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Interconnecting Components 
 Need interconnections between 

 CPU, memory, I/O controllers 
 Bus: shared communication channel 

 Parallel set of wires for data and 
synchronization of data transfer 

 Can become a bottleneck 
 Performance limited by physical factors 

 Wire length, number of connections 
 More recent alternative: high-speed serial 

connections with switches 
 Like networks 
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Bus Types 

 Processor-Memory buses 
 Short, high speed 
 Design is matched to memory organization 

 I/O buses 
 Longer, allowing multiple connections 
 Specified by standards for interoperability 
 Connect to processor-memory bus through a bridge 

 Backplane bus 
 A bus that is designed to allow  processor, memory,  

and I/O devices to coexist on a single bus. 
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Connection Basics 
 An I/O transaction includes two parts: 

sending  the address and sending or 
receiving the data 
 A sequence of operations over the 

interconnect that includes a request and may 
include a response 

 A read transaction or a write transaction 
 Several standards exist 

 Firewire, USB, PCI express (PCIe), Serial 
ATA (SATA), Serial attached SCSI (SAS) 
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I/O Bus Examples 
Firewire USB 2.0 PCI Express Serial ATA Serial 

Attached 
SCSI 

Intended use External External Internal Internal External 
Devices per 
channel 

63 127 1 1 4 

Data width 4 2 2/lane 4 4 
Peak 
bandwidth 

50MB/s or 
100MB/s 

0.2MB/s, 
1.5MB/s, or 
60MB/s 

250MB/s/lane 
1×, 2×, 4×, 
8×, 16×, 
32× 

300MB/s 300MB/s 

Hot 
pluggable 

Yes Yes Depends Yes Yes 

Max length 4.5m 5m 0.5m 1m 8m 
Standard IEEE 1394 USB 

Implementers 
Forum 

PCI-SIG SATA-IO INCITS TC 
T10 
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Bus Signals and Synchronization 
 Data lines 

 Carry address and data 
 Multiplexed or separate 

 Control lines 
 Indicate data type, synchronize transactions 

 Synchronous 
 Uses a bus clock 

 Asynchronous 
 Uses request/acknowledge control lines for 

handshaking 
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Handshaking Protocols  
 Used in an asynchronous bus 
 A series of steps used to coordinate 

asynchronous bus transfers in which the 
sender and receiver proceed to the next 
step only when both parties agree that the 
current step has been completed. 
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Typical x86 PC I/O System 

AMD X4 and Intel Nehalem 
include the north bridge inside 
the microprocessor, and the  
south bridge chip of the Intel  
975 includes a RAID controller.  

Enterprise South Bridge Interface (ESI) 
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I/O Chips 

 
 
AMD X4 includes the 
north bridge in the 
microprocessor  



Chapter 6 — Storage and Other I/O Topics — 11 

Interfacing I/O Devices 
 A network protocol defines how a block of data 

should be communicated on a set of wires. 
 This will leaves several other tasks that must be 

performed to actually cause to be transferred 
from a device and into the memory address 
space of some user program. 

 This section focuses on these tasks 
 How  is a user I/O request transformed into a device 

command and communicated to the device? 
 How is data actually transferred to or from a memory 

location? 
 What is the role of the OS? 

§6.6 Interfacing I/O
 D

evices …
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I/O Management 
 I/O is mediated by the OS 

 Multiple programs share I/O resources 
 Need protection and scheduling 

 I/O causes asynchronous interrupts 
 Same mechanism as exceptions 

 I/O programming is fiddly 
 OS provides abstractions to programs 

§6.6 Interfacing I/O
 D

evices …
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I/O Commands 
 I/O devices are managed by I/O controller 

hardware 
 Transfers data to/from device 
 Synchronizes operations with software 

 Command registers 
 Cause device to do something 

 Status registers 
 Indicate what the device is doing and occurrence of 

errors 
 Data registers 

 Write: transfer data to a device 
 Read: transfer data from a device 
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Characteristics of I/O Systems 
 The OS guarantees that a user’s program 

accesses only the portions of an I/O devices to 
which the user has rights. 

 The OS provides abstractions for accessing 
devices by supplying routines that handle low-
level devices by a program. 

 The OS handles the interrupts generated by I/O 
devices, just as it handles the exceptions 
generated by a program. 

