
Chapter 7A
Multicores,
Multiprocessors, and
Clusters

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

Introduction
 Goal: connecting multiple computers

to get higher performance
 Multiprocessors
 Scalability, availability, power efficiency

 Job-level (process-level) parallelism
 High throughput for independent jobs

 Parallel processing program
 Single program run on multiple processors

 Cluster: a set of computers connected over a
LAN that functions as a single large
multiprocessor
 Scientific problems, web servers, databases

§9.1 Introduction

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

Introduction
 Now programmers must become parallel

programmers
 Challenge

 How to create HW and SW that will make it
easy to write correct parallel processing
programs that will execute efficiently in
performance and power as the number of
cores per chip scales geometrically (?).

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Categorization
 Hardware

 Serial: e.g., Pentium 4
 Parallel: e.g., quad-core Xeon e5345

 Software
 Sequential: e.g., matrix multiplication, compiler
 Concurrent: e.g., operating system

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Hardware and Software
 Sequential/concurrent software can run on

serial/parallel hardware
 Challenge: making effective use of parallel

hardware
 In this chapter, we will use parallel

processing program or parallel software to
mean either sequential or concurrent
software running on parallel computer

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

Sections in chapter 7
 The sections

 7.2: difficulty of creating parallel programs
 7.3: shared memory multiprocessor
 7.4: clusters (message passing multiprocessors)
 7.5: multithreading
 7.6: an older classification scheme (SIMD, vector)
 7.7: graphic processing unit (GPU)
 7.8: network topologies
 7.9: multiprocessor benchmarks

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

What We’ve Already Covered
 What We’ve Already Covered

 §2.11: Parallelism and Instructions
 Synchronization

 §3.6: Parallelism and Computer Arithmetic
 Associativity

 §4.10: Parallelism and Advanced Instruction-
Level Parallelism

 §5.8: Parallelism and Memory Hierarchies
 Cache Coherence

 §6.9: Parallelism and I/O:
 Redundant Arrays of Inexpensive Disks

Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

§3.6: Parallelism and Computer Arithmetic
 Integer addition is associative

 If you were to add a million numbers together, you
would get the same result whether you used 1
processor or 100 processor.

 Floating-point addition is not associative
 because floating-point numbers are approximation

and
 because computer arithmetic has limited precision

 Parallel code with floating-point numbers should
confirm it with numerical analysis
 Validated numerical libraries such as

 LAPACK: linear algebra
 SCALAPACK: scalable LAPACK

Chapter 7 — Multicores, Multiprocessors, and Clusters — 9

Parallel Programming
 Too few important application programs

have been written to complete tasks
sooner on multiprocessors.

 It is difficult to write software that uses
multiple processors to complete one task
faster, and the problem gets worse as the
number of processors increases.

 Why have parallel processing programs
been so much harder to develop than
sequential programs?

§7.2 The D
ifficulty of C

reating P
arallel P

rocessing P
rogram

s

Chapter 7 — Multicores, Multiprocessors, and Clusters — 10

Parallel Programming
 Need to get significant performance

improvement
 Otherwise, just use a faster uniprocessor,

since it’s easier!
 Uniprocessor design techniques such as

superscalar and out-of-order execution
exploit ILP
 Normally without involvement of programmer
 Reduces the demand for rewriting programs

for multiprocessors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 11

Parallel Programming
 Why is it difficult to write parallel processing

programs that is fast, especially as the
number of processors increases?
 Eight reporters try to write a single story in

hopes of doing the work eight times faster.
 Difficulties

 Partitioning,
 Coordination

 Scheduling, load balancing, Synchronization
 Communications overhead

Chapter 7 — Multicores, Multiprocessors, and Clusters — 12

Speed-up Challenge
 Amdahl’s Law: Sequential part can limit

speedup
 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential



 Solving: Fparallelizable = 0.999
 Sequential part need to be less than 0.1%

of original time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

=
+−

=

Chapter 7 — Multicores, Multiprocessors, and Clusters — 13

Strong vs Weak Scaling
 Strong scaling means measuring speed-up

while keeping the problem size is fixed.
 Strong scaling is defined as how the solution

time varies with the number of processors for
a fixed total problem size

 Weak scaling means that the problem size
grows proportionally to the increase in the
number of processors.
 Weak scaling is defined as how the solution

time varies with the number of processors for
a fixed problem size per processor.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 14

Speed-up challenge
 Workload: sum of 10 scalars, and 10 × 10 matrix

sum
 Speed up from 10 to 100 processors

 Assumes load can be balanced across
processors

 Single processor: Time = (10 + 100) × tadd
 10 processors

 Time = 10 × tadd + 100/10 × tadd = 20tadd
 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11tadd
 Speedup = 110/11 = 10 (10% of potential)

