to LRU, easier to implement 

 Virtual memory 
 LRU approximation with hardware support 
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Write Policy 
 Write-through 

 Update both upper and lower levels 
 Simplifies replacement, but may require write 

buffer 
 Write-back 

 Update upper level only 
 Update lower level when block is replaced 
 Need to keep more state 

 Virtual memory 
 Only write-back is feasible, given disk write 

latency  
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Sources of Misses 
 Compulsory misses (aka cold start misses) 

 First access to a block 
 Capacity misses 

 Due to finite cache size 
 A replaced block is later accessed again 

 Conflict misses (aka collision misses) 
 In a non-fully associative cache 
 Due to competition for entries in a set 
 Would not occur in a fully associative cache of 

the same total size 
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Cache Design Trade-offs 

Design change Effect on miss rate Negative performance 
effect 

Increase cache size Decrease capacity 
misses 

May increase access 
time 

Increase associativity Decrease conflict 
misses 

May increase access 
time 

Increase block size Decrease compulsory 
misses 

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution. 
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Cache Pollution 
 defined as the displacement of a cache 

element by a less useful one.  
 In the context of processor caches, cache 

pollution occurs whenever a non-reusable 
cache line is installed into a cache set, 
displacing a reusable cache line.  

 Reusability is determined by the number of 
times a cache line is accessed after it is 
initially installed into the cache but before 
its eviction. 
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Virtual Machines 
 Idea related to VM is as old as virtual memoy 
 Host computer emulates guest operating system 

and machine resources 
 Improved isolation of multiple guests 
 Avoids security and reliability problems 
 Aids sharing of resources 

 Virtualization has some performance impact 
 Feasible with modern high-performance computers 

 VMM is the software that support VMs 
 Host: underlying hardware 
 Guests: VMs that share the resources 

 

§5.6 Virtual M
achines 
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System Virtual Machines 
 VM:(broadest definition) basically all emulation 

methods that provide a standard software 
interface, such as Java VM 

 System VM:(Here) provide a complete system-
level environment at the binary ISA level. 
 But some VM run different ISA in the VM from the 

native hardware 
 Present the illusion that the users have an entire 

computer themselves, including a copy of OS 
 A computer  runs multiple VMs and can support various OSes. 

 Examples: IBM VM/370 (1970s technology!), VMWare, 
Microsoft Virtual PC 
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Virtual Machine Monitor 
 VMM or Hypervisor 
 VMM determines how to map virtual resources to 

physical resources (Memory, I/O devices, CPUs) 
 Much smaller than a traditional OS 
 Isolation part of the VMM :  only 10K lines of code 

 VMs provide three major benefits 
 Provide improved protection 
 Managing software: provide an abstraction that can run 

the complete software stacks: old, stable, new OSes 
 Managing hardware: VM allows separate software 

stacks to run independently yet share hardware. Some 
VMM support migration of a running VM to a different 
computer, either to balance load or to evacuate from 
failing hardware 
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Virtualization Cost 
 Depends on workload 

 Processor-bound program: zero overhead  
   (OS is rarely invoked) 
 IO-intensive program: high overhead (OS-intensive) 

 The overhead is determined by both the number 
of instructions that must be emulated by the 
VMM and by how much time each takes to 
emulate 

 VMM must control just about everything 
 Access to privileged state 
 Address translation 
 I/O 
 Exceptions, and interrupts 
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Virtual Machine Monitor 
 What must a VMM do? 

 It presents a software interface to guest software 
 It must isolate the state of guests form each other 
 It must protect itself from guest software, including 

guest OSes. 
 Guest code runs on native machine in user 

mode 
 Traps to VMM on privileged instructions and access to 

protected resources 
 Guest OS may be different from host OS 
 VMM handles real I/O devices 

 Emulates generic virtual I/O devices for guest 
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Example: Timer Virtualization 
 In native machine, on timer interrupt 

 OS suspends current process, handles interrupt, 
selects and resumes next process 

 With Virtual Machine Monitor on timer interrupt 
 VMM suspends current VM, handles interrupt, selects 

and resumes next VM 
 If a VM requires timer interrupts 

 VMM emulates a virtual timer 
 Emulates interrupt for VM when physical timer 

interrupt occurs 
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Instruction Set Support for VM 
 Basic requirements 

 Support User and System modes 
 Privileged instructions only available in system mode 