 The OS tries to provide equitable access to the 
shared I/O resources, as well as schedules 
accesses to enhance system throughput. 
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Three type of Communications 
 The OS must be able to give commands to I/O 

devices. 
 The device must be able to notify the OS when 

the I/O device has completed an operation or 
has encountered an error. 

 Data must be transferred between memory and 
an I/O device. 

 



Chapter 6 — Storage and Other I/O Topics — 16 

I/O Register Mapping 
 Memory mapped I/O 

 Registers in the I/O devices are addressed in 
same space as memory 

 Address decoder distinguishes between them 
 OS uses address translation mechanism to 

make them only accessible to kernel 
 I/O instructions 

 Separate instructions to access I/O registers 
 Can only be executed in kernel mode 
 Example: x86 
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Polling 
 Periodically check I/O status register 

 If device ready, do operation 
 If error, take action 

 Common in small or low-performance real-
time embedded systems 
 Predictable timing 
 Low hardware cost 

 In other systems, wastes CPU time 
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Interrupts 
 When a device is ready or error occurs 

 Controller interrupts CPU 
 Interrupt is like an exception with two important 

distinctions 
 Asynchronous to instruction execution 

 Can invoke handler between instructions 
 Processor need to get the identity of the device 

generating the interrupt, as well as its priority. 
 A system can use a vectored interrupt or an 

exception Cause register. 
 When the processor recognizes the interrupt, the 

device can send  either the vector address or a status 
field  to place  in the Cause register. 
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Interrupt Priority Levels 
 Most interrupt mechanisms have several 

levels of priority 
 UNIX OS use 4 to 6 levels 
 I/O interrupts have lower priority than internal 

exceptions 
 MIPS provides the primitives that let the 

OS implement the policy 
 Key registers are shown in Fig. 6.11 

 Cause and Status registers 
 Interrupt enable=0:  no one can interrupt 
 Interrupt mask field in the status register 
 Pending interrupt field in the cause register 
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Cause and Status Registers 

Status register: determines who can interrupt the computer 

Cause register 
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Steps for handling an interrupt 

 Can set the exception code field  
     of the Cause register 

R4000 MIPS processor 
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Exception Code 
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Steps for handling an interrupt 
 

1. Logically AND the pending interrupt field (Cause register) and the 
interrupt mask field (Status register) to see which enabled interrupt 
could be the culprit. Copies are made of these two registers using 
mfc0. 
2. Select the higher priority of these interrupts. The software 
convention is that the leftmost is the highest priority. 
3. Save the interrupt mask field of the Status register. 
4. Change the interrupt mask field to disable all interrupts of equal or 
lower priority. 
5. Save the processor state needed to handle the interrupt 
6. To allow higher-priority interrupts, set enable bit of the Status 
register 1. 
7. Call the appropriate interrupt routine 
8. Before restoring state, set the interrupt enable bit of the Status 
register to 0. This also allows you to restore the interrupt mask field. 
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Cause and Status Registers 

Status register 

Cause register 

for software interrupt 
Higher priority 
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Interrupt Priority Levels (IPLs) 
 How do IPLs correspond to these 

mechanism? 
 The IPL is an OS invention. 

 It is stored in the memory of the process, and 
every process is given an IPL. 

 At the lowest IPL, all interrupts are permitted. 
 At the highest IPL, all interrupt are blocked. 
 Raising and lowering the IPL involves 

changes to the interrupt mask field of the 
Status register. 
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Programmable Interrupt Controller 
PIC: Intel 8259A 

IRR ISR 
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PIC Interrupt Sequence 
 2. The PIC (8259A) 

evaluates these requests, 
and sends an INT to the 
CPU, if appropriate. 

 3. The CPU 
acknowledges the INT 
and responds with an 
INTA pulse. 

 4. Upon receiving an 
INTA from the CPU 
group, the highest priority 
ISR bit is set and the 
corresponding IRR bit is 
reset. The PIC does not 
drive the Data Bus during 
this cycle. 

IRR ISR 

 1. One or more of the INTERRUPT 
REQUEST lines are raised high, 
setting the corresponding IRR bit(s).  
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PIC Interrupt Sequence 
 5. The 8086 will initiate a 

second INTA pulse. During 
this pulse, the PIC 
releases an 8-bit pointer 
(vector address) onto the 
Data Bus where it is read 
by the CPU. 