 Strong scaling condition: the problem size is
fixed while scaling up the system.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 15

For bigger problem
 Scaling up the problem: 100x

 What if matrix size is 100 × 100?
 Single processor: Time = (10 + 10000) × tadd

 10 processors
 Time = 10 × tadd + 10000/10 × tadd = 1010tadd
 Speedup = 10010/1010 = 9.9 (99% of potential 10)

 100 processors
 Time = 10 × tadd + 10000/100 × tadd = 110tadd

 Speedup = 10010/110 = 91 (91% of potential 100)
 For a larger problem, we get higher percent of the

potential speedup

Chapter 7 — Multicores, Multiprocessors, and Clusters — 16

The size of the problem
 Weak scaling condition: the program size grows

proportionally to the number of processors in the
system.
 The previous examples shows that the speedup for

strong scaling is harder than that for weak scaling.
 Assume that the size of the problem, M, is the

working set in the memory, and we have P
processors.
 For strong scaling, the memory per processor is

approximately M/P.
 For weak scaling, the memory per processor is

approximately M.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 17

Gustafson’s law
 The key assumption here is that the total amount

of work to be done in parallel varies linearly with
the number of processors, P.
 a (serial part) + b (parallel part) : on parallel machine
 a + Pb : a single processor
 Gain = a + Pb / (a + b)
 = α + P (1- α) if α = a/(a+b)
 = (1 – F) + PF if F = b/(a+b)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 18

A driving metaphor
 Amdahl’s law: fixed distance

 Suppose a car is traveling between two cities 60 miles
apart, and has already spent one hour traveling half the
distance at 30 mph.

 No matter how fast you drive the last half, it is
impossible to achieve 90 mph average before reaching
the second city.

 Gustafson’s law: Given enough time and distance
 Suppose a car has already been traveling for some

time at less than 90mph.
 Given enough time and distance to travel, the car's

average speed can always eventually reach 90mph, no
matter how long or how slowly it has already traveled.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 19

Weak Scaling
 Weak Scaling is the most interesting for

O(N) algorithms.
 In this case perfect weak scaling is a

constant time to solution, independent of
processor count.

 Deviations from this indicate that either
 the algorithm is not truly O(N) or
 the overhead due to parallelism is increasing,
 or both.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 20

Load Balancing
 To achieve the speed-up of 91 on the previous

larger problem with 100 processors, we
assumed the load was perfectly balanced.

 Show the impact on speed-up if one
processor’s load is higher than all the rest.
 at 2x (1%): 10t + max (200t, 9800t/99)= 210t
 10010t/210t = 48 (reduced from 91)
 at 5x (5%): 10t + max (500t, 9500t/99)= 510t
 10010t/510t = 20 (reduced from 91)
 This example demonstrates the speed-up is

very sensitive to load balancing

Chapter 7 — Multicores, Multiprocessors, and Clusters — 21

Shared Memory
 SMP: shared memory multiprocessor

 Hardware provides single physical
address space for all processors

 Synchronize shared variables using locks
 Two styles: based on memory access time

 UMA (uniform) vs. NUMA (nonuniform)

§7.3 S
hared M

em
ory M

ultiprocessors

of Proc
Communication
model

Message passing 8 to many
Shared
address

NUMA 8 to many
UMA 2 to 64

Physical
connection

Network 8 to many
Bus 2 to 36

Chapter 7 — Multicores, Multiprocessors, and Clusters — 22

Organization of a SMP

 Shared memory does not mean that there is a single,
centralized memory.
 Symmetric shared-memory: UMA
 Distributed shared-memory: NUMA

Single-Bus UMA SMP

 Caches are used to reduce latency and to lower bus traffic
 Must provide hardware to ensure that caches and memory are

consistent (cache coherency)
 Must provide a hardware mechanism to support process synchronization

(the process of coordinating the behavior of two or more processes,
which may be running on different processors)

Processor Processor Processor

Cache Cache Cache

Single Bus

Memory I/O

Chapter 7 — Multicores, Multiprocessors, and Clusters — 23

Chapter 7 — Multicores, Multiprocessors, and Clusters — 24

NUMA
 Often made by physically linked SMPs

 One SMP can directly access memory of another SMP
 Not all processors have equal access time to all

memories
 Memory access across link is slower
 If cache coherence is maintained, called CC-NUMA

Shared Memory Multiprocessors

 UMA (uniform memory access) – aka SMP(?)(symmetric
multiprocessors)
 all accesses to main memory take the same amount of time no

matter which processor makes the request or which location is
requested

 NUMA (nonuniform memory access)
 some main memory accesses are faster than others depending on

the processor making the request and which location is requested
 can scale to larger sizes than UMAs so are potentially higher

performance

 Processors coordinate/communicate through shared
variables in memory (via loads and stores)

l Use of shared data must be coordinated via synchronization
primitives (locks)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Chapter 7 — Multicores, Multiprocessors, and Clusters — 26

What does SMP stand for?
 SMP: symmetric memory multiprocessor

 A computer architecture that provides fast performance by
making multiple CPUs available to complete individual
processes simultaneously (multiprocessing).

