
Chapter 5C
Large and Fast:
Exploiting Memory
Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Two kinds of TLB Misses
 Check the valid bit of a page table entry

 If it is on, the page is in memory (a simple TLB miss).
 Otherwise, the page is not in memory (a page fault)

 A simple TLB miss (refill TLB)
 Load the PTE into TLB and retry TLB hit
 What if the page table is not in memory?

 A page fault for the page table
 Could be handled in hardware or in software

 Little performance difference between the two approaches.

 A page fault (for instruction or data)
 OS handles fetching the corresponding page from the

disc and updating the page table
 Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

A TLB Hit

If there is no matching
entry in the TLB for a page,
the page table must be
examined.
Since the page table has
an entry for every virtual
page, no tag field is needed

A cache that contains a subset of the page table

in the main memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

A simple TLB Miss

If there is no matching
entry in the TLB for a page,
the page table must be
examined.
Since the page table has
an entry for every virtual
page, no tag field is needed

A cache that contains a subset of the page table

in the main memory

1

1. TLB miss handler copy the page
table entry without checking its
valid bit.

TLBmiss:
 mfc0 $k1, Context # copy PTE address
 lw $k1, 0($k1) # get PTE
 mtc0 $k1, EtnryLo # put into a special reg
 tlbwr # put into TLB at random
 eret # return

It takes about a dozen clock cycles

2. re-try the address translation: TLB hit

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Page fault
A cache that contains a subset of the page table

0

1

1

in the main memory

1. TLB miss handler copy the page
table entry without checking its
valid bit.

TLBmiss:
 mfc0 $k1, Context # copy PTE address
 lw $k1, 0($k1) # get PTE
 mtc0 $k1, EtnryLo # put into a special reg
 tlbwr # put into TLB at random
 eret # return

Context: upper 12 bits: bases address of page table
 lower 18 bits from BADVaddr
Tlbwr: copy from EntryLo into the TLB entry selected
 by Random

2. re-try the address translation: TLB miss again

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Exception Handler
 Handling a TLB miss or a page fault requires using

the exception mechanism
 Interrupt the active process
 Transfer control to the OS
 (exception handling)
 Resume execution of the interrupted process

 The OS is particularly vulnerable
 between the time we begin executing the exception

handler and the time that OS has saved all the state of
the process because another exception can occur.

 set the supervisor mode and disable the exceptions.
 After the OS saves just enough state to allow it to

recover, then re-enable the exceptions..

Handling a TLB Miss
Software (MIPS, Alpha)

TLB miss causes an exception and the operating system
walks the page tables and reloads TLB.
A privileged “untranslated” (unmapped) addressing mode
used for page table walk
Unmapped: a portion of the address space that cannot have page
fault.

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page tables
and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Page Table Walk: SPARC v8

31 11
0

Virtual Address Index 1 Index 2 Index 3 Offset
31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this page table walk in hardware on a TLB miss

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

64 entries

64 entries

256 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

A linear Page Table

 the starting address

(page table pointer)

 1 M entries, which
corresponds to 256
pages, assuming that
each entry is 32-bit.
 too big to be all
entries in the memory

1,000,000 entries

Page-Based Virtual-Memory

 Assumes page tables held in untranslated (upmapped)
physical memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W +

Page Fault?
Protection violation?

Page Fault?
Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table
Base Register

Virtual
Address

Physical
Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?
Physical
Address

PTE
read

Address Translation: detailed?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

Segmentation
fault Retry

translation
Retry
translation

e.g. A TLB miss takes about 13
clock cycles, assuming the code
and the page table entry are in
the caches.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

TLB and Cache Interaction
 Note that the tag and

data RAMs are split.
 By addressing the long

but narrow data RAM
with the cache index
concatenated with the
block offset, we select
the desired word in the
block without a 16:1
multiplexor.

 While the cache is
direct mapped, the TLB
is fully associative.

4 KB page

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

TLB and Cache Interaction
 If the valid bit of the

matching TLB entry is on,
the access is a TLB hit.
 Bits from the physical page

number together with bits
from the page offset form
the index that is used to
access the cache.