 6. This completes the 
interrupt cycle. In the AEOI 
mode the ISR bit is reset at 
the end of the second 
INTA pulse. Otherwise, the 
ISR bit remains set until an 
appropriate EOI command 
is issued at the end of the 
interrupt subroutine. 

IRR ISR 

AEOI: automatic end of interrupt 
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I/O Data Transfer 
 CPU transfers data between memory and I/O 

data registers between a device and memory 
 Two techniques 

 Polling and interrupt-driven I/O 
 Both work best with lower-bandwidth devices 
 Time consuming for high-speed devices 

 Direct memory access (DMA) 
 Offloading the processor 
 For high-bandwidth devices 
 OS provides starting address in memory 
 I/O controller transfers to/from memory autonomously 
 Controller interrupts on completion or error 
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Three steps in a DMA transfer 
 1. The processor sets up the DMA by supplying  

 the identity of the device,  
 the operation to perform on the device,  
 the memory address that is the source or destination 

of the data to be transferred, and  
 the number of bytes to transfer 

 2. The DMA arbitrates for the interconnect and 
starts the operation on the device. 

 3. Once the DMA transfer is complete, the 
controller interrupts the processor,  
 which can then determine whether the entire DMA 

operation completed successfully. 
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DMA Controller 
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DMA Controller 
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Multiple channels in DMAC 
 A dedicated channel supports each stream, 

including source and destination controllers, and 
a FIFO. This enables better latency than a 
DMAC with only a single channel shared among 
several DMA streams. 

 DMAC enables the following transactions 
 Memory to memory 
 Memory to a peripheral 
 A peripheral to memory 
 A peripheral to a peripheral 

 Each DMA stream provides unidirectional serial 
transfers for a single source and destination 
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Bus system & DMA transfers 
 There may be multiple DMA devices in a computer 

system. 
 For example, in a system with a single processor-

memory bus and multiple I/O buses, each I/O bus 
controller will often contain a DMA processor that 
handles any transfers between a device on the I/O bus 
and the memory. 

 By using caches, the processor can avoid having 
to access memory most of the time, thereby 
leaving most of the memory bandwidth free for use 
by I/O devices. 
 If  the processor is contending for memory, it will be 

delayed when the memory is busy doing a DMA transfer. 
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I/O Processor 
 To further reduce the need to interrupt the 

processor and occupy it in handling an I/O request 
that may involve doing several actual operations, 
the I/O controller can be made more intelligent. 

 Specialized processors that basically execute a 
series of I/O operations, called an I/O program.  
 Can be general purpose microprocessors 
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DMA and Memory System 
 Without  DMA, all accesses to memory  go 

through address translation and cache access 
 With DMA, there is another path to the memory 

system – one that does no go through the 
address translation 

 This problem  are usually solved with a 
combination of hardware techniques and 
software support. 

 Difficulties in having DMA in a virtual memory 
system 
 Pages have both a physical and a virtual address. 
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DMA/VM Interaction 
 OS uses virtual addresses for memory 

 DMA blocks may not be contiguous in physical 
memory  DMA becomes not efficient 

 Should DMA use virtual addresses? 
 Would require controller to do translation complex 

 If DMA uses physical addresses 
 May need to break transfers into page-sized chunks 
 Or chain multiple transfers (chained DMA transactions) 
 Or allocate contiguous physical pages for DMA 

 Whichever method is used, the OS must still 
cooperate by not remapping pages while a DMA 
transfer involving the page is in progress. 
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DMA/Cache Interaction 
 If DMA writes to a memory block that is cached 

 Cached copy becomes stale 
 If write-back cache has dirty block, and DMA 

reads memory block  Reads stale data 

 Need to ensure cache coherence 
 Route  the I/O activity through the cache 

 Degrade performance 

 OS selectively invalidates the cache block for an I/O 
read or force write-backs to occur for an I/O write 
(often called cache flushing) 

 HW mechanism for selectively flushing cache entries 
 Or use non-cacheable memory locations for I/O 
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Measuring I/O Performance 
 How should we compare I/O systems? 
 I/O performance depends on 

 Hardware: CPU, memory, controllers, buses 
 Software: operating system, database 

management system, application 
 Workload: request rates and patterns 

 I/O system design can trade-off between 
response time and throughput 
 Measurements of throughput often done with 

constrained response-time 

§6.7 I/O
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A confusion point 
 The transfer rate depends on the clock rate 
 1 GHz= 109 cycles per second 
 1 GB = 1,000,000,000  bytes in I/O systems 