 Unlike asymmetrical processing, any idle processor can be
assigned any task, and additional CPUs can be added to
improve performance and handle increased loads.

 A variety of specialized operating systems and hardware
arrangements are available to support SMP.

 Specific applications can benefit from SMP if the code allows
multithreading.

 SMP uses a single operating system and shares common
memory and disk input/output resources.

 Both UNIX and Windows NT support SMP

Chapter 7 — Multicores, Multiprocessors, and Clusters — 27

Example: Sum Reduction
 Sum 100,000 numbers on 100 processor UMA

 Each processor has ID: 0 ≤ Pn ≤ 99
 Partition 1000 numbers per processor
 Initial summation on each processor
sum[Pn] = 0;

for (i = 1000*Pn;
 i < 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i];

 Now need to add these 100 partial sums
 Reduction: a function that processes a data structure

and returns a single value
 Half the processors add pairs, then quarter, …

 An inverse tree
 Need to synchronize between reduction steps

Chapter 7 — Multicores, Multiprocessors, and Clusters — 28

The last four levels of a reduction that sums results from each processor,
from bottom to top. For all processors whose number i is less than half, add
the sum produced by processor number (i + half) to its sum.

Last four levels of a reduction

Chapter 7 — Multicores, Multiprocessors, and Clusters — 29

Example: Sum Reduction

sum[Pn] = 0;

for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1)

 sum[Pn] = sum[Pn] + A[i];
half = 100;

repeat

 synch();

 if (half%2 != 0 && Pn == 0)

 sum[0] = sum[0] + sum[half-1];

 /* Conditional sum needed when half is odd;

 Processor0 gets an additional element */

 half = half/2; /* dividing line on who sums */

 if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Pn is the number identifying the processor
Code for Pn; i and half are private variables

100
 50
 25
 12
 6
 3
 1

Multiprocessor Organizations
 Processors connected by a single bus
 Processors connected by a network

of Proc
Communication
model

Message passing 8 to many
Shared
address

NUMA 8 to many
UMA 2 to 64

Physical
connection

Network 8 to many
Bus 2 to 36

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

Chapter 7 — Multicores, Multiprocessors, and Clusters — 31

Message Passing & Clusters
 An alternative multiprocessor communicates via

explicit message passing
 Each processor has private physical address space
 SW and HW interfaces for send/receive messages

between processors
 The message can be thought of as a remote procedure call.

 Some concurrent applications run well on
parallel HW, independent of shared-address or
message-passing

 Clusters: collections of computers connected via
I/O over standard network switches to form a
message-passing multiprocessors
 Each runs a distinct copy of the operating system

§7.4 C
lusters and O

ther M
essage-P

assing M
ultiprocessors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 32

Classic organization of a multiprocessor with multiple private address spaces,
traditionally called a message-passing multiprocessor. Note that unlike the SMP, the
interconnection network is not between the caches and memory but is instead between
processor-memory nodes.

A Message Passing Multiprocessor

private

Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Clusters: Loosely Coupled
 Network of independent computers

 Message passing parallel computer
 Each has private memory and OS
 Connected using I/O system E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks
 Web servers, databases, simulations, …

 High availability, scalable, affordable
 Problems

 Administration cost (prefer virtual machines) : n times
 Low interconnect bandwidth, compared to memory

bus bandwidth of an SMP
 N independent memories and N OS copies

Chapter 7 — Multicores, Multiprocessors, and Clusters — 34

Memory Efficiency
 A single shared memory processor has 20 GB of

main memory, five clustered computers each
have 4 GB, and the OS occupies 1 GB.

