
Chapter 6B
Storage and Other I/O
Topics

Chapter 6 — Storage and Other I/O Topics — 2

Interconnecting Components
 Need interconnections between

 CPU, memory, I/O controllers
 Bus: shared communication channel

 Parallel set of wires for data and
synchronization of data transfer

 Can become a bottleneck
 Performance limited by physical factors

 Wire length, number of connections
 More recent alternative: high-speed serial

connections with switches
 Like networks

§6.5 C
onnecting P

rocessors, M
em

ory, and I/O
 D

evices

Chapter 6 — Storage and Other I/O Topics — 3

Bus Types

 Processor-Memory buses
 Short, high speed
 Design is matched to memory organization

 I/O buses
 Longer, allowing multiple connections
 Specified by standards for interoperability
 Connect to processor-memory bus through a bridge

 Backplane bus
 A bus that is designed to allow processor, memory,

and I/O devices to coexist on a single bus.

Chapter 6 — Storage and Other I/O Topics — 4

Bridge

Memory
I/O controller

Graphics
output

CPU-Memory bus
bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

Chapter 6 — Storage and Other I/O Topics — 5

Connection Basics
 An I/O transaction includes two parts:

sending the address and sending or
receiving the data
 A sequence of operations over the

interconnect that includes a request and may
include a response

 A read transaction or a write transaction
 Several standards exist

 Firewire, USB, PCI express (PCIe), Serial
ATA (SATA), Serial attached SCSI (SAS)

Chapter 6 — Storage and Other I/O Topics — 6

I/O Bus Examples
Firewire USB 2.0 PCI Express Serial ATA Serial

Attached
SCSI

Intended use External External Internal Internal External
Devices per
channel

63 127 1 1 4

Data width 4 2 2/lane 4 4
Peak
bandwidth

50MB/s or
100MB/s

0.2MB/s,
1.5MB/s, or
60MB/s

250MB/s/lane
1×, 2×, 4×,
8×, 16×,
32×

300MB/s 300MB/s

Hot
pluggable

Yes Yes Depends Yes Yes

Max length 4.5m 5m 0.5m 1m 8m
Standard IEEE 1394 USB

Implementers
Forum

PCI-SIG SATA-IO INCITS TC
T10

Chapter 6 — Storage and Other I/O Topics — 7

Bus Signals and Synchronization
 Data lines

 Carry address and data
 Multiplexed or separate

 Control lines
 Indicate data type, synchronize transactions

 Synchronous
 Uses a bus clock

 Asynchronous
 Uses request/acknowledge control lines for

handshaking

Chapter 6 — Storage and Other I/O Topics — 8

Handshaking Protocols
 Used in an asynchronous bus
 A series of steps used to coordinate

asynchronous bus transfers in which the
sender and receiver proceed to the next
step only when both parties agree that the
current step has been completed.

Chapter 6 — Storage and Other I/O Topics — 9

Typical x86 PC I/O System

AMD X4 and Intel Nehalem
include the north bridge inside
the microprocessor, and the
south bridge chip of the Intel
975 includes a RAID controller.

Enterprise South Bridge Interface (ESI)

Chapter 6 — Storage and Other I/O Topics — 10

I/O Chips

AMD X4 includes the
north bridge in the
microprocessor

Chapter 6 — Storage and Other I/O Topics — 11

Interfacing I/O Devices
 A network protocol defines how a block of data

should be communicated on a set of wires.
 This will leaves several other tasks that must be

performed to actually cause to be transferred
from a device and into the memory address
space of some user program.

 This section focuses on these tasks
 How is a user I/O request transformed into a device

command and communicated to the device?
 How is data actually transferred to or from a memory

location?
 What is the role of the OS?

§6.6 Interfacing I/O
 D

evices …

Chapter 6 — Storage and Other I/O Topics — 12

I/O Management
 I/O is mediated by the OS

 Multiple programs share I/O resources
 Need protection and scheduling

 I/O causes asynchronous interrupts
 Same mechanism as exceptions

 I/O programming is fiddly
 OS provides abstractions to programs

§6.6 Interfacing I/O
 D

evices …

Chapter 6 — Storage and Other I/O Topics — 13

I/O Commands
 I/O devices are managed by I/O controller

hardware
 Transfers data to/from device
 Synchronizes operations with software

 Command registers
 Cause device to do something

 Status registers
 Indicate what the device is doing and occurrence of

errors
 Data registers

 Write: transfer data to a device
 Read: transfer data from a device

Chapter 6 — Storage and Other I/O Topics — 14

Characteristics of I/O Systems
 The OS guarantees that a user’s program

accesses only the portions of an I/O devices to
which the user has rights.

