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Introduction 
 Goal: connecting multiple computers 

to get higher performance 
 Multiprocessors 
 Scalability, availability, power efficiency 

 Job-level (process-level) parallelism 
 High throughput for independent jobs 

 Parallel processing program 
 Single program run on multiple processors 

 Cluster: a set of computers connected over a 
LAN that functions as a single large 
multiprocessor 
 Scientific problems, web servers, databases 

§9.1 Introduction 
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Introduction 
 Now programmers must become parallel 

programmers 
 Challenge 

 How to create HW and SW that will  make it 
easy to write  correct parallel processing 
programs that will execute efficiently in 
performance and power as the number of 
cores per chip scales geometrically (?). 
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Categorization  
 Hardware 

 Serial: e.g., Pentium 4 
 Parallel: e.g., quad-core Xeon e5345 

 Software 
 Sequential: e.g., matrix multiplication, compiler 
 Concurrent: e.g., operating system 
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Hardware and Software 
 Sequential/concurrent software can run on 

serial/parallel hardware 
 Challenge: making effective use of parallel 

hardware 
 In this chapter, we will use parallel 

processing program or parallel software to 
mean either sequential or concurrent 
software running on parallel computer 
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Sections in chapter 7 
 The sections 

 7.2: difficulty of creating parallel programs 
 7.3: shared memory multiprocessor 
 7.4: clusters (message passing multiprocessors) 
 7.5: multithreading 
 7.6: an older classification scheme (SIMD, vector) 
 7.7: graphic processing unit (GPU) 
 7.8: network topologies 
 7.9: multiprocessor benchmarks 
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What We’ve Already Covered 
 What We’ve Already Covered 

 §2.11: Parallelism and Instructions 
 Synchronization 

 §3.6: Parallelism and Computer Arithmetic 
 Associativity 

 §4.10: Parallelism and Advanced Instruction-
Level Parallelism 

 §5.8: Parallelism and Memory Hierarchies 
 Cache Coherence 

 §6.9: Parallelism and I/O: 
 Redundant Arrays of Inexpensive Disks 
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§3.6: Parallelism and Computer Arithmetic 
 Integer addition is associative 

 If you were to add a million numbers together, you 
would get the same result whether you used 1 
processor or 100 processor. 

 Floating-point addition is not associative 
 because floating-point numbers are approximation 

and 
 because computer arithmetic has limited precision  

 Parallel code with floating-point numbers should 
confirm it with numerical analysis 
 Validated numerical libraries such as 

 LAPACK: linear algebra 
 SCALAPACK: scalable LAPACK 
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Parallel Programming 
 Too few important application programs 

have been written to complete tasks 
sooner on multiprocessors. 

 It is difficult to write software that uses 
multiple processors to complete one task 
faster, and the problem gets worse as the 
number of processors increases. 

 Why have parallel processing programs 
been so much harder to develop than 
sequential programs? 

§7.2 The D
ifficulty of C

reating P
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rocessing P
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Parallel Programming 
 Need to get significant performance 

improvement 
 Otherwise, just use a faster uniprocessor, 

since it’s easier! 
 Uniprocessor design techniques such as 

superscalar and out-of-order execution 
exploit ILP 
 Normally without involvement of programmer 
 Reduces the demand for rewriting programs 

for multiprocessors  
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Parallel Programming 
 Why is it difficult to write parallel processing 

programs that is fast, especially as the 
number of processors increases? 
 Eight reporters try to write a single story in 

hopes of doing the work eight times faster. 
 Difficulties 

 Partitioning,  
 Coordination 

 Scheduling, load balancing, Synchronization 
 Communications overhead 
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Speed-up Challenge 
 Amdahl’s Law: Sequential part can limit 

speedup 
 Example: 100 processors, 90× speedup? 