 If the cache tag uses
physical address
 Need to translate it before

cache lookup
 Alternative: use virtual

address tag (?)
 No need to translate for cache

access
4 KB page

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

TLB and Cache Interaction

Notice that a TLB hit and a cache
hit are independent events, but a
cache hit can only occur after a
TLB hit occurs, which means that
the data must be present in
memory before being loaded into
the cache.

from main memory

 a TLB miss, a page fault, and a cache miss
 Assuming that the cache is physically
 indexed and physically tagged
Three of these combinations are impossible
 One is possible (TLB hit, virtual memory hit,
 cache miss) but never detected.

Possible Combination of Events

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Memory Protection
 Different tasks can share parts of their virtual address

spaces
 But need to protect against errant access
 Requires OS assistance

 Hardware support for OS protection
 Privileged supervisor mode (aka kernel mode)
 Privileged instructions (e.g. writes for TLB and page table register)
 Page tables and other state information only accessible in

supervisor mode
 System call exception (e.g., syscall in MIPS), which is a special

instruction that transfers control from user mode to a dedicated
location in supervisor code space., invoking the exception
mechanism in the process.

 Return from exception (ERET): change to user mode as well as
restoring PC

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Page Fault Handler
 Transfer control to the OS to deal with a page fault.

 Detect a page fault by checking the valid bit of the page table
entry

 Use faulting virtual address to find PTE
 Locate page on disk
 Choose page to replace

 If dirty, write to disk first: very slow

 Read page into memory and update page table: very slow

 OS select another process to execute in the processor
until the disk access completes: context switching

 OS can restore the state of the process originally caused
the page fault and execute ERET
 The user process restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Context switch
 Change the internal state of the processor to allow a

different process to use the processor that includes
saving the state needed to return to the currently
executing process.
 When the OS decides to change from running process P1 to

running process P2.

 If there is no TLB, it suffices to change the page table
register to point to P2’s page table.

 With a TLB, we must clear the TLB entries that belong to
P1. – not efficient if process switch rate were high.

 Alternative: extend the virtual address space by adding a
process identifier (task identifier) : e.g. 8-bit address
space ID (ASID)
 Similar problems can occur for a cache.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

MIPS R3000
 Kernal mode address

 0xx : kuseg 2GB: mapped like user process
 100 : kseg0 0.5GB: cached and unmapped
 101 : kseg1 0.5GB: uncached and unmapped
 11x : kseg2 1GB: mapped cachable (user page table)

 Address mapping: 31 bits (top bit is 0)+ 6-bit process id
 Upper 19 bits + 6-bit process id physical page #
 Use a linear page table in kseg2
 We also use paging kseg2 using a linear page table
 The page table for kseg2 is stored in kseg0

 Given a 32-bit virtual address from kuseg,
 Top 9 bits: index of kseg2 page table stored in kseg0 (unmapped)
 After this lookup, if the page table is not resident in kseg2, read it

back from disk
 Middle 10 bits: index of the page table
 After this lookup of the physical page #, , if the page table is not

resident in kuseg, read it back from disk
 Lower 12 bits: offset of the physical page in kuseg

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

The Memory Hierarchy

 Common principles apply at all levels of
the memory hierarchy
 Based on notions of caching

 At each level in the hierarchy
 Block placement
 Finding a block
 Replacement on a miss
 Write policy

§5.5 A C
om

m
on Fram

ew
ork for M

em
ory H

ierarchies

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Block Placement
 Determined by associativity

 Direct mapped (1-way associative)
 One choice for placement

 n-way set associative
 n choices within a set

 Fully associative
 Any location

 Higher associativity reduces miss rate
 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss (page fault) rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set
associative

Set index, then search
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0 (page table)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Replacement
 Choice of entry to replace on a miss

 Least recently used (LRU)
 Complex and costly hardware for high associativity

 Random
 Close to LRU, easier to implement

 Virtual memory
 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Write Policy
 Write-through