 The OS provides abstractions for accessing
devices by supplying routines that handle low-
level devices by a program.

 The OS handles the interrupts generated by I/O
devices, just as it handles the exceptions
generated by a program.

 The OS tries to provide equitable access to the
shared I/O resources, as well as schedules
accesses to enhance system throughput.

Chapter 6 — Storage and Other I/O Topics — 15

Three type of Communications
 The OS must be able to give commands to I/O

devices.
 The device must be able to notify the OS when

the I/O device has completed an operation or
has encountered an error.

 Data must be transferred between memory and
an I/O device.

Chapter 6 — Storage and Other I/O Topics — 16

I/O Register Mapping
 Memory mapped I/O

 Registers in the I/O devices are addressed in
same space as memory

 Address decoder distinguishes between them
 OS uses address translation mechanism to

make them only accessible to kernel
 I/O instructions

 Separate instructions to access I/O registers
 Can only be executed in kernel mode
 Example: x86

Chapter 6 — Storage and Other I/O Topics — 17

Polling
 Periodically check I/O status register

 If device ready, do operation
 If error, take action

 Common in small or low-performance real-
time embedded systems
 Predictable timing
 Low hardware cost

 In other systems, wastes CPU time

Chapter 6 — Storage and Other I/O Topics — 18

Interrupts
 When a device is ready or error occurs

 Controller interrupts CPU
 Interrupt is like an exception with two important

distinctions
 Asynchronous to instruction execution

 Can invoke handler between instructions
 Processor need to get the identity of the device

generating the interrupt, as well as its priority.
 A system can use a vectored interrupt or an

exception Cause register.
 When the processor recognizes the interrupt, the

device can send either the vector address or a status
field to place in the Cause register.

Chapter 6 — Storage and Other I/O Topics — 19

Interrupt Priority Levels
 Most interrupt mechanisms have several

levels of priority
 UNIX OS use 4 to 6 levels
 I/O interrupts have lower priority than internal

exceptions
 MIPS provides the primitives that let the

OS implement the policy
 Key registers are shown in Fig. 6.11

 Cause and Status registers
 Interrupt enable=0: no one can interrupt
 Interrupt mask field in the status register
 Pending interrupt field in the cause register

Chapter 6 — Storage and Other I/O Topics — 20

Cause and Status Registers

Status register: determines who can interrupt the computer

Cause register

Chapter 6 — Storage and Other I/O Topics — 21

Steps for handling an interrupt

 Can set the exception code field
 of the Cause register

R4000 MIPS processor

Chapter 6 — Storage and Other I/O Topics — 22

Exception Code

Chapter 6 — Storage and Other I/O Topics — 23

Steps for handling an interrupt

1. Logically AND the pending interrupt field (Cause register) and the
interrupt mask field (Status register) to see which enabled interrupt
could be the culprit. Copies are made of these two registers using
mfc0.
2. Select the higher priority of these interrupts. The software
convention is that the leftmost is the highest priority.
3. Save the interrupt mask field of the Status register.
4. Change the interrupt mask field to disable all interrupts of equal or
lower priority.
5. Save the processor state needed to handle the interrupt
6. To allow higher-priority interrupts, set enable bit of the Status
register 1.
7. Call the appropriate interrupt routine
8. Before restoring state, set the interrupt enable bit of the Status
register to 0. This also allows you to restore the interrupt mask field.

Chapter 6 — Storage and Other I/O Topics — 24

Cause and Status Registers

Status register

Cause register

for software interrupt
Higher priority

Chapter 6 — Storage and Other I/O Topics — 25

Interrupt Priority Levels (IPLs)
 How do IPLs correspond to these

mechanism?
 The IPL is an OS invention.

 It is stored in the memory of the process, and
every process is given an IPL.

 At the lowest IPL, all interrupts are permitted.
 At the highest IPL, all interrupt are blocked.
 Raising and lowering the IPL involves

changes to the interrupt mask field of the
Status register.

Chapter 6 — Storage and Other I/O Topics — 26

Programmable Interrupt Controller
PIC: Intel 8259A

IRR ISR

Chapter 6 — Storage and Other I/O Topics — 27

PIC Interrupt Sequence
 2. The PIC (8259A)

evaluates these requests,
and sends an INT to the
CPU, if appropriate.