 
 1 GB = 230 bytes = 1,073,741,824 bytes in main 

memory 
 

 The difference need to convert between base 10 
(1K=1000) and base 2 (1k=1024) 
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Transaction Processing 
 Transaction processing (TP):  A typical  

application that involves handling small short 
operations (called transactions) that typically 
require both I/O  and computation. 
 Small data accesses to a DBMS 
 TP processing applications typically have both 

response time  requirements and a performance 
measurement based on the throughput of transactions 

 Interested in I/O rate, not data rate 
 I/O rate: performance measure of I/Os per unit 

time, such as reads per second 
 Data rate: performance measure of bytes per 

unit times, such as GB/second 
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Transaction Processing Benchmarks 
 Measure throughput 

 Subject to response time limits and failure handling 
 ACID (Atomicity, Consistency, Isolation, Durability) 
 Overall cost per transaction 

 Transaction Processing Council (TPC) 
benchmarks (www.tcp.org) 
 TPC-APP: B2B application server and web services 
 TCP-C: on-line order entry environment 
 TCP-E: on-line transaction processing for brokerage 

firm 
 TPC-H: decision support — business oriented ad-hoc 

queries 
 All the TPC benchmarks measure performance 

in transactions per second 
 Measured only when a response time limit is met 
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File System & Web I/O Benchmarks 
 SPEC System File System (SFS) 

 Synthetic workload for NFS server, based on 
monitoring real systems 

 Results 
 Throughput (operations/sec) 
 Response time (average ms/operation) 

 SPEC Web Server benchmark 
 Measures simultaneous user sessions, 

subject to required throughput/session 
 Three workloads: Banking, Ecommerce, and 

Support 
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Designing I/O Systems 
 Two primary types of specifications 

 Latency constraints 
 Bandwidth constraints 

 Knowledge of the traffic patterns affects 
the design and analysis 
 For time-critical operations 

 Determining the latency on an unloaded 
system is relatively easy simple 

 Finding the average latency under a load 
is much harder. Tackled  either  
 by queuing theory or 
 by simulation 

§6.8 D
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Designing I/O Systems 
 Another typical problem designers face 

 Meeting a set of bandwidth constraints given a 
workload 

 Given a partially configure I/O system, balancing 
the system to maintain the maximum bandwidth 
achievable is a simplified problem of the first. 

 The general approaches to designing an I/O 
system 
 Find the weakest link in the I/O system 
 Configure the component to sustain the required 

bandwidth 
 Determine the requirements for the rest of the system 

and configure  them to support the bandwidth 
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I/O vs. CPU Performance 
 Amdahl’s Law 

 Don’t neglect I/O performance as parallelism 
increases compute performance 

 Example 
 Benchmark takes 90s CPU time, 10s I/O time 
 Double the number of CPUs/2 years 

 I/O unchanged 

Year CPU time I/O time Elapsed time % I/O time 
now 90s 10s 100s 10% 
+2 45s 10s 55s 18% 
+4 23s 10s 33s 31% 
+6 11s 10s 21s 47% 
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RAID 
 Redundant Array of Inexpensive (Independent) 

Disks 
 Use multiple smaller disks (c.f. one large disk) 
 Parallelism improves performance 
 Plus extra disk(s) for redundant data storage 

 Provides fault tolerant storage system 
 Especially if failed disks can be “hot swapped” 

 RAID 0: a misnomer 
 No  redundancy (“AID”?) 

 Just stripe data over multiple disks 
 But it does improve performance 
 Striping: allocation of logically sequential blocks to 

separate disks  
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RAID 1 & 2 
 RAID 1: Mirroring (shadowing) 

 Mirroring: writing the identical data to multiple 
disks to increase data availability 

 N + N disks, replicate data: expensive 
 Write data to both data disk and mirror disk 
 On disk failure, read from mirror 

 RAID 2: Error correcting code (ECC) 
 N + E disks (e.g., 10 + 4) 

 Split data at bit level across N disks 
 Generate E-bit ECC 

 Too complex, not used in practice 
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RAID 3: Bit-Interleaved Parity 
 N + 1 disks 

 Data striped across N disks at byte level 
 A redundant disk stores parity 
 Read access 