 Tnew = Tparallelizable/100 + Tsequential 

   

 Solving: Fparallelizable = 0.999 
 Sequential part need to be less than 0.1% 

of original time 

90
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1Speedup
ableparallelizableparalleliz
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Strong vs Weak Scaling 
 Strong scaling means measuring speed-up 

while keeping the problem size is fixed. 
 Strong scaling is defined as how the solution 

time varies with the number of processors for 
a fixed total problem size 

 Weak scaling means that the problem size 
grows proportionally to the increase in the 
number of processors. 
 Weak scaling is defined as how the solution 

time varies with the number of processors for 
a fixed problem size per processor. 



Chapter 7 — Multicores, Multiprocessors, and Clusters — 14 

Speed-up challenge 
 Workload: sum of 10 scalars, and 10 × 10 matrix 

sum 
 Speed up from 10 to 100 processors 

 Assumes load can be balanced across 
processors 

 Single processor: Time = (10 + 100) × tadd 
 10 processors 

 Time = 10 × tadd + 100/10 × tadd = 20tadd 
 Speedup = 110/20 = 5.5 (55% of potential) 

 100 processors 
 Time = 10 × tadd + 100/100 × tadd = 11tadd 
 Speedup = 110/11 = 10 (10% of potential) 

 Strong scaling condition: the problem size is 
fixed while scaling up the system. 
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For bigger problem 
 Scaling up the problem: 100x 

 What if matrix size is 100 × 100? 
 Single processor: Time = (10 + 10000) × tadd 

 10 processors 
 Time = 10 × tadd + 10000/10 × tadd = 1010tadd 
 Speedup = 10010/1010 = 9.9 (99% of potential 10) 

 100 processors 
 Time = 10 × tadd + 10000/100 × tadd = 110tadd 

 Speedup = 10010/110 = 91 (91% of potential 100) 
 For a larger problem, we get higher percent of the 

potential speedup 
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The size of the problem 
 Weak scaling condition: the program size grows 

proportionally to the number of processors in the 
system.  
 The previous examples shows that the speedup for 

strong scaling is harder than that for weak scaling. 
 Assume that the size of the problem, M, is the 

working set in the memory, and we have P 
processors. 
 For strong scaling, the memory per processor is 

approximately M/P. 
 For weak scaling, the memory per processor is 

approximately M. 
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Gustafson’s law 
 The key assumption here is that the total amount 

of work to be done in parallel varies linearly with 
the number of processors, P.  
 a (serial part) + b (parallel part) : on parallel machine 
 a + Pb : a single processor 
 Gain = a + Pb / (a + b) 
             = α  + P (1- α)  if α = a/(a+b) 
             = (1 – F)  + PF  if F = b/(a+b) 
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A driving metaphor 
 Amdahl’s law: fixed distance 

 Suppose a car is traveling between two cities 60 miles 
apart, and has already spent one hour traveling half the 
distance at 30 mph.  

 No matter how fast you drive the last half, it is 
impossible to achieve 90 mph average before reaching 
the second city.  

 Gustafson’s law: Given enough time and distance 
 Suppose a car has already been traveling for some 

time at less than 90mph.  
 Given enough time and distance to travel, the car's 

average speed can always eventually reach 90mph, no 
matter how long or how slowly it has already traveled.  
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Weak Scaling 
 Weak Scaling is the most interesting for 

O(N) algorithms.  
 In this case perfect weak scaling is a 

constant time to solution, independent of 
processor count.  

 Deviations from this indicate that either  
 the algorithm is not truly O(N) or  
 the overhead due to parallelism is increasing, 
 or both.  
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Load Balancing 
 To achieve the speed-up of 91 on the previous 

larger problem with 100 processors, we 
assumed the load was perfectly balanced. 