 3. The CPU
acknowledges the INT
and responds with an
INTA pulse.

 4. Upon receiving an
INTA from the CPU
group, the highest priority
ISR bit is set and the
corresponding IRR bit is
reset. The PIC does not
drive the Data Bus during
this cycle.

IRR ISR

 1. One or more of the INTERRUPT
REQUEST lines are raised high,
setting the corresponding IRR bit(s).

Chapter 6 — Storage and Other I/O Topics — 28

PIC Interrupt Sequence
 5. The 8086 will initiate a

second INTA pulse. During
this pulse, the PIC
releases an 8-bit pointer
(vector address) onto the
Data Bus where it is read
by the CPU.

 6. This completes the
interrupt cycle. In the AEOI
mode the ISR bit is reset at
the end of the second
INTA pulse. Otherwise, the
ISR bit remains set until an
appropriate EOI command
is issued at the end of the
interrupt subroutine.

IRR ISR

AEOI: automatic end of interrupt

Chapter 6 — Storage and Other I/O Topics — 29

I/O Data Transfer
 CPU transfers data between memory and I/O

data registers between a device and memory
 Two techniques

 Polling and interrupt-driven I/O
 Both work best with lower-bandwidth devices
 Time consuming for high-speed devices

 Direct memory access (DMA)
 Offloading the processor
 For high-bandwidth devices
 OS provides starting address in memory
 I/O controller transfers to/from memory autonomously
 Controller interrupts on completion or error

Chapter 6 — Storage and Other I/O Topics — 30

Three steps in a DMA transfer
 1. The processor sets up the DMA by supplying

 the identity of the device,
 the operation to perform on the device,
 the memory address that is the source or destination

of the data to be transferred, and
 the number of bytes to transfer

 2. The DMA arbitrates for the interconnect and
starts the operation on the device.

 3. Once the DMA transfer is complete, the
controller interrupts the processor,
 which can then determine whether the entire DMA

operation completed successfully.

Chapter 6 — Storage and Other I/O Topics — 31

DMA Controller

Chapter 6 — Storage and Other I/O Topics — 32

DMA Controller

Chapter 6 — Storage and Other I/O Topics — 33

Multiple channels in DMAC
 A dedicated channel supports each stream,

including source and destination controllers, and
a FIFO. This enables better latency than a
DMAC with only a single channel shared among
several DMA streams.

 DMAC enables the following transactions
 Memory to memory
 Memory to a peripheral
 A peripheral to memory
 A peripheral to a peripheral

 Each DMA stream provides unidirectional serial
transfers for a single source and destination

Chapter 6 — Storage and Other I/O Topics — 34

Bus system & DMA transfers
 There may be multiple DMA devices in a computer

system.
 For example, in a system with a single processor-

memory bus and multiple I/O buses, each I/O bus
controller will often contain a DMA processor that
handles any transfers between a device on the I/O bus
and the memory.

 By using caches, the processor can avoid having
to access memory most of the time, thereby
leaving most of the memory bandwidth free for use
by I/O devices.
 If the processor is contending for memory, it will be

delayed when the memory is busy doing a DMA transfer.

Chapter 6 — Storage and Other I/O Topics — 35

I/O Processor
 To further reduce the need to interrupt the

processor and occupy it in handling an I/O request
that may involve doing several actual operations,
the I/O controller can be made more intelligent.

 Specialized processors that basically execute a
series of I/O operations, called an I/O program.
 Can be general purpose microprocessors

Chapter 6 — Storage and Other I/O Topics — 36

DMA and Memory System
 Without DMA, all accesses to memory go

through address translation and cache access
 With DMA, there is another path to the memory

system – one that does no go through the
address translation

 This problem are usually solved with a
combination of hardware techniques and
software support.

 Difficulties in having DMA in a virtual memory
system
 Pages have both a physical and a virtual address.

Chapter 6 — Storage and Other I/O Topics — 37

DMA/VM Interaction
 OS uses virtual addresses for memory

 DMA blocks may not be contiguous in physical
memory DMA becomes not efficient

 Should DMA use virtual addresses?
 Would require controller to do translation complex

 If DMA uses physical addresses
 May need to break transfers into page-sized chunks
 Or chain multiple transfers (chained DMA transactions)
 Or allocate contiguous physical pages for DMA

 Whichever method is used, the OS must still
cooperate by not remapping pages while a DMA
transfer involving the page is in progress.