 Trap to system if executed in user mode 
 All physical resources only accessible using privileged 

instructions 
 Including page tables, interrupt controls, I/O registers 

 Virtualizable ISA 
 IBM 370 architecture: modified IBM 360 ISA 
 X86, MIPS, ARM are not a virtualizable ISA 

 Renaissance of virtualization support 
 Current ISAs (e.g., x86) adapting 
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ISA for protection 
 Protection is  a joint effort of architecture and 

operating system  Need to change ISA 
 Example: 

 X86 instruction POPF: load the flag registers from TOS, 
including IE (interrupt enable) 
 In user mode: trap it and simply change all flags except IE 
 In system mode: it does change IE (since a guest OS runs in 

user mode inside the VM, it is a problem!) 

 Three steps to improve VM performance 
1. Reduce cost of processor virtualization 
2. Reduce interrupt overhead cost due to virtualization 
3. Reduce interrupt cost by steering interrupts to the 

proper VM without invoking the VMM 
 In 2006, Intel and AMD try to address the first point 
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VM and virtual memory 
 Virtualization of virtual memory: introduce 

another indirection on each memory access 
 Virtual memory, real memory, physical memory 
 Different terms: Virtual memory, physical memory, 

machine memory 
 Guest OS: map virtual memory to real memory 
 VMM: map real memory to physical memory 
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VM and virtual memory 
 Rather than pay an extra level of indirection, 

VMM  maintains a shadow page table that maps 
directly for the guest virtual address to the 
physical address space of the hardware. 

 VMM must trap any attempts by guest OS to 
change its page table or to access page table 
pointer, which  is commonly done by write 
protecting the guest page tables and trapping 
any access to the page table pointer by a guest 
OS.  
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Virtualization of I/O 
 Virtualization of I/O is by far the most difficult part 

of system virtualization 
 Because of the increasing number of I/O devices 

attached to a computer and the increasing diversity of 
I/O device types 

 Another difficult is sharing  of a real device 
among  multiple VMs 

 The VM illusion can be maintained by giving 
each VM generic versions of each type of I/O 
device driver, and leaving it to the VMM to 
handle real I/O 
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Parallelism and Memory Hierarchies 
 The  processors on a single chip shares a 

common physical address space 
 Each processor has its own cache 

§5.8 P
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 and M
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Cache Coherence Problem 
 Suppose two CPU cores share a physical 

address space 
 Write-through caches 

Time 
step 

Event CPU A’s 
cache 

CPU B’s 
cache 

Memory 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 

Different value: Cache coherent problem ! 
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Coherence and Consistency 
 A memory system is coherent if reads return 

most recently written value. 
 This definition, although intuitively appealing, is vague 

and simplistic 
 The reality is much more complex 

 This simple definition contains two different 
aspects of memory system behaviour. 
 Both of which are critical to writing correct shared 

memory program 
 Coherence: what values can be returned  by a read 

 Most recently ( or last) written value 
 Consistency: when a written value will be returned by 

a read ( or when a read can see a written value) 
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A memory system is coherence if 
 (1. preserving program order) A read by a processor 

P to a location X that follows a write by the same 
processor P to X, with no writes of X by another 
processor occurring between the write and the read by P, 
always returns the value written by P. -- uniprocessor 

 (2. a coherent view of memory) A read by a 
processor P1 to location X that  follows a write by 
another processor P2 to X returns the written value if the 
read and write are sufficiently separated in time and no 
other writes to X occur between the two accesses. 
 

 (3. write serialization) Two writes to the same location 
by any two processors are seen in the same order by all 
processors. 

Not addressing (consistency) exactly when P1 see a write of X by P2 
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Basic schemes for coherence 
 Operations performed by caches in 

multiprocessors to ensure coherence 
 Migration (copy) of shared data to local caches 

 Reduces both bandwidth and latency for shared memory 
 Replication of read-shared data in a local cache 

 Reduces both latency and contention for access 

 Supporting this migration and replication is critical 
to performance in accessing shared data 
 Introduce a hardware protocol to maintain coherent 

data. 
 Key to implementing a cache coherent protocol is 

tracking the state of any sharing of a data block. 
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Cache Coherence Protocols 
 Snooping protocols:  most popular 

 Every cache that has a copy of the shared data also 
has a copy of the sharing status of the block 

 No centralized status is kept. 
 The cache are accessible via  some broadcast 

medium (a bus or network) 
 Each cache controller monitors the medium to 

determine whether or not they have a copy of  a block 
that is requested on a bus. 