 Read all disks 
 Write access 

 Generate new parity and update all disks 
 On failure 

 Use parity to reconstruct missing data 

 Not widely used 
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RAID 4: Block-Interleaved Parity 
 N + 1 disks 

 Data striped across N disks at block level 
 A redundant disk stores parity for a group of blocks 
 Read access 

 Read only the disk holding the required block 

 Write access 
 Just read disk containing modified block, and parity disk 
 Calculate new parity, update data disk and parity disk 

 On failure 
 Use parity to reconstruct missing data 

 Not widely used 
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RAID 3 vs RAID 4 

The RAID 4 shortcut on the right reads the old value D0 and compares it to the new value 
D0’ to see which bits will change. You then read the old parity P and then change the 
corresponding bits to form P’. The logical function exclusive OR does exactly what we 
want. This example replaces three disk reads (D1, D2, D3) and two disk writes (D0’, P’) 
involving all the disks for two disk reads (D0, P) and two disk writes (D0’, P’), which involve 
just two disks. Increasing the size of the parity group increases the savings of the shortcut. 
RAID 5 uses the same shortcut. 
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RAID 5: Distributed Parity 
 N + 1 disks 

 Like RAID 4, but parity blocks distributed 
across disks 
 Avoids parity disk being a bottleneck 

 Widely used 
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RAID 6: P + Q Redundancy 
 N + 2 disks 

 Like RAID 5, but two lots of parity (P & Q) 
 Greater fault tolerance through more 

redundancy 
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RAID 

P Q 

P 

P 

P 

P P P P 

ECC disks Bit-striped 

Bit-striped 

Block-striped 

Parity-interleaved 



Chapter 6 — Storage and Other I/O Topics — 55 

RAID Summary 
 RAID can improve performance and 

availability 
 High availability requires hot swapping 

 Assumes independent disk failures 
 Too bad if the building burns down! 

 See “Hard Disk Performance, Quality and 
Reliability” 
 http://www.pcguide.com/ref/hdd/perf/index.htm 
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Server Computers 
 Applications are increasingly run on 

servers 
 Web search, office apps, virtual worlds, … 

 Requires large data center servers 
 Multiple processors, networks connections, 

massive storage 
 Space and power constraints 

 Server equipment built for 19” racks 
 19” wide (482.6 mm), depth varies 
 Multiples of 1.75” (1U) high 

§6.10 R
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19-inch rack with 42 1U servers 
Sun Fire x4150 1U server 
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Sun Fire x4150 
 The 1U box contains 

 Eight 2.66 GHz processors, spread across two 
sockets   (2 Intel Xeon 5345) 

 64 GB of DDR2-667 DRAM, spread across 16 4GB 
fully buffered DIMMs (FBDIMMs) 

 Eight 15,000 RPM 73 GB SAS 2.5-inch disk drives 
 1 RAID controller (supporting RAID 0, RAID 1, RAID5, 

RAID 6) 
 Four 10/100/1000 Ethernet ports 
 Three PCI Express x8 ports 
 4 external and 1 internal USB ports 
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Sun Fire x4150 1U server 

4 cores 
each 

16 x 4GB = 
64GB DRAM 

2GB/s 

2GB/s 

USB 2.0 60 MB/s 

SAS 112 MB/s 
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I/O Systems on an Intel Server 

SAS 375 MB/s 
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Intel 5000P Chip Set 

240-pin  fully buffered  DIMM 
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SAS Disk in Sun Fire  x4150 
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I/O System Design Example 
 A Sun Fire x4150 system with 

 Workload: 64KB disk reads 
 Each I/O op uses 200,000 user-code instructions and 
 OS averages 100,000 OS instructions per I/O operation 

 Each CPU: 109 instructions/sec 
 Find the maximum sustainable I/O rate for a fully loaded 

Sun Fire x4150 for random reads and sequential reads 
 Assume that the reads always be done on an idle disk and that 

the RAID controller is not be bottleneck. 
 FSB: 10.6 GB/sec peak 
 DRAM DDR2 667MHz: 5.336 GB/sec (x4) 
 PCI-E 8× bus: 8 × 250MB/sec = 2GB/sec 
 Disks: 15,000 rpm, 2.9ms avg. seek time, 112MB/sec sustained 

transfer rate 
 What I/O rate can be sustained? 