Chapter 6 — Storage and Other I/O Topics — 38

DMA/Cache Interaction
 If DMA writes to a memory block that is cached

 Cached copy becomes stale
 If write-back cache has dirty block, and DMA

reads memory block Reads stale data

 Need to ensure cache coherence
 Route the I/O activity through the cache

 Degrade performance

 OS selectively invalidates the cache block for an I/O
read or force write-backs to occur for an I/O write
(often called cache flushing)

 HW mechanism for selectively flushing cache entries
 Or use non-cacheable memory locations for I/O

Chapter 6 — Storage and Other I/O Topics — 39

Measuring I/O Performance
 How should we compare I/O systems?
 I/O performance depends on

 Hardware: CPU, memory, controllers, buses
 Software: operating system, database

management system, application
 Workload: request rates and patterns

 I/O system design can trade-off between
response time and throughput
 Measurements of throughput often done with

constrained response-time

§6.7 I/O
 P

erform
ance M

easures: …

Chapter 6 — Storage and Other I/O Topics — 40

A confusion point
 The transfer rate depends on the clock rate
 1 GHz= 109 cycles per second
 1 GB = 1,000,000,000 bytes in I/O systems

 1 GB = 230 bytes = 1,073,741,824 bytes in main

memory

 The difference need to convert between base 10
(1K=1000) and base 2 (1k=1024)

Chapter 6 — Storage and Other I/O Topics — 41

Transaction Processing
 Transaction processing (TP): A typical

application that involves handling small short
operations (called transactions) that typically
require both I/O and computation.
 Small data accesses to a DBMS
 TP processing applications typically have both

response time requirements and a performance
measurement based on the throughput of transactions

 Interested in I/O rate, not data rate
 I/O rate: performance measure of I/Os per unit

time, such as reads per second
 Data rate: performance measure of bytes per

unit times, such as GB/second

Chapter 6 — Storage and Other I/O Topics — 42

Transaction Processing Benchmarks
 Measure throughput

 Subject to response time limits and failure handling
 ACID (Atomicity, Consistency, Isolation, Durability)
 Overall cost per transaction

 Transaction Processing Council (TPC)
benchmarks (www.tcp.org)
 TPC-APP: B2B application server and web services
 TCP-C: on-line order entry environment
 TCP-E: on-line transaction processing for brokerage

firm
 TPC-H: decision support — business oriented ad-hoc

queries
 All the TPC benchmarks measure performance

in transactions per second
 Measured only when a response time limit is met

Chapter 6 — Storage and Other I/O Topics — 43

File System & Web I/O Benchmarks
 SPEC System File System (SFS)

 Synthetic workload for NFS server, based on
monitoring real systems

 Results
 Throughput (operations/sec)
 Response time (average ms/operation)

 SPEC Web Server benchmark
 Measures simultaneous user sessions,

subject to required throughput/session
 Three workloads: Banking, Ecommerce, and

Support

Chapter 6 — Storage and Other I/O Topics — 44

Designing I/O Systems
 Two primary types of specifications

 Latency constraints
 Bandwidth constraints

 Knowledge of the traffic patterns affects
the design and analysis
 For time-critical operations

 Determining the latency on an unloaded
system is relatively easy simple

 Finding the average latency under a load
is much harder. Tackled either
 by queuing theory or
 by simulation

§6.8 D
esigning an I/O

 S
ystem

Chapter 6 — Storage and Other I/O Topics — 45

Designing I/O Systems
 Another typical problem designers face

 Meeting a set of bandwidth constraints given a
workload

 Given a partially configure I/O system, balancing
the system to maintain the maximum bandwidth
achievable is a simplified problem of the first.