 Update both upper and lower levels
 Simplifies replacement, but may require write

buffer
 Write-back

 Update upper level only
 Update lower level when block is replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Sources of Misses
 Compulsory misses (aka cold start misses)

 First access to a block
 Capacity misses

 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache
 Due to competition for entries in a set
 Would not occur in a fully associative cache of

the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Cache Design Trade-offs

Design change Effect on miss rate Negative performance
effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict
misses

May increase access
time

Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Cache Pollution
 defined as the displacement of a cache

element by a less useful one.
 In the context of processor caches, cache

pollution occurs whenever a non-reusable
cache line is installed into a cache set,
displacing a reusable cache line.

 Reusability is determined by the number of
times a cache line is accessed after it is
initially installed into the cache but before
its eviction.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Virtual Machines
 Idea related to VM is as old as virtual memoy
 Host computer emulates guest operating system

and machine resources
 Improved isolation of multiple guests
 Avoids security and reliability problems
 Aids sharing of resources

 Virtualization has some performance impact
 Feasible with modern high-performance computers

 VMM is the software that support VMs
 Host: underlying hardware
 Guests: VMs that share the resources

§5.6 Virtual M
achines

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

System Virtual Machines
 VM:(broadest definition) basically all emulation

methods that provide a standard software
interface, such as Java VM

 System VM:(Here) provide a complete system-
level environment at the binary ISA level.
 But some VM run different ISA in the VM from the

native hardware
 Present the illusion that the users have an entire

computer themselves, including a copy of OS
 A computer runs multiple VMs and can support various OSes.

 Examples: IBM VM/370 (1970s technology!), VMWare,
Microsoft Virtual PC

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Virtual Machine Monitor
 VMM or Hypervisor
 VMM determines how to map virtual resources to

physical resources (Memory, I/O devices, CPUs)
 Much smaller than a traditional OS
 Isolation part of the VMM : only 10K lines of code

 VMs provide three major benefits
 Provide improved protection
 Managing software: provide an abstraction that can run

the complete software stacks: old, stable, new OSes
 Managing hardware: VM allows separate software

stacks to run independently yet share hardware. Some
VMM support migration of a running VM to a different
computer, either to balance load or to evacuate from
failing hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Virtualization Cost
 Depends on workload

 Processor-bound program: zero overhead
 (OS is rarely invoked)
 IO-intensive program: high overhead (OS-intensive)

 The overhead is determined by both the number
of instructions that must be emulated by the
VMM and by how much time each takes to
emulate

 VMM must control just about everything
 Access to privileged state
 Address translation
 I/O
 Exceptions, and interrupts

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Virtual Machine Monitor
 What must a VMM do?

 It presents a software interface to guest software
 It must isolate the state of guests form each other
 It must protect itself from guest software, including

guest OSes.
 Guest code runs on native machine in user

mode
 Traps to VMM on privileged instructions and access to

protected resources
 Guest OS may be different from host OS
 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Example: Timer Virtualization
 In native machine, on timer interrupt

 OS suspends current process, handles interrupt,
selects and resumes next process

 With Virtual Machine Monitor on timer interrupt
 VMM suspends current VM, handles interrupt, selects

and resumes next VM
 If a VM requires timer interrupts

 VMM emulates a virtual timer
 Emulates interrupt for VM when physical timer

interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Instruction Set Support for VM
 Basic requirements

 Support User and System modes
 Privileged instructions only available in system mode

 Trap to system if executed in user mode
 All physical resources only accessible using privileged

instructions
 Including page tables, interrupt controls, I/O registers

 Virtualizable ISA
 IBM 370 architecture: modified IBM 360 ISA
 X86, MIPS, ARM are not a virtualizable ISA

 Renaissance of virtualization support
 Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

ISA for protection
 Protection is a joint effort of architecture and

operating system Need to change ISA
 Example:

 X86 instruction POPF: load the flag registers from TOS,
including IE (interrupt enable)
 In user mode: trap it and simply change all flags except IE
 In system mode: it does change IE (since a guest OS runs in

user mode inside the VM, it is a problem!)