 Directory-based protocols 
 Caches and memory record  sharing status of blocks 

in just one location, called the directory 
 More scalable: higher overhead but lower traffic 

between caches 
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Invalidating Snooping Protocols 
 Cache gets exclusive access to a block when it is written 

 Broadcasts an invalidate message on the bus 
 Subsequent read in another cache misses 

 Owning cache supplies updated value 

CPU activity Bus activity CPU A’s 
cache 

CPU B’s 
cache 

Memory 

0 
CPU A reads X Cache miss for X 0 0 
CPU B reads X Cache miss for X 0 0 0 
CPU A writes 1 to X Invalidate for X 1 0 
CPU B read X Cache miss for X 1 1 1 

• The CPU cache and memory contents show the value after the processor and bus activity have both completed.  
• When the second miss by B occurs, CPU A responds with the value canceling the response from memory.  
  In addition, both the contents of B’s cache and the memory contents of X are updated.  
• This update of memory, which occurs when a block becomes shared, simplifies the protocol, but it is possible to track  
  the ownership and force the write-back only if the block is replaced.  
• This requires the introduction of an additional state called “owner,” which indicates that a block may be shared,  
  but the owning processor is responsible for updating any other processors and memory when it changes the block or replaces it.  

invalidate 

migration 

replication 

replication 
write-back 
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False Sharing 
 Block size plays an important role in cache 

coherency 
 For example, take the case of snooping on a cache 

with a block size of 8 words, with a single word 
alternatively written and read by two processors. 

 Most protocols exchange full blocks between 
processors, thereby increasing coherency bandwidth 
demands. 

 Large blocks can also cause what is called false 
sharing: 
 When two unrelated shared variables are located in the 

same cache block, the full block is exchanged between 
processors.  
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Memory Consistency Model 
 Suppose two CPU cores share a physical 

address space 
 Write-through caches 

Time 
step 

Event CPU A’s 
cache 

CPU B’s 
cache 

Memory 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 

Different value: Cache coherent problem ! 

When does CPU B see a write of X by CPU A? 
Depends on memory consistency model 



symmetric 
• All memory is equally far  
  away from all processors 
• Any processor can do any I/O 
  (set up a DMA transfer) 

Symmetric Multiprocessors 

Memory 
I/O controller 

Graphics 
output 

CPU-Memory bus 
bridge 

Processor 

I/O controller I/O controller 

I/O bus 

Networks 

Processor       
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Memory Consistency Model 
 When are writes seen by other processors? 

 “Seen” means that a read returns the written value 
 Can’t be instantaneously 

 Assumptions 
 A write completes only when all processors have seen 

it 
 A processor does not reorder writes with other (read 

or write) accesses 
 Consequence 

 P writes X then writes Y 
⇒ all processors that see new Y also see new X 

 Therefore, processors can reorder reads, but not 
writes 



Sequential Consistency (sc) 

“ A multiprocessor system is sequentially consistent  
if the result of any execution is the same as if the operations  
of all the processors were executed in some sequential  
order, and the operations of each individual processor 
appear in the order specified by the program” 
      Leslie Lamport 
 
Sequential Consistency =  (severe constraint) 
 arbitrary order-preserving interleaving 
 of memory references of sequential programs 

M 

P P P P P P 
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A straightforward implementation 
 Need to satisfy the following two requirements 

 (program order requirement) a processor must ensure 
that its previous memory operation is complete before 
proceeding with its next memory operation in program 
order. 

 (write atomicity requirement pertaining only to cache-
based system) it requires that writes to the same 
location  be serialized. (i.e. writes to the same location 
be made visible in the same order to all processors) 
and that the value of a write  not be returned by a read 
until all invalidates or updates generated by the write 
are acknowledges (i.e. until the write become visible to 
all processors).  
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A simple example 
 The question of how consistent memory must be 

seems simple but remarkably complex. 
 

 Two code segments form processes P1 and P2 
 P1: A=0;  P2: B=0; 
              ….   …. 
    A=1;   B=1; 
 L1: if (B==0)… L2: if (A==0)… 

 Assumptions 
 The processes are running on different processors 
 The locations A and B are originally cached by both 

processors 



The programmer’s View 
  The SC model has a performance disadvantage, 

but the advantage of  simplicity. 
 A program is synchronized if all accesses to 

shared data are ordered by synchronization 
operations. – data race free 

 Consider a simple example where a variable is 
read and updated by two different processors. 
 each processor surround the read and update with a 

lock and an unlock both to ensure mutual exclusion for 
the update and to ensure that the read is consistent. 