 Show the impact on speed-up if one 
processor’s load is higher than all the rest. 
 at 2x (1%): 10t + max (200t, 9800t/99)= 210t 
               10010t/210t = 48 (reduced from 91) 
 at 5x (5%): 10t + max (500t, 9500t/99)= 510t 
               10010t/510t = 20 (reduced from 91) 
 This example demonstrates the speed-up is 

very sensitive to load balancing 
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Shared Memory 
 SMP: shared memory multiprocessor 

 Hardware provides single physical 
address space for all processors 

 Synchronize shared variables using locks 
 Two styles: based on memory access time 

 UMA (uniform) vs. NUMA (nonuniform) 

 

§7.3 S
hared M

em
ory M

ultiprocessors 

# of Proc 
Communication 
model 

Message passing 8 to many 
Shared 
address 

NUMA 8 to many 
UMA 2 to 64 

Physical 
connection 

Network 8 to many 
Bus 2 to 36 
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Organization of a SMP 

 Shared memory does not mean that there is a single, 
centralized memory. 
 Symmetric shared-memory: UMA 
 Distributed shared-memory: NUMA 



Single-Bus UMA SMP 

 Caches are used to reduce latency and to lower bus traffic 
 Must provide hardware to ensure that caches and memory are 

consistent (cache coherency) 
 Must provide a hardware mechanism to support process synchronization 

( the process of coordinating the behavior of two or more processes, 
which may be running on different processors) 

Processor Processor Processor 

Cache Cache Cache 

Single Bus 

Memory I/O 
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NUMA 
 Often made by physically linked SMPs 

 One SMP can directly access memory of another SMP 
 Not all processors have equal access time to all 

memories 
 Memory access across link is slower 
  If cache coherence is maintained, called CC-NUMA 



Shared Memory Multiprocessors 

 UMA (uniform memory access) – aka SMP(?)(symmetric 
multiprocessors) 
 all accesses to main memory take the same amount of time no 

matter which processor makes the request or which location is 
requested 

 NUMA (nonuniform memory access) 
 some main memory accesses are faster than others depending on 

the processor making the request and which location is requested 
 can scale to larger sizes than UMAs so are potentially higher 

performance 

 Processors coordinate/communicate through shared 
variables in memory (via loads and stores) 

l Use of shared data must be coordinated via synchronization 
primitives (locks) 
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What does SMP stand for? 
 SMP: symmetric memory multiprocessor 

 A computer architecture that provides fast performance by 
making multiple CPUs available to complete individual 
processes simultaneously (multiprocessing).  

 Unlike asymmetrical processing, any idle processor can be 
assigned any task, and additional CPUs can be added to 
improve performance and handle increased loads.  

 A variety of specialized operating systems and hardware 
arrangements are available to support SMP.  

 Specific applications can benefit from SMP if the code allows 
multithreading.  

 SMP uses a single operating system and shares common 
memory and disk input/output resources.  

 Both UNIX and Windows NT support SMP 
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Example: Sum Reduction 
 Sum 100,000 numbers on 100 processor UMA 

 Each processor has ID: 0 ≤ Pn ≤ 99 
 Partition 1000 numbers per processor 
 Initial summation on each processor 
sum[Pn] = 0; 

for (i = 1000*Pn; 
     i < 1000*(Pn+1); i = i + 1) 
 sum[Pn] = sum[Pn] + A[i]; 

 Now need to add these 100 partial sums 
 Reduction: a function that processes a data structure 

and returns a single value 
 Half the processors add pairs, then quarter, … 

 An inverse tree 
 Need to synchronize between reduction steps 
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The last four levels of a reduction that sums results from each processor, 
from bottom to top. For all processors whose number i is less than half, add 
the sum produced by processor number (i + half) to its sum.  