 Three steps to improve VM performance
1. Reduce cost of processor virtualization
2. Reduce interrupt overhead cost due to virtualization
3. Reduce interrupt cost by steering interrupts to the

proper VM without invoking the VMM
 In 2006, Intel and AMD try to address the first point

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

VM and virtual memory
 Virtualization of virtual memory: introduce

another indirection on each memory access
 Virtual memory, real memory, physical memory
 Different terms: Virtual memory, physical memory,

machine memory
 Guest OS: map virtual memory to real memory
 VMM: map real memory to physical memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

VM and virtual memory
 Rather than pay an extra level of indirection,

VMM maintains a shadow page table that maps
directly for the guest virtual address to the
physical address space of the hardware.

 VMM must trap any attempts by guest OS to
change its page table or to access page table
pointer, which is commonly done by write
protecting the guest page tables and trapping
any access to the page table pointer by a guest
OS.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Virtualization of I/O
 Virtualization of I/O is by far the most difficult part

of system virtualization
 Because of the increasing number of I/O devices

attached to a computer and the increasing diversity of
I/O device types

 Another difficult is sharing of a real device
among multiple VMs

 The VM illusion can be maintained by giving
each VM generic versions of each type of I/O
device driver, and leaving it to the VMM to
handle real I/O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Parallelism and Memory Hierarchies
 The processors on a single chip shares a

common physical address space
 Each processor has its own cache

§5.8 P
arallelism

 and M
em

ory H
ierarchies: C

ache C
oherence

M

P
Cache

P
Cache

P
Cache

P
Cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Cache Coherence Problem
 Suppose two CPU cores share a physical

address space
 Write-through caches

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Different value: Cache coherent problem !

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Coherence and Consistency
 A memory system is coherent if reads return

most recently written value.
 This definition, although intuitively appealing, is vague

and simplistic
 The reality is much more complex

 This simple definition contains two different
aspects of memory system behaviour.
 Both of which are critical to writing correct shared

memory program
 Coherence: what values can be returned by a read

 Most recently (or last) written value
 Consistency: when a written value will be returned by

a read (or when a read can see a written value)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

A memory system is coherence if
 (1. preserving program order) A read by a processor

P to a location X that follows a write by the same
processor P to X, with no writes of X by another
processor occurring between the write and the read by P,
always returns the value written by P. -- uniprocessor

 (2. a coherent view of memory) A read by a
processor P1 to location X that follows a write by
another processor P2 to X returns the written value if the
read and write are sufficiently separated in time and no
other writes to X occur between the two accesses.

 (3. write serialization) Two writes to the same location
by any two processors are seen in the same order by all
processors.

Not addressing (consistency) exactly when P1 see a write of X by P2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Basic schemes for coherence
 Operations performed by caches in

multiprocessors to ensure coherence
 Migration (copy) of shared data to local caches

 Reduces both bandwidth and latency for shared memory
 Replication of read-shared data in a local cache

 Reduces both latency and contention for access

 Supporting this migration and replication is critical
to performance in accessing shared data
 Introduce a hardware protocol to maintain coherent

data.
 Key to implementing a cache coherent protocol is

tracking the state of any sharing of a data block.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Cache Coherence Protocols
 Snooping protocols: most popular

 Every cache that has a copy of the shared data also
has a copy of the sharing status of the block

 No centralized status is kept.
 The cache are accessible via some broadcast

medium (a bus or network)
 Each cache controller monitors the medium to

determine whether or not they have a copy of a block
that is requested on a bus.