 For random reads, and for sequential reads 
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Sun Fire x4150 1U server 

4 cores 
each 

16 x 4GB = 
64GB DRAM 

2GB/s 

2G
B

/s
 

USB 2.0 60 MB/s 

SAS 112 MB/s 
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 240-pin DDR2 fully buffered dual in-line memory 
module with ECC to detect and report channel 
errors to host memory controller 

 8 banks 
 4 GB = 256 M x 72 bit ( including ECC) 
             = 256 M x 4 x 2 x 18 packages 
 A burst of eight = 72 x 8 = 64B data + 8B ECC  

 

FBDIMM/DDR2 SDRAM 
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FBDIMM/DDR2 SDRAM 
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 I/O rate for CPUs  
 Per core: 109/(100,000 + 200,000) = 3,333 IOPS 
 8 cores: 26,667 IOPS 

 Random reads, I/O rate for disks 
 Assume actual seek time is average/4 
 Time/op = seek + rotational latency + transfer 

= 2.9ms/4 + 4ms/2 + 64KB/(112MB/s) = 3.3ms 
 303 IOPS per disk, 2424 IOPS for 8 disks 

 Sequential reads 
 112MB/s / 64KB = 1750 IOPS per disk 
 14,000 IOPS for 8 disks 

Design Example (cont) 



Chapter 6 — Storage and Other I/O Topics — 68 

Design Example (cont) 
 PCI-E I/O rate  

 2GB/sec / 64KB = 31,250 ops/sec 
 DRAM I/O rate per DIMM 

 16 DIMM in a fully configured x4150 
 5.336 GB/sec / 64KB = 83,375 ops/sec 

 FSB I/O rate 
 Assume we can sustain half the peak rate 
 5.3 GB/sec / 64KB = 81,540 IOPS per FSB 
 163,080 IOPS for 2 FSBs 

 Weakest link: disks 
 2424 random reads per second 
 14,000 sequential reads per second 
 Other components have ample headroom to 

accommodate these rates 
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Fallacy: Disk Dependability 
 The rated mean time to failure of disks is as 1.2 M hours 

(140yr), so disks practically never fail  
 because the lifetime of a disk is 5 years 

 Wrong!: this is the mean time to failure 
 What is the distribution of failures? 

 Exponential distribution for constant failure rare 
 Weibull distribution : cdf R(x;k,λ) = 1 – EXP(-(x/λ)k) 

 0 < k < 1: the failure rate decreases over time (infant mortality) 
 k = 1:       the failure rate is constant 
 1 < k:       the failure rate increases over time (wear or aging) 

 What if you have 1000 disks 
 How many will fail per year? 7.3 disks 

§6.12 Fallacies and P
itfalls 

0.73%
ehrs/failur 1200000

hrs/disk 8760disks 1000(AFR) Rate Failure Annual =
×

=

1 year= 8760 hrs 
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Fallacies  
 Disk failure rates are as specified 

 No! 
 Studies of failure rates in the field for 100,000 

ATA and SCSI disks  
 AFR = 2% to 4% (measured) vs.  0.6% to 0.8% 

(spec) 
 Another study for more than 100,000 ATA 

disks 
 AFR= 1.7% (first year) to 8.6% (third year) vs. 

1.5% (quoted) 
 Why? 
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Fallacies  
 A 1GB/s interconnect transfers 1GB in one sec 

 You cannot use 100% of any bus bandwidth 
 70% ~ 80% of the peak bandwidth: fortunate 

 Why you cannot use 100% of a bus 
 Time to send address or acknowledge signals 
 Stalls while waiting to use a busy  

 But what’s a GB? 
 For bandwidth, use 1GB = 109 B 
 For storage, use 1GB = 230 B = 1.075×109 B 
 So 1GB/sec is 0.93GB in one second 

 About 7% error 
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Pitfall 
 Trying  to provide features only within the network versus 

end to end 
 The concern is providing at low level features that can only be 

accomplished at the highest level, thus only partially satisfying 
the communication demand. 

 End-to-end argument 
 The function in question can completely and correctly be 

specified only with the knowledge and help of the application 
standing at the endpoints of the communication system. 

 Therefore, providing that questioned function as a feature of the 
communication system itself is not possible. 