 Most programs must be synchronized 
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Sequential Consistency model 
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Issues in Implementing SC 

Implementation of SC is complicated by two issues 
 

• Out-of-order execution capability 
Load(a); Load(b)  yes 
Load(a); Store(b)  yes if a ≠ b 
Store(a); Load(b)  yes if a ≠ b 
Store(a); Store(b) yes if a ≠ b 

 
• Caches 

Caches can prevent the effect of a store from  
being seen immediately by other processors 

M 

P P P P P P 

No common commercial architecture has a sequentially 
consistent memory model! 
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Relaxed Consistency Models 
Allows read and writes to complete out of order to obtain  
performance advantages. 
 
Three major sets of orderings that are relaxed are 
 
1.  Relax WR ordering : total store ordering (TSO) or   
     processor consistency, retains orders among writes 
2.  Relax WW ordering: partial store ordering (PSO) 
3. Relax RW and RR orderings: various models including  
     weak ordering (WO) and release consistency 
 
Since synchronization is highly specific and error prone, the  
expectation is that most programmers will use standard  
synchronization libraries and will write synchronized program,  
making the choices of a weak consistency model invisible to  
the programmers and yielding higher performance. 
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TSO Memory Model 

• Proposed for the SPARC V8 architecture 
• The value of a write in the buffer is allowed to be  
   forwarded to a read. 
 

relaxed 
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PSO Memory Model 

• An extension of the TSO model 
• Writes to different locations are allowed to execute  
  out of program order 
• PSO also provide a fence instruction, called the store   
  barrier or STBAR, that may be used to enforce the  
  program order between writes. 

relaxed 
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WO Memory Model 

• Relies on maintaining program order only at the synchronization  
   points in the program 
• Rs and Ws: read and write operations identified as synchronization 
• double lines: Each operation consists of multiple sub-operations.  
   All sub-operations of the first must complete before any sub-operation  
   of the second 
• triple lines (after a read): the read sub-operation and the sub-operations of  
   write (possibly form a different processor) whose value is returned by the read 
   must complete before any sub-operation of the second. 
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Multilevel On-Chip Caches 
§5.10 R

eal S
tuff: The A

M
D

 O
pteron X4 and Intel N

ehalem
 Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache 

Intel Nehalem 4-core processor 
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2-Level TLB Organization 
Intel Nehalem AMD Opteron X4 

Virtual addr 48 bits 48 bits 
Physical addr 44 bits 48 bits 
Page size 4KB, 2/4MB 4KB, 2/4MB 
L1 TLB 
(per core) 

L1 I-TLB: 128 entries for small 
pages, 7 per thread for large pages 
L1 D-TLB: 64 entries for small 
pages, 32 for large pages 
Both TLB: 4-way, LRU replacement 

L1 I-TLB: 48 entries 
L1 D-TLB: 48 entries 
Both fully associative, LRU 
replacement 

L2 TLB 
(per core) 

Single L2 TLB: 512 entries 
4-way, LRU replacement 

L2 I-TLB: 512 entries 
L2 D-TLB: 512 entries 
Both 4-way, round-robin 

TLB misses Handled in hardware Handled in hardware 
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3-Level Cache Organization 
Intel Nehalem AMD Opteron X4 

L1 caches 
(per core) 

L1 I-cache: 32KB, 64-byte blocks, 
4-way, approx LRU replacement, hit 
time n/a 
 
L1 D-cache: 32KB, 64-byte blocks, 
8-way, approx LRU replacement, 
write-back/allocate, hit time n/a 

L1 I-cache: 32KB, 64-byte blocks, 
2-way, LRU replacement, hit time 3 
cycles 
 
L1 D-cache: 32KB, 64-byte blocks, 
2-way, LRU replacement, write-
back/allocate, hit time 9 cycles 

L2 unified 
cache 
(per core) 

256KB, 64-byte blocks, 8-way, 
approx LRU replacement, write-
back/allocate, hit time n/a 

512KB, 64-byte blocks, 16-way, 
approx LRU replacement, write-
back/allocate, hit time n/a 

L3 unified 
cache 
(shared) 

8MB, 64-byte blocks, 16-way, 
replacement n/a, write-
back/allocate, hit time n/a 