 Directory-based protocols
 Caches and memory record sharing status of blocks

in just one location, called the directory
 More scalable: higher overhead but lower traffic

between caches

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Invalidating Snooping Protocols
 Cache gets exclusive access to a block when it is written

 Broadcasts an invalidate message on the bus
 Subsequent read in another cache misses

 Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU B’s
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1

• The CPU cache and memory contents show the value after the processor and bus activity have both completed.
• When the second miss by B occurs, CPU A responds with the value canceling the response from memory.
 In addition, both the contents of B’s cache and the memory contents of X are updated.
• This update of memory, which occurs when a block becomes shared, simplifies the protocol, but it is possible to track
 the ownership and force the write-back only if the block is replaced.
• This requires the introduction of an additional state called “owner,” which indicates that a block may be shared,
 but the owning processor is responsible for updating any other processors and memory when it changes the block or replaces it.

invalidate

migration

replication

replication
write-back

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

False Sharing
 Block size plays an important role in cache

coherency
 For example, take the case of snooping on a cache

with a block size of 8 words, with a single word
alternatively written and read by two processors.

 Most protocols exchange full blocks between
processors, thereby increasing coherency bandwidth
demands.

 Large blocks can also cause what is called false
sharing:
 When two unrelated shared variables are located in the

same cache block, the full block is exchanged between
processors.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Memory Consistency Model
 Suppose two CPU cores share a physical

address space
 Write-through caches

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Different value: Cache coherent problem !

When does CPU B see a write of X by CPU A?
Depends on memory consistency model

symmetric
• All memory is equally far
 away from all processors
• Any processor can do any I/O
 (set up a DMA transfer)

Symmetric Multiprocessors

Memory
I/O controller

Graphics
output

CPU-Memory bus
bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Memory Consistency Model
 When are writes seen by other processors?

 “Seen” means that a read returns the written value
 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen

it
 A processor does not reorder writes with other (read

or write) accesses
 Consequence

 P writes X then writes Y
⇒ all processors that see new Y also see new X

 Therefore, processors can reorder reads, but not
writes

Sequential Consistency (sc)

“ A multiprocessor system is sequentially consistent
if the result of any execution is the same as if the operations
of all the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”
 Leslie Lamport

Sequential Consistency = (severe constraint)
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

A straightforward implementation
 Need to satisfy the following two requirements

 (program order requirement) a processor must ensure
that its previous memory operation is complete before
proceeding with its next memory operation in program
order.

 (write atomicity requirement pertaining only to cache-
based system) it requires that writes to the same
location be serialized. (i.e. writes to the same location
be made visible in the same order to all processors)
and that the value of a write not be returned by a read
until all invalidates or updates generated by the write
are acknowledges (i.e. until the write become visible to
all processors).

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

A simple example
 The question of how consistent memory must be

seems simple but remarkably complex.

 Two code segments form processes P1 and P2
 P1: A=0; P2: B=0;
 …. ….
 A=1; B=1;
 L1: if (B==0)… L2: if (A==0)…

 Assumptions
 The processes are running on different processors
 The locations A and B are originally cached by both

processors

The programmer’s View
 The SC model has a performance disadvantage,

but the advantage of simplicity.
 A program is synchronized if all accesses to

shared data are ordered by synchronization
operations. – data race free

 Consider a simple example where a variable is
read and updated by two different processors.
 each processor surround the read and update with a

lock and an unlock both to ensure mutual exclusion for
the update and to ensure that the read is consistent.

 Most programs must be synchronized

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Sequential Consistency model

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Issues in Implementing SC

Implementation of SC is complicated by two issues

• Out-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a ≠ b
Store(a); Load(b) yes if a ≠ b
Store(a); Store(b) yes if a ≠ b

• Caches

Caches can prevent the effect of a store from
being seen immediately by other processors

M

P P P P P P

No common commercial architecture has a sequentially
consistent memory model!

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Relaxed Consistency Models
Allows read and writes to complete out of order to obtain
performance advantages.