 Example: a MIT network that used several gateways, 
each of which added a checksum from one gateway to 
the next. 
 The application programmers assumed the checksum 

guaranteed accuracy, incorrectly believing that the message was 
protected while stored in the memory of each gateway. 

 One gateway developed a transient failure that swapped one pair 
of bytes per million bytes transferred. – wrong! 
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Pitfall: intermediate checks vs end-to-end 
 Over time the source code of one OS was repeatedly 

passed through the gateway, thereby corrupting the code. 
 The only solution was to correct the infected source files by 

comparing to paper listings and repairing the code by hand. 
 Had the checksums been calculated and checked by the 

application running on the end system, safety would 
have been assured. 

 There is a useful role for intermediate checks, if  end-to-
end checking is available. 
 End-to-end checking: can show that something is broken 

between two ends 
 Intermediate checks: can discover which component is broken 
 You need both for repair 
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Pitfall: Offloading to I/O Processors 
 Offloading expecting to improve performance 

without a careful analysis 
 Overhead of managing an I/O request may 

dominate when intelligent interfaces are used 
 Would be quicker to do small operation on the CPU 

 Performance falls when the I/O processor has 
much lower performance than the main processor. 
 Since the I/O processor is supposed to be simpler 

 Consequently, a small amount of main processor 
time is replaced with a large amount of I/O 
processor time. 
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Wheel of Reincarnation ? 

 Making an I/O processor faster makes it into a 
major system component 
 An I/O processor might need its own coprocessors! 

 Myer and Sutherland: they eventually noticed 
that they were caught in a loop of continuously 
increasing the power of an I/O processor until it 
needed its own simpler coprocessor. 
 Display processor added graphic features came to 

resemble a full-fledged processor 
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Pitfall: Using Tape to back up disks 
 This is both a fallacy and a pitfall 
 History: Which are useful backs (magnetic tapes vs. disks) 

 longer access time 
 can be used per reader (removable spool) 
 higher density  
 10x to 100x cheaper than disks 

 Tape readers must read the last 4 generations of tapes  
 Desktop owners generally do not backup disks onto tape 

 Largest market for disks  well developed 
 A small market for tapes  under developed 

 Advantages eroded by disk technology developments 
 Currently, ATA disks are cheaper than tapes 
 Makes better sense to replicate data over multiple sites, 

which depends on advances in disk and network  
 e.g, RAID, remote mirroring 
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Fallacy: Disk Scheduling 
 OS are the best place to schedule disk accesses 
 Higher-level interface like ATA and SCSI offer 

logical block addresses to the host OS. 
 The best OS can do  to improve performance is to sort 

the logical block address into increasing order. 
 The disks know the actual mapping of the logical 

block addresses onto the physical locations, 
 It can reduce the rotational latency by rescheduling. 

 Map to physical track, cylinder, sector locations 
 Also, blocks are cached by the drive 

 OS is unaware of physical locations 
 Reordering can reduce performance 
 Depending on placement and caching 



Example showing OS versus disk schedule accesses, labeled host-ordered versus drive-ordered. 
The former takes three revolutions to complete the four reads, while the latter completes them in just three-
fourths of a revolution (from Anderson [2003]).  

OS vs disk schedule accesses 
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Operation Starting LBA   Length 
Read    724               8 
Read    100               16 
Read    9987             1 
Read    26                 128 

OS Scheduled: address sorting 
Operation Starting LBA   Length 
Read    26                 128 
Read    100               16 
Read    724               8 
Read    9987             1 
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Pitfall: Peak Performance 
 Peak I/O rates are nearly impossible to 

achieve 
 Usually, some other system component limits 

performance 
 E.g., transfers to memory over a bus 

 Collision with DRAM refresh 
 Arbitration contention with other bus masters 

 E.g., PCI bus: peak bandwidth ~133 MB/sec 
 In practice, max 80MB/sec sustainable 
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Concluding Remarks 
 I/O performance measures 

 Throughput, response time 
 Dependability and cost also important 

 Buses used to connect CPU, memory, 
I/O controllers 
 Polling, interrupts, DMA 

 I/O benchmarks 
 TPC, SPECSFS, SPECWeb 

 RAID 
 Improves performance and dependability 
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Homework: chapter 6 
 Due before starting the class on Nov. 29 
 Exercise 6.3 
 Exercise 6.6 
 Exercise 6.11 
 Exercise 6.15 
 Exercise 6.16 
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