 The general approaches to designing an I/O
system
 Find the weakest link in the I/O system
 Configure the component to sustain the required

bandwidth
 Determine the requirements for the rest of the system

and configure them to support the bandwidth

Chapter 6 — Storage and Other I/O Topics — 46

I/O vs. CPU Performance
 Amdahl’s Law

 Don’t neglect I/O performance as parallelism
increases compute performance

 Example
 Benchmark takes 90s CPU time, 10s I/O time
 Double the number of CPUs/2 years

 I/O unchanged

Year CPU time I/O time Elapsed time % I/O time
now 90s 10s 100s 10%
+2 45s 10s 55s 18%
+4 23s 10s 33s 31%
+6 11s 10s 21s 47%

§6.9 P
arallelism

 and I/O
: R

A
ID

Chapter 6 — Storage and Other I/O Topics — 47

RAID
 Redundant Array of Inexpensive (Independent)

Disks
 Use multiple smaller disks (c.f. one large disk)
 Parallelism improves performance
 Plus extra disk(s) for redundant data storage

 Provides fault tolerant storage system
 Especially if failed disks can be “hot swapped”

 RAID 0: a misnomer
 No redundancy (“AID”?)

 Just stripe data over multiple disks
 But it does improve performance
 Striping: allocation of logically sequential blocks to

separate disks

Chapter 6 — Storage and Other I/O Topics — 48

RAID 1 & 2
 RAID 1: Mirroring (shadowing)

 Mirroring: writing the identical data to multiple
disks to increase data availability

 N + N disks, replicate data: expensive
 Write data to both data disk and mirror disk
 On disk failure, read from mirror

 RAID 2: Error correcting code (ECC)
 N + E disks (e.g., 10 + 4)

 Split data at bit level across N disks
 Generate E-bit ECC

 Too complex, not used in practice

Chapter 6 — Storage and Other I/O Topics — 49

RAID 3: Bit-Interleaved Parity
 N + 1 disks

 Data striped across N disks at byte level
 A redundant disk stores parity
 Read access

 Read all disks
 Write access

 Generate new parity and update all disks
 On failure

 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 50

RAID 4: Block-Interleaved Parity
 N + 1 disks

 Data striped across N disks at block level
 A redundant disk stores parity for a group of blocks
 Read access

 Read only the disk holding the required block

 Write access
 Just read disk containing modified block, and parity disk
 Calculate new parity, update data disk and parity disk

 On failure
 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 51

RAID 3 vs RAID 4

The RAID 4 shortcut on the right reads the old value D0 and compares it to the new value
D0’ to see which bits will change. You then read the old parity P and then change the
corresponding bits to form P’. The logical function exclusive OR does exactly what we
want. This example replaces three disk reads (D1, D2, D3) and two disk writes (D0’, P’)
involving all the disks for two disk reads (D0, P) and two disk writes (D0’, P’), which involve
just two disks. Increasing the size of the parity group increases the savings of the shortcut.
RAID 5 uses the same shortcut.

Chapter 6 — Storage and Other I/O Topics — 52

RAID 5: Distributed Parity
 N + 1 disks

 Like RAID 4, but parity blocks distributed
across disks
 Avoids parity disk being a bottleneck

 Widely used

Chapter 6 — Storage and Other I/O Topics — 53

RAID 6: P + Q Redundancy
 N + 2 disks

 Like RAID 5, but two lots of parity (P & Q)
 Greater fault tolerance through more

redundancy

Chapter 6 — Storage and Other I/O Topics — 54

RAID

P Q

P

P

P

P P P P

ECC disks Bit-striped

Bit-striped

Block-striped

Parity-interleaved

Chapter 6 — Storage and Other I/O Topics — 55

RAID Summary
 RAID can improve performance and

availability
 High availability requires hot swapping

 Assumes independent disk failures
 Too bad if the building burns down!

 See “Hard Disk Performance, Quality and
Reliability”
 http://www.pcguide.com/ref/hdd/perf/index.htm

Chapter 6 — Storage and Other I/O Topics — 56

Server Computers
 Applications are increasingly run on

servers
 Web search, office apps, virtual worlds, …

 Requires large data center servers
 Multiple processors, networks connections,

massive storage
 Space and power constraints

 Server equipment built for 19” racks
 19” wide (482.6 mm), depth varies
 Multiples of 1.75” (1U) high

§6.10 R
eal S

tuff: S
un Fire x4150 S

erver

Chapter 6 — Storage and Other I/O Topics — 57

19-inch rack with 42 1U servers
Sun Fire x4150 1U server

Chapter 6 — Storage and Other I/O Topics — 58

Sun Fire x4150
 The 1U box contains

 Eight 2.66 GHz processors, spread across two
sockets (2 Intel Xeon 5345)

 64 GB of DDR2-667 DRAM, spread across 16 4GB
fully buffered DIMMs (FBDIMMs)

 Eight 15,000 RPM 73 GB SAS 2.5-inch disk drives
 1 RAID controller (supporting RAID 0, RAID 1, RAID5,