Last four levels of a reduction 
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Example: Sum Reduction 

sum[Pn] = 0; 

for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1) 

  sum[Pn] = sum[Pn] + A[i]; 
half = 100; 

repeat 

  synch(); 

  if (half%2 != 0 && Pn == 0) 

    sum[0] = sum[0] + sum[half-1]; 

    /* Conditional sum needed when half is odd; 

       Processor0 gets an additional element */ 

  half = half/2; /* dividing line on who sums */ 

  if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half]; 

until (half == 1); 

Pn is the number identifying the processor 
Code for Pn; i and half are private variables 

100 
  50 
  25 
  12 
    6 
    3 
    1 



Multiprocessor Organizations 
 Processors connected by a single bus 
 Processors connected by a network 

# of Proc 
Communication 
model 

Message passing 8 to many 
Shared 
address 

NUMA 8 to many 
UMA 2 to 64 

Physical 
connection 

Network 8 to many 
Bus 2 to 36 
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Message Passing & Clusters 
 An alternative multiprocessor communicates via 

explicit message passing 
 Each processor has private physical address space 
 SW and HW interfaces for send/receive messages 

between processors 
 The message can be thought of as a remote procedure call. 

 Some concurrent applications run well on 
parallel HW, independent of shared-address or 
message-passing 

 Clusters: collections of computers connected via 
I/O over standard network switches to form a 
message-passing multiprocessors 
 Each runs a distinct copy of the operating system 

§7.4 C
lusters and O

ther M
essage-P

assing M
ultiprocessors 
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Classic organization of a multiprocessor with multiple private address spaces, 
traditionally called a message-passing multiprocessor. Note that unlike the SMP, the 
interconnection network is not between the caches and memory but is instead between 
processor-memory nodes.  

A Message Passing Multiprocessor 

private 
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Clusters: Loosely Coupled  
 Network of independent computers 

 Message passing parallel computer 
 Each has private memory and OS 
 Connected using I/O system E.g., Ethernet/switch, Internet 

 Suitable for applications with independent tasks 
 Web servers, databases, simulations, … 

 High availability, scalable, affordable 
 Problems 

 Administration cost (prefer virtual machines) : n times 
 Low interconnect bandwidth, compared to memory 

bus bandwidth of an SMP 
 N independent memories and N OS copies 
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Memory Efficiency 
 A single shared memory processor has 20 GB of 

main memory, five clustered computers each 
have 4 GB, and the OS occupies 1 GB. 

 How much more space is there for users with 
shared memory? 
 A SMP = (20 -1) = 19 GB 
 The cluster = 5* (4-1) = 15 GB 
 The share memory computer  has 4 GB more space 

than that of the cluster = 1.25X 



Chapter 7 — Multicores, Multiprocessors, and Clusters — 35 

Sum Reduction (Again) 
 Sum 100,000 on 100 processors 
 First distribute 100 numbers to each 

 The do partial sums 
  sum = 0; 
for (i = 0; i<1000; i = i + 1) 
  sum = sum + AN[i]; 

 Reduction 
 Half the processors send, other half receive 

and add 
 The quarter send, quarter receive and add, … 
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Sum Reduction (Again) 
 Given send() and receive() operations 

 limit = 100; half = 100;/* 100 processors */ 
repeat 
  half = (half+1)/2; /* send vs. receive 
                        dividing line */ 
  if (Pn >= half && Pn < limit) 
    send(Pn - half, sum); 
  if (Pn < (limit/2)) 
    sum = sum + receive(); 
  limit = half; /* upper limit of senders */ 
until (half == 1); /* exit with final sum */ 

 Send/receive also provide synchronization 
 Assumes send/receive take similar time to addition 