2MB, 64-byte blocks, 32-way, 
replace block shared by fewest 
cores, write-back/allocate, hit time 
32 cycles 

n/a: data not available 
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Miss Penalty Reduction 
 Return requested word first 

 Then back-fill rest of block 
 Non-blocking cache 

 Used  by designers who are attempting to hide the 
cache miss latency  by using out-of-order processors 

 Hit under miss: allow hits to proceed 
 Miss under miss: allow multiple outstanding misses 

 Hardware prefetch: instructions and data 
 Opteron X4: 8-bank interleaved L1 D-cache 

 Two concurrent accesses per cycle 
 Two-ported cache: too expensive  
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Inclusion 
 Cache coherence protocol 

 Inclusion, non-inclusion, exclusion 
 Inclusion policy: (Nehalem or most other processors) 

 A copy of all data in higher level caches can also be 
found in lower-level cache. 

 i.e. a copy of all data in  L1 cache can also be in L2 
cache 

 If a block is replaced in the L2 cache due to a conflict or 
capacity miss, that same block must be evicted in all of 
the L1’s in which it is present. 
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Exclusion or Non-Inclusion 
 Exclusion policy: AMD processors follows the policy of 

exclusion in L1 and L2 cache. 
 A cache block  can only be found in L1 or L2 caches, bit 

not both. 
 Shared L3 cache doe not always follow exclusion 

 Non-Inclusion lies in between the inclusion and 
exclusion 
 A block can be present in both the L1 and L2 or one or the other. 
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Pitfalls 
 Forgetting to account for byte addressing or the 

cache block size in simulating a cache. 
 Byte vs. word addressing 

 Example: 32-byte direct-mapped cache, 
4-byte blocks 
 Byte 36 maps to block 1 : 36/4 mod 8 = 1 
 Word 36 maps to block 4: 36 mod 8 = 4 

 Ignoring memory system effects when writing or 
generating code 
 Example: iterating over rows vs. columns of arrays 
 Large strides result in poor locality 

§5.11 Fallacies and P
itfalls 
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Pitfalls 
 Ignoring memory system behavior when writing 

programs or when generating code in a compiler 
  matrix multiply 

 for ( i=0; i !=500; i =i+1)  
         for ( j=0; j !=500; j =j+1) 
               for ( k=0; k !=500; k =k+1) 
                      x[i][j] = x[i][j] + y[i][k] * z[k][j]; 
 1MB secondary cache 
 Changing the loop order to k, j, i speed up twice 
 Blocking can make it 4x faster 
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Pitfalls 
 Having less set associativity for a shared cache 

less than the number of threads sharing cache 
 In multiprocessor with shared L2 or L3 cache 

 Less associativity than cores results in conflict misses 
 More cores ⇒ need to increase associativity 

 Using AMAT to evaluate performance of out-of-
order processors 

 Separately calculate the memory-stall time and the 
processor execution time  
 Ignores effect of non-blocked cache accesses 
 Instead, evaluate performance by simulation 
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Pitfalls 
 Extending an address space by adding 

segments on top of an unsegmented address 
space 
 32-bit address space: 16-bit segment + 16-bit address  
 But a segment is not always big enough 
 Makes address arithmetic complicated 

 Implementing a VMM on an ISA not designed for 
virtualization 
 E.g., non-privileged instructions accessing hardware 

resources 
 Either extend ISA, or require guest OS not to use 

problematic instructions 
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X86 ISA and Virtualization 
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Concluding Remarks 
 Fast memories are small, large memories are 

slow 
 We really want fast, large memories  
 Caching gives this illusion  

 Principle of temporal and spatial localities 
 Memory hierarchy 

 L1 cache ↔ L2 cache ↔ … ↔ DRAM memory 
↔ disk 

 Virtual memory gives illusion of using the whole 
address space 

 Memory system design is critical for 
multiprocessors 

§5.12 C
oncluding R

em
arks 
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Another trend 
 seek software help to efficiently manage the 

memory hierarchy. 
 Reorganize the program to enhance its spatial 

and temporal locality.  
 This approach focus on loop-oriented programs with 

large arrays 
 Restructuring the loops 

 Prefetching: a technique in which data blocks needed 
in the future are brought into the cache early by the use 
of special instructions that specify the address of the 
block 



Homework: chapter 5 
 Due before starting the class on Nov. 15 
 Exercise 5.10 
 Exercise 5.14 
 Exercise 5.16 

§1.9 C
oncluding R

em
arks 
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