RAID 6)
 Four 10/100/1000 Ethernet ports
 Three PCI Express x8 ports
 4 external and 1 internal USB ports

Chapter 6 — Storage and Other I/O Topics — 59

Sun Fire x4150 1U server

4 cores
each

16 x 4GB =
64GB DRAM

2GB/s

2GB/s

USB 2.0 60 MB/s

SAS 112 MB/s

Chapter 6 — Storage and Other I/O Topics — 60

I/O Systems on an Intel Server

SAS 375 MB/s

Chapter 6 — Storage and Other I/O Topics — 61

Intel 5000P Chip Set

240-pin fully buffered DIMM

Chapter 6 — Storage and Other I/O Topics — 62

SAS Disk in Sun Fire x4150

Chapter 6 — Storage and Other I/O Topics — 63

I/O System Design Example
 A Sun Fire x4150 system with

 Workload: 64KB disk reads
 Each I/O op uses 200,000 user-code instructions and
 OS averages 100,000 OS instructions per I/O operation

 Each CPU: 109 instructions/sec
 Find the maximum sustainable I/O rate for a fully loaded

Sun Fire x4150 for random reads and sequential reads
 Assume that the reads always be done on an idle disk and that

the RAID controller is not be bottleneck.
 FSB: 10.6 GB/sec peak
 DRAM DDR2 667MHz: 5.336 GB/sec (x4)
 PCI-E 8× bus: 8 × 250MB/sec = 2GB/sec
 Disks: 15,000 rpm, 2.9ms avg. seek time, 112MB/sec sustained

transfer rate
 What I/O rate can be sustained?

 For random reads, and for sequential reads

Chapter 6 — Storage and Other I/O Topics — 64

Sun Fire x4150 1U server

4 cores
each

16 x 4GB =
64GB DRAM

2GB/s

2G
B

/s

USB 2.0 60 MB/s

SAS 112 MB/s

Chapter 6 — Storage and Other I/O Topics — 65

 240-pin DDR2 fully buffered dual in-line memory
module with ECC to detect and report channel
errors to host memory controller

 8 banks
 4 GB = 256 M x 72 bit (including ECC)
 = 256 M x 4 x 2 x 18 packages
 A burst of eight = 72 x 8 = 64B data + 8B ECC

FBDIMM/DDR2 SDRAM

Chapter 6 — Storage and Other I/O Topics — 66

FBDIMM/DDR2 SDRAM

Chapter 6 — Storage and Other I/O Topics — 67

 I/O rate for CPUs
 Per core: 109/(100,000 + 200,000) = 3,333 IOPS
 8 cores: 26,667 IOPS

 Random reads, I/O rate for disks
 Assume actual seek time is average/4
 Time/op = seek + rotational latency + transfer

= 2.9ms/4 + 4ms/2 + 64KB/(112MB/s) = 3.3ms
 303 IOPS per disk, 2424 IOPS for 8 disks

 Sequential reads
 112MB/s / 64KB = 1750 IOPS per disk
 14,000 IOPS for 8 disks

Design Example (cont)

Chapter 6 — Storage and Other I/O Topics — 68

Design Example (cont)
 PCI-E I/O rate

 2GB/sec / 64KB = 31,250 ops/sec
 DRAM I/O rate per DIMM

 16 DIMM in a fully configured x4150
 5.336 GB/sec / 64KB = 83,375 ops/sec

 FSB I/O rate
 Assume we can sustain half the peak rate
 5.3 GB/sec / 64KB = 81,540 IOPS per FSB
 163,080 IOPS for 2 FSBs

 Weakest link: disks
 2424 random reads per second
 14,000 sequential reads per second
 Other components have ample headroom to

accommodate these rates

Chapter 6 — Storage and Other I/O Topics — 69

Fallacy: Disk Dependability
 The rated mean time to failure of disks is as 1.2 M hours

(140yr), so disks practically never fail
 because the lifetime of a disk is 5 years

 Wrong!: this is the mean time to failure
 What is the distribution of failures?