100 
  50 
  25 
  13 
    7 
    4 
    2 
    1 

If there is an odd number of nodes, the middle node does not participate in send/receive 
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Sum Reduction (Again) 
 half=50, receive:0,1,..,49     send: from 50,52,..,99 to 0,1,..,49 
 half=25, receive:0,1,..,24     send: from 25,26,..,49 to 0,1,..,24 
 half=13, receive:0,1,..,12     send: from 13,14,..,24 to 0,1,..,11 
 half=7,   receive:0,1,..,6       send: from  7,8,..,12    to 0,1,..,5 
 half=4,   receive:0,1,..,3       send: from  4,5,6         to 0,1,2 
 half=2,   receive:0,1             send: from  2,3            to 0,1 
 half=1,  recieve:0                 send: from  1               to 0 

  limit = 100; half = 100;/* 100 processors */ 
repeat 
  half = (half+1)/2; /* send vs. receive 
                        dividing line */ 
  if (Pn >= half && Pn < limit) 
    send(Pn - half, sum);  // stall until send 
  if (Pn < (limit/2))      //  
    sum = sum + receive(); //  stall until receive 
  limit = half; /* upper limit of senders */ 
until (half == 1); /* exit with final sum */ 
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Example: Elaboration 
 In the previous example, message passing is 

assumed to be about as fast as addition. 
 In reality, message sending and receiving is much 

slower 
 An optimization to better balance computation and 

communication might  be to have fewer nodes receive 
more sums from other processors 
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Message Passing 
 Much easier for hardware designer 

 Compared to implementation of cache coherent 
protocol 

 Communication is explicit 
 Fewer performance surprise than with the implicit 

communication in cache-coherent shared memory 
computers 

 Harder to port a sequential program to a 
message-passing computer 
 Since every communication must be identified in 

advance 
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Cluster 
 A weakness of separate memory for user 

memory turns into a strength in system 
availability 
 Since the cluster software is a layer that runs on 

top of  local OS running  on each processor, it is 
much easier to disconnect and replace a broken 
machine. 

 Given that clusters are constructed from whole 
computers and independent, scalable 
networks, 
  this isolation also make it easier to expand the 

system without bringing down the application that 
runs on top of the cluster. 
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Cluster 
 The clusters are attractive to the service providers 

of  the World Wide Web because of 
 low cost,  
 high availability,  
 improved power efficiency, and 
 rapid, incremental expandability 

 The search engines depend on the clusters 
 eBay, Google, Microsoft, Yahoo and other all 

have multiple datacenters each with clusters of 
tens of thousands of processors 
 The use of multiple processors in Internet services 

companies has been hugely successful. 
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Grid Computing 
 Separate computers interconnected by 

long-haul networks 
 E.g., Internet connections 
 Work units farmed out, results sent back 

 Can make use of idle time on PCs 
 E.g., SETI@home, World Community Grid 
 SETI@home:   

 over 5 M computer users have signed 
 Operated at 257 TeraFLOPS by then end of 2006 
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Hardware Multithreading 
 Hardware multithreading allows multiple threads 

to share the functional units of a single processor 
in a overlapping fashion. 
 Increase utilization of a processor by switching to 

another thread when one thread is stalled. 
 Performing multiple threads of execution in 

parallel 
 Processor must duplicate  the state of each thread  

(e.g., a copy of register file, a PC) and a separate page 
table for running independent programs) 
 

§7.5 H
ardw

are M
ultithreading 
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Process Model (OS) 
 Process model: two independent concepts 

 Resource grouping (PCB: process control block) 
 Execution (ready, running,  blocked, exit) 

 Processes are used to group resources 
together 

 Threads are the entities scheduled for 
execution on the CPU 
 sometimes called lightweight processes. 

 Multithreading is used to describe the situation 
of allowing multiple threads in the same 
process. 
 