Three major sets of orderings that are relaxed are

1. Relax WR ordering : total store ordering (TSO) or
 processor consistency, retains orders among writes
2. Relax WW ordering: partial store ordering (PSO)
3. Relax RW and RR orderings: various models including
 weak ordering (WO) and release consistency

Since synchronization is highly specific and error prone, the
expectation is that most programmers will use standard
synchronization libraries and will write synchronized program,
making the choices of a weak consistency model invisible to
the programmers and yielding higher performance.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

TSO Memory Model

• Proposed for the SPARC V8 architecture
• The value of a write in the buffer is allowed to be
 forwarded to a read.

relaxed

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

PSO Memory Model

• An extension of the TSO model
• Writes to different locations are allowed to execute
 out of program order
• PSO also provide a fence instruction, called the store
 barrier or STBAR, that may be used to enforce the
 program order between writes.

relaxed

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

WO Memory Model

• Relies on maintaining program order only at the synchronization
 points in the program
• Rs and Ws: read and write operations identified as synchronization
• double lines: Each operation consists of multiple sub-operations.
 All sub-operations of the first must complete before any sub-operation
 of the second
• triple lines (after a read): the read sub-operation and the sub-operations of
 write (possibly form a different processor) whose value is returned by the read
 must complete before any sub-operation of the second.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Multilevel On-Chip Caches
§5.10 R

eal S
tuff: The A

M
D

 O
pteron X4 and Intel N

ehalem
 Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

2-Level TLB Organization
Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits
Physical addr 44 bits 48 bits
Page size 4KB, 2/4MB 4KB, 2/4MB
L1 TLB
(per core)

L1 I-TLB: 128 entries for small
pages, 7 per thread for large pages
L1 D-TLB: 64 entries for small
pages, 32 for large pages
Both TLB: 4-way, LRU replacement

L1 I-TLB: 48 entries
L1 D-TLB: 48 entries
Both fully associative, LRU
replacement

L2 TLB
(per core)

Single L2 TLB: 512 entries
4-way, LRU replacement

L2 I-TLB: 512 entries
L2 D-TLB: 512 entries
Both 4-way, round-robin

TLB misses Handled in hardware Handled in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte blocks,
4-way, approx LRU replacement, hit
time n/a

L1 D-cache: 32KB, 64-byte blocks,
8-way, approx LRU replacement,
write-back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte blocks,
2-way, LRU replacement, hit time 3
cycles

L1 D-cache: 32KB, 64-byte blocks,
2-way, LRU replacement, write-
back/allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit time
32 cycles

n/a: data not available

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Miss Penalty Reduction
 Return requested word first

 Then back-fill rest of block
 Non-blocking cache

 Used by designers who are attempting to hide the
cache miss latency by using out-of-order processors

 Hit under miss: allow hits to proceed
 Miss under miss: allow multiple outstanding misses

 Hardware prefetch: instructions and data
 Opteron X4: 8-bank interleaved L1 D-cache

 Two concurrent accesses per cycle
 Two-ported cache: too expensive

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Inclusion
 Cache coherence protocol

 Inclusion, non-inclusion, exclusion
 Inclusion policy: (Nehalem or most other processors)

 A copy of all data in higher level caches can also be
found in lower-level cache.

 i.e. a copy of all data in L1 cache can also be in L2
cache

 If a block is replaced in the L2 cache due to a conflict or
capacity miss, that same block must be evicted in all of
the L1’s in which it is present.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Exclusion or Non-Inclusion
 Exclusion policy: AMD processors follows the policy of

exclusion in L1 and L2 cache.
 A cache block can only be found in L1 or L2 caches, bit

not both.
 Shared L3 cache doe not always follow exclusion

 Non-Inclusion lies in between the inclusion and
exclusion
 A block can be present in both the L1 and L2 or one or the other.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Pitfalls
 Forgetting to account for byte addressing or the

cache block size in simulating a cache.
 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,
4-byte blocks
 Byte 36 maps to block 1 : 36/4 mod 8 = 1
 Word 36 maps to block 4: 36 mod 8 = 4

 Ignoring memory system effects when writing or
generating code
 Example: iterating over rows vs. columns of arrays
 Large strides result in poor locality