 Exponential distribution for constant failure rare
 Weibull distribution : cdf R(x;k,λ) = 1 – EXP(-(x/λ)k)

 0 < k < 1: the failure rate decreases over time (infant mortality)
 k = 1: the failure rate is constant
 1 < k: the failure rate increases over time (wear or aging)

 What if you have 1000 disks
 How many will fail per year? 7.3 disks

§6.12 Fallacies and P
itfalls

0.73%
ehrs/failur 1200000

hrs/disk 8760disks 1000(AFR) Rate Failure Annual =
×

=

1 year= 8760 hrs

Chapter 6 — Storage and Other I/O Topics — 70

Fallacies
 Disk failure rates are as specified

 No!
 Studies of failure rates in the field for 100,000

ATA and SCSI disks
 AFR = 2% to 4% (measured) vs. 0.6% to 0.8%

(spec)
 Another study for more than 100,000 ATA

disks
 AFR= 1.7% (first year) to 8.6% (third year) vs.

1.5% (quoted)
 Why?

Chapter 6 — Storage and Other I/O Topics — 71

Fallacies
 A 1GB/s interconnect transfers 1GB in one sec

 You cannot use 100% of any bus bandwidth
 70% ~ 80% of the peak bandwidth: fortunate

 Why you cannot use 100% of a bus
 Time to send address or acknowledge signals
 Stalls while waiting to use a busy

 But what’s a GB?
 For bandwidth, use 1GB = 109 B
 For storage, use 1GB = 230 B = 1.075×109 B
 So 1GB/sec is 0.93GB in one second

 About 7% error

Chapter 6 — Storage and Other I/O Topics — 72

Pitfall
 Trying to provide features only within the network versus

end to end
 The concern is providing at low level features that can only be

accomplished at the highest level, thus only partially satisfying
the communication demand.

 End-to-end argument
 The function in question can completely and correctly be

specified only with the knowledge and help of the application
standing at the endpoints of the communication system.

 Therefore, providing that questioned function as a feature of the
communication system itself is not possible.

 Example: a MIT network that used several gateways,
each of which added a checksum from one gateway to
the next.
 The application programmers assumed the checksum

guaranteed accuracy, incorrectly believing that the message was
protected while stored in the memory of each gateway.

 One gateway developed a transient failure that swapped one pair
of bytes per million bytes transferred. – wrong!

Chapter 6 — Storage and Other I/O Topics — 73

Pitfall: intermediate checks vs end-to-end
 Over time the source code of one OS was repeatedly

passed through the gateway, thereby corrupting the code.
 The only solution was to correct the infected source files by

comparing to paper listings and repairing the code by hand.
 Had the checksums been calculated and checked by the

application running on the end system, safety would
have been assured.

 There is a useful role for intermediate checks, if end-to-
end checking is available.
 End-to-end checking: can show that something is broken

between two ends
 Intermediate checks: can discover which component is broken
 You need both for repair

Chapter 6 — Storage and Other I/O Topics — 74

Pitfall: Offloading to I/O Processors
 Offloading expecting to improve performance

without a careful analysis
 Overhead of managing an I/O request may

dominate when intelligent interfaces are used
 Would be quicker to do small operation on the CPU

 Performance falls when the I/O processor has
much lower performance than the main processor.
 Since the I/O processor is supposed to be simpler

 Consequently, a small amount of main processor
time is replaced with a large amount of I/O
processor time.

Chapter 6 — Storage and Other I/O Topics — 75

Wheel of Reincarnation ?

 Making an I/O processor faster makes it into a
major system component
 An I/O processor might need its own coprocessors!

 Myer and Sutherland: they eventually noticed
that they were caught in a loop of continuously
increasing the power of an I/O processor until it
needed its own simpler coprocessor.
 Display processor added graphic features came to

resemble a full-fledged processor

Chapter 6 — Storage and Other I/O Topics — 76

Pitfall: Using Tape to back up disks
 This is both a fallacy and a pitfall
 History: Which are useful backs (magnetic tapes vs. disks)

 longer access time
 can be used per reader (removable spool)
 higher density
 10x to 100x cheaper than disks

 Tape readers must read the last 4 generations of tapes
 Desktop owners generally do not backup disks onto tape

 Largest market for disks well developed
 A small market for tapes under developed

 Advantages eroded by disk technology developments
 Currently, ATA disks are cheaper than tapes
 Makes better sense to replicate data over multiple sites,

which depends on advances in disk and network
 e.g, RAID, remote mirroring

Chapter 6 — Storage and Other I/O Topics — 77

Fallacy: Disk Scheduling
 OS are the best place to schedule disk accesses
 Higher-level interface like ATA and SCSI offer

logical block addresses to the host OS.
 The best OS can do to improve performance is to sort

the logical block address into increasing order.
 The disks know the actual mapping of the logical

block addresses onto the physical locations,
 It can reduce the rotational latency by rescheduling.