O
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Process and Thread 
 Per process items 

 Address space, Global variables 
 Open files, Child processes 
 Pending alarms: OS notifies after a specified time 
 Signals and signal handlers: A process handles 

signals just like OS does interrupts.  A process can 
send  signals only to members of its process group 

 Accounting information 
 Per process items 

 Program counter 
 Registers 
 Stack 
 State: running, blocked, ready, or terminated 



Beyond single thread ILP 
 There can be much higher natural parallelism in 

some applications  
(e.g., Database or Scientific codes) 

 Explicit Thread Level Parallelism or Data Level 
Parallelism 

 Thread: instruction stream with own PC and data 
 thread may be a process part of a parallel program of multiple 

processes, or it may be an independent program 
 Each thread has all the state (instructions, data, PC, register state, 

stack, and so on) necessary to allow it to execute 

 Data Level Parallelism: Perform identical 
operations on data, and lots of data 
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Thread Level Parallelism (TLP) 
 ILP exploits implicit parallel operations within a 

loop or straight-line code segment 
 TLP explicitly represented by the use of 

multiple threads of execution that are 
inherently parallel 

 Goal: Use multiple instruction streams to 
improve  
 Throughput of computers that run many programs  
 Execution time of multi-threaded programs 

 TLP could be more cost-effective to exploit 
than ILP 
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Hardware Multithreading 
 Memory itself can be shared through the virtual 

memory mechanisms, which already support 
multiprogramming 

 A thread switch should be much more efficient 
than a process switch. 
 A context switch: 100s to 1000s cycles 
 A thread switch: instantaneous with hardware 

support 
 Two approaches to hardware multithreading 

 Fine-grained  
 Coarse-grained 

 

§7.5 H
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Fine-Grained Multithreading 
 Switches between threads on each instruction, 

causing the execution of multiples threads to be 
interleaved  

 Usually done in a round-robin fashion, skipping 
any stalled threads 

 CPU must be able to switch threads every clock 
 

 Advantage: it can hide both short and long stalls. 
 Disadvantage: it slows down execution of 

individual threads. 
 since a thread ready to execute without stalls will be 

delayed by instructions from other threads 
 Used on Sun’s Niagara 
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Coarse-Grained Multithreading 
 Switches threads only on costly stalls 

 such as L2 cache misses 
 

 Advantages  
 Relieves need to have very fast thread-switching 

 Disadvantage 
 Hard to overcome throughput losses from shorter 

stalls, due to pipeline start-up costs 
 Coarse-grained multithreading is better for 

reducing penalty of high cost stalls, where 
pipeline refill is much less than the stall time 

 Used in IBM AS/400 
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Do both ILP and TLP? SMT 
 TLP and ILP exploit two different kinds of parallel 

structure in a program  
 Could a processor oriented at ILP to exploit TLP? 

 functional units are often idle in data path designed for 
ILP because of either stalls or dependences in the 
code  

 Could the TLP be used as a source of 
independent instructions that might keep the 
processor busy during stalls?  

 Could TLP be used to employ the functional units 
that would otherwise lie idle when insufficient ILP 
exists?  

 SMT is a variation of hardware multithreading that 
exploits both ILP and TLP 
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Simultaneous Multithreading 
 In multiple-issue dynamically scheduled 

processor 
 Schedule instructions from multiple threads 
 Instructions from independent threads execute 

when function units are available 
 Within threads, dependencies handled by 

scheduling and register renaming 
 Example: Intel Pentium-4 HT 

 Two threads: duplicated registers, shared 
function units and caches 



Simultaneous Multi-threading  

1 

2 

3 
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M M FX FX FP FP BR CC Cycle 
One thread, 8 units 

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes 

1 

2 
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4 

5 
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8 
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M M FX FX FP FP BR CC Cycle 
Two threads, 8 units 
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Why SMT? 
 An insight that dynamically scheduled processor 

already has many HW mechanisms to support 
multithreading 
 Large set of virtual registers that can be used to hold 

the register sets of independent threads  
 Register renaming provides unique register identifiers 
 Out-of-order completion allows the threads to execute 

out of order, and get better utilization of the HW  
 Just adding a per-thread renaming table and 

keeping separate PCs 
 Independent commitment can be supported by logically 

keeping a separate reorder buffer for each thread 
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Multithreaded Categories 
Tim

e (
pr

oc
es

so
r c

yc
le)

 Superscalar Fine-Grained Coarse-Grained Multiprocessing 
Simultaneous 
Multithreading 