§5.11 Fallacies and P
itfalls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Pitfalls
 Ignoring memory system behavior when writing

programs or when generating code in a compiler
 matrix multiply

 for (i=0; i !=500; i =i+1)
 for (j=0; j !=500; j =j+1)
 for (k=0; k !=500; k =k+1)
 x[i][j] = x[i][j] + y[i][k] * z[k][j];
 1MB secondary cache
 Changing the loop order to k, j, i speed up twice
 Blocking can make it 4x faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Pitfalls
 Having less set associativity for a shared cache

less than the number of threads sharing cache
 In multiprocessor with shared L2 or L3 cache

 Less associativity than cores results in conflict misses
 More cores ⇒ need to increase associativity

 Using AMAT to evaluate performance of out-of-
order processors

 Separately calculate the memory-stall time and the
processor execution time
 Ignores effect of non-blocked cache accesses
 Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Pitfalls
 Extending an address space by adding

segments on top of an unsegmented address
space
 32-bit address space: 16-bit segment + 16-bit address
 But a segment is not always big enough
 Makes address arithmetic complicated

 Implementing a VMM on an ISA not designed for
virtualization
 E.g., non-privileged instructions accessing hardware

resources
 Either extend ISA, or require guest OS not to use

problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

X86 ISA and Virtualization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Concluding Remarks
 Fast memories are small, large memories are

slow
 We really want fast, large memories
 Caching gives this illusion

 Principle of temporal and spatial localities
 Memory hierarchy

 L1 cache ↔ L2 cache ↔ … ↔ DRAM memory
↔ disk

 Virtual memory gives illusion of using the whole
address space

 Memory system design is critical for
multiprocessors

§5.12 C
oncluding R

em
arks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Another trend
 seek software help to efficiently manage the

memory hierarchy.
 Reorganize the program to enhance its spatial

and temporal locality.
 This approach focus on loop-oriented programs with

large arrays
 Restructuring the loops

 Prefetching: a technique in which data blocks needed
in the future are brought into the cache early by the use
of special instructions that specify the address of the
block

Homework: chapter 5
 Due before starting the class on Nov. 15
 Exercise 5.10
 Exercise 5.14
 Exercise 5.16

§1.9 C
oncluding R

em
arks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

	Chapter 5C
	Two kinds of TLB Misses
	A TLB Hit
	A simple TLB Miss
	Page fault
	Exception Handler
	Handling a TLB Miss
	Page Table Walk: SPARC v8
	A linear Page Table
	Page-Based Virtual-Memory
	Address Translation: detailed?
	TLB and Cache Interaction
	TLB and Cache Interaction
	TLB and Cache Interaction
	Possible Combination of Events
	Memory Protection
	Page Fault Handler
	Context switch
	MIPS R3000
	The Memory Hierarchy
	Block Placement
	Finding a Block
	Replacement
	Write Policy
	Sources of Misses
	Cache Design Trade-offs
	Cache Pollution
	Virtual Machines
	System Virtual Machines
	Virtual Machine Monitor
	Virtualization Cost
	Virtual Machine Monitor
	Example: Timer Virtualization
	Instruction Set Support for VM
	ISA for protection
	VM and virtual memory
	VM and virtual memory
	Virtualization of I/O
	Parallelism and Memory Hierarchies
	Cache Coherence Problem
	Coherence and Consistency
	A memory system is coherence if
	Basic schemes for coherence
	Cache Coherence Protocols
	Invalidating Snooping Protocols
	False Sharing
	Memory Consistency Model
	Symmetric Multiprocessors
	Memory Consistency Model
	Sequential Consistency (sc)
	A straightforward implementation
	A simple example
	The programmer’s View
	Sequential Consistency model
	Issues in Implementing SC
	Relaxed Consistency Models
	TSO Memory Model
	PSO Memory Model
	WO Memory Model
	Multilevel On-Chip Caches
	2-Level TLB Organization
	3-Level Cache Organization
	Miss Penalty Reduction
	Inclusion
	Exclusion or Non-Inclusion
	Pitfalls
	Pitfalls
	Pitfalls
	Pitfalls
	X86 ISA and Virtualization
	Concluding Remarks
	Another trend
	Homework: chapter 5