 Map to physical track, cylinder, sector locations
 Also, blocks are cached by the drive

 OS is unaware of physical locations
 Reordering can reduce performance
 Depending on placement and caching

Example showing OS versus disk schedule accesses, labeled host-ordered versus drive-ordered.
The former takes three revolutions to complete the four reads, while the latter completes them in just three-
fourths of a revolution (from Anderson [2003]).

OS vs disk schedule accesses

Chapter 6 — Storage and Other I/O Topics — 78

Operation Starting LBA Length
Read 724 8
Read 100 16
Read 9987 1
Read 26 128

OS Scheduled: address sorting
Operation Starting LBA Length
Read 26 128
Read 100 16
Read 724 8
Read 9987 1

Chapter 6 — Storage and Other I/O Topics — 79

Pitfall: Peak Performance
 Peak I/O rates are nearly impossible to

achieve
 Usually, some other system component limits

performance
 E.g., transfers to memory over a bus

 Collision with DRAM refresh
 Arbitration contention with other bus masters

 E.g., PCI bus: peak bandwidth ~133 MB/sec
 In practice, max 80MB/sec sustainable

Chapter 6 — Storage and Other I/O Topics — 80

Concluding Remarks
 I/O performance measures

 Throughput, response time
 Dependability and cost also important

 Buses used to connect CPU, memory,
I/O controllers
 Polling, interrupts, DMA

 I/O benchmarks
 TPC, SPECSFS, SPECWeb

 RAID
 Improves performance and dependability

§6.13 C
oncluding R

em
arks

Homework: chapter 6
 Due before starting the class on Nov. 29
 Exercise 6.3
 Exercise 6.6
 Exercise 6.11
 Exercise 6.15
 Exercise 6.16

§6.9 C
oncluding R

em
arks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

	Chapter 6B
	Interconnecting Components
	Bus Types
	Bridge
	Connection Basics
	I/O Bus Examples
	Bus Signals and Synchronization
	Handshaking Protocols
	Typical x86 PC I/O System
	I/O Chips
	Interfacing I/O Devices
	I/O Management
	I/O Commands
	Characteristics of I/O Systems
	Three type of Communications
	I/O Register Mapping
	Polling
	Interrupts
	Interrupt Priority Levels
	Cause and Status Registers
	Steps for handling an interrupt
	Exception Code
	Steps for handling an interrupt
	Cause and Status Registers
	Interrupt Priority Levels (IPLs)
	Programmable Interrupt Controller
	PIC Interrupt Sequence
	PIC Interrupt Sequence
	I/O Data Transfer
	Three steps in a DMA transfer
	DMA Controller
	DMA Controller
	Multiple channels in DMAC
	Bus system & DMA transfers
	I/O Processor
	DMA and Memory System
	DMA/VM Interaction
	DMA/Cache Interaction
	Measuring I/O Performance
	A confusion point
	Transaction Processing
	Transaction Processing Benchmarks
	File System & Web I/O Benchmarks
	Designing I/O Systems
	Designing I/O Systems
	I/O vs. CPU Performance
	RAID
	RAID 1 & 2
	RAID 3: Bit-Interleaved Parity
	RAID 4: Block-Interleaved Parity
	RAID 3 vs RAID 4
	RAID 5: Distributed Parity
	RAID 6: P + Q Redundancy
	RAID
	RAID Summary
	Server Computers
	19-inch rack with 42 1U servers
	Sun Fire x4150
	Sun Fire x4150 1U server
	I/O Systems on an Intel Server
	Intel 5000P Chip Set
	SAS Disk in Sun Fire x4150
	I/O System Design Example
	Sun Fire x4150 1U server
	슬라이드 번호 65
	슬라이드 번호 66
	슬라이드 번호 67
	Design Example (cont)
	Fallacy: Disk Dependability
	Fallacies
	Fallacies
	Pitfall
	Pitfall: intermediate checks vs end-to-end
	Pitfall: Offloading to I/O Processors
	Wheel of Reincarnation ?
	Pitfall: Using Tape to back up disks
	Fallacy: Disk Scheduling
	슬라이드 번호 78
	Pitfall: Peak Performance
	Concluding Remarks
	Homework: chapter 6