Thread 1 
Thread 2 

Thread 3 
Thread 4 

Thread 5 
Idle slot 
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Instruction and Data Streams 
 Flynn’s classification (1966) 

§7.6 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, and Vector 

Data Streams 
Single Multiple 

Instruction 
Streams 

Single SISD: 
Intel Pentium 4 

SIMD: SSE 
instructions of x86 

Multiple MISD: 
No examples today 

MIMD: 
Intel Xeon e5345 

 SPMD: Single Program Multiple Data 
 A single program runs across all processors 
 A parallel program on a MIMD computer 
 Conditional code for different processors 



Examples of MIMD Machines 
 Symmetric Multiprocessor 

 Multiple processors in box with shared 
memory communication 

 Current MultiCore chips like this 
 Every processor runs copy of OS 

P P P P 

Bus 

Memory 
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Examples of MIMD Machines 
 Non-uniform shared-memory with separate 

I/O through host  
 Multiple processors  

 Each with local memory 
 general scalable network  

 Extremely light “OS” on node provides simple 
services  
 Scheduling/synchronization 

 Network-accessible host  
   for I/O 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

P/M P/M P/M P/M 

Host 
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Examples of MIMD Machines 
 Cluster 

 Many independent machine connected with 
general network  

 Communication through messages  

Network 
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SIMD 
 Operate element-wise on vectors of data 

 E.g., MMX and SSE instructions in x86 
 Multiple data elements in 128-bit wide registers 
 128 = 8 x 16 

 MMX: multimedia extension 
 SSE: streaming SIMD extension  

 All processors execute the same instruction at 
the same time 
 Each with different data address, etc. 

 Simplifies synchronization 
 Reduced instruction control hardware 
 Works best for highly data-parallel applications 
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Vector Processors 
 An older and more elegant interpretation of 

SIMD 
 Cray computers 

 It is a great match to problems with lots of data 
parallelism 

 Employs highly pipelined functional units 
 For example, rather than having 64 ALUs perform 

64 addition simultaneously, like old array 
processors, the vector architectures pipelined ALU 
to get good performance with lower cost. 
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Vector Processors 
 Stream data from/to vector registers to units 

 Data collected from memory into registers 
 Operate on them sequentially in registers 
 Results stored from registers to memory 

 A key feature of vector architectures is a set of 
vector registers 
 32 × vector registers (each: 64 64-bit elements) 

 Example: Vector extension to MIPS 
 Vector instructions 

 lv, sv: load/store vector 
 addv.d: add vectors of double 
 addvs.d: add scalar to each element of vector of double 
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Example: DAXPY (Y = aX + Y) 
  Conventional MIPS code 
      l.d   $f0,a($sp)     ;load scalar a 
      addiu r4,$s0,#512    ;upper bound: 64 x 8 
loop: l.d   $f2,0($s0)     ;load x(i) 
      mul.d $f2,$f2,$f0    ;a × x(i) 
      l.d   $f4,0($s1)     ;load y(i) 
      add.d $f4,$f4,$f2    ;a × x(i) + y(i) 
      s.d   $f4,0($s1)     ;store into y(i) 
      addiu $s0,$s0,#8     ;increment index to x 
      addiu $s1,$s1,#8     ;increment index to y 
      subu  $t0,r4,$s0     ;compute bound 
      bne   $t0,$zero,loop ;check if done 

  Vector MIPS code 
      l.d     $f0,a($sp)   ;load scalar a 
      lv      $v1,0($s0)   ;load vector x 
      mulvs.d $v2,$v1,$f0  ;vector-scalar multiply ax 
      lv      $v3,0($s1)   ;load vector y 
      addv.d  $v4,$v2,$v3  ;add y to product 
      sv      $v4,0($s1)   ;store the result to y 
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Comparison  
 Significantly reduces instruction-fetch 

bandwidth 
 VMIPS: 6 instructions 
 MIPS: almost 600 instructions 
 This reduction saves power 

 Frequency of pipeline hazards 
 In the MIPS code: two dependencies for each 

iteration for the loop 
 add.d must wait mul.d 
 s.d must wait add.d 

 In VMIPS: only for the first element in a vector 
 About 64x higher in the MIPS code 

 Can be reduced by using loop-unrolling, though. 
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Example: DAXPY (Y = a × X + Y) 
  Conventional MIPS code 
      l.d   $f0,a($sp)     ;load scalar a 
      addiu r4,$s0,#512    ;upper bound of what to load 
loop: l.d   $f2,0($s0)     ;load x(i) 
      mul.d $f2,$f2,$f0    ;a × x(i) 
      l.d   $f4,0($s1)     ;load y(i) 
      add.d $f4,$f4,$f2    ;a × x(i) + y(i) 
      s.d   $f4,0($s1)     ;store into y(i) 
      addiu $s0,$s0,#8     ;increment index to x 
      addiu $s1,$s1,#8     ;increment index to y 
      subu  $t0,r4,$s0     ;compute bound 
      bne   $t0,$zero,loop ;check if done 

  Vector MIPS code 
      l.d     $f0,a($sp)   ;load scalar a 
      lv      $v1,0($s0)   ;load vector x 
      mulvs.d $v2,$v1,$f0  ;vector-scalar multiply 
      lv      $v3,0($s1)   ;load vector y 
      addv.d  $v4,$v2,$v3  ;add y to product 
      sv      $v4,0($s1)   ;store the result 
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Elaboration 
 In the previous example, the loop size exactly 

matched the vector length (64). 
 What if not matched? 
 When loops are shorter 

 Vector architectures use a register that reduces the 
length of vector operations 

 When loops are larger 
 We add bookkeeping code to iterate full-length vector 

operations and to handle the leftovers. 
 The latter process is called strip mining. 
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Vector vs. Scalar 
 Vector architectures and compilers 

 Simplify data-parallel programming 
 Explicit statement of absence of loop-carried 

dependences 
 Reduced checking for data hazard in hardware 

 Regular memory access patterns benefit from 
interleaved and burst memory 

 Avoid control hazards by avoiding loops 
 Vector: more general than ad-hoc media 

extensions (such as MMX, SSE) 
 Better match with compiler technology 
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Vector vs. Multimedia Extension 
 The number of operations 

 X86 SSE: a few 
 Vector:  dozens  

 The number of elements in a vector operation is 
not in the opcode but in a separate register 

 Data transfers 
 X86 SSE: need to be contiguous 
 Vector: support both strided and indexed accesses 

 Flexibility in data widths in vector 
 32 64-bit, 64 32-bit, 128 16-bit, 2556 8-bit 

 Vector architecture: more efficient to execute data 
parallel processing programs. 
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Elaboration 
 Given the advantages of vector, why aren’t they 

more popular outside high-performance 
computing? 
 There were concerns about the larger state for vector 

registers increasing context switch time and difficulty 
of handling page faults in vector loads and stores 

 SIMD instructions achieved some of the benefits of 
instructions. 

 However, recently, Intel announced Advanced Vector 
Instruction (AVI) will expand the width of the SSE 
registers form 128 bits to 256 bits immediately and 
allow eventual expansion to 1024 bits (16 double-
precision floating-point numbers) 

 Intel introduced a GPU named “Larrabee” 
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Elaboration 
 Another advantage of vector and multimedia 

extensions is that it is relatively easy to extend a 
scalar instruction set architecture with these 
instructions to improve performance of data 
parallel operations. 



Homework: chapter 7 
 Due before starting the final exam on Dec. 8 
 Exercise 7.8 
 Exercise 7.10 
 Exercise 7.16 
 Exercise 7.19 
 Exercise 7.23 
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