 How much more space is there for users with
shared memory?
 A SMP = (20 -1) = 19 GB
 The cluster = 5* (4-1) = 15 GB
 The share memory computer has 4 GB more space

than that of the cluster = 1.25X

Chapter 7 — Multicores, Multiprocessors, and Clusters — 35

Sum Reduction (Again)
 Sum 100,000 on 100 processors
 First distribute 100 numbers to each

 The do partial sums
 sum = 0;
for (i = 0; i<1000; i = i + 1)
 sum = sum + AN[i];

 Reduction
 Half the processors send, other half receive

and add
 The quarter send, quarter receive and add, …

Chapter 7 — Multicores, Multiprocessors, and Clusters — 36

Sum Reduction (Again)
 Given send() and receive() operations

 limit = 100; half = 100;/* 100 processors */
repeat
 half = (half+1)/2; /* send vs. receive
 dividing line */
 if (Pn >= half && Pn < limit)
 send(Pn - half, sum);
 if (Pn < (limit/2))
 sum = sum + receive();
 limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 Send/receive also provide synchronization
 Assumes send/receive take similar time to addition

100
 50
 25
 13
 7
 4
 2
 1

If there is an odd number of nodes, the middle node does not participate in send/receive

Chapter 7 — Multicores, Multiprocessors, and Clusters — 37

Sum Reduction (Again)
 half=50, receive:0,1,..,49 send: from 50,52,..,99 to 0,1,..,49
 half=25, receive:0,1,..,24 send: from 25,26,..,49 to 0,1,..,24
 half=13, receive:0,1,..,12 send: from 13,14,..,24 to 0,1,..,11
 half=7, receive:0,1,..,6 send: from 7,8,..,12 to 0,1,..,5
 half=4, receive:0,1,..,3 send: from 4,5,6 to 0,1,2
 half=2, receive:0,1 send: from 2,3 to 0,1
 half=1, recieve:0 send: from 1 to 0

 limit = 100; half = 100;/* 100 processors */
repeat
 half = (half+1)/2; /* send vs. receive
 dividing line */
 if (Pn >= half && Pn < limit)
 send(Pn - half, sum); // stall until send
 if (Pn < (limit/2)) //
 sum = sum + receive(); // stall until receive
 limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

Chapter 7 — Multicores, Multiprocessors, and Clusters — 38

Example: Elaboration
 In the previous example, message passing is

assumed to be about as fast as addition.
 In reality, message sending and receiving is much

slower
 An optimization to better balance computation and

communication might be to have fewer nodes receive
more sums from other processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 39

Message Passing
 Much easier for hardware designer

 Compared to implementation of cache coherent
protocol

 Communication is explicit
 Fewer performance surprise than with the implicit

communication in cache-coherent shared memory
computers

 Harder to port a sequential program to a
message-passing computer
 Since every communication must be identified in

advance

Chapter 7 — Multicores, Multiprocessors, and Clusters — 40

Cluster
 A weakness of separate memory for user

memory turns into a strength in system
availability
 Since the cluster software is a layer that runs on

top of local OS running on each processor, it is
much easier to disconnect and replace a broken
machine.

 Given that clusters are constructed from whole
computers and independent, scalable
networks,
 this isolation also make it easier to expand the

system without bringing down the application that
runs on top of the cluster.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 41

Cluster
 The clusters are attractive to the service providers

of the World Wide Web because of
 low cost,
 high availability,
 improved power efficiency, and
 rapid, incremental expandability

 The search engines depend on the clusters
 eBay, Google, Microsoft, Yahoo and other all

have multiple datacenters each with clusters of
tens of thousands of processors
 The use of multiple processors in Internet services

companies has been hugely successful.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 42

Grid Computing
 Separate computers interconnected by

long-haul networks
 E.g., Internet connections
 Work units farmed out, results sent back

 Can make use of idle time on PCs
 E.g., SETI@home, World Community Grid
 SETI@home:

 over 5 M computer users have signed
 Operated at 257 TeraFLOPS by then end of 2006

Chapter 7 — Multicores, Multiprocessors, and Clusters — 43

Hardware Multithreading
 Hardware multithreading allows multiple threads

to share the functional units of a single processor
in a overlapping fashion.
 Increase utilization of a processor by switching to

another thread when one thread is stalled.
 Performing multiple threads of execution in

parallel
 Processor must duplicate the state of each thread

(e.g., a copy of register file, a PC) and a separate page
table for running independent programs)

§7.5 H
ardw

are M
ultithreading

Chapter 7 — Multicores, Multiprocessors, and Clusters — 44

Process Model (OS)
 Process model: two independent concepts

 Resource grouping (PCB: process control block)
 Execution (ready, running, blocked, exit)

 Processes are used to group resources
together

 Threads are the entities scheduled for
execution on the CPU
 sometimes called lightweight processes.

 Multithreading is used to describe the situation
of allowing multiple threads in the same
process.

O
S

 B
asics

Chapter 7 — Multicores, Multiprocessors, and Clusters — 45

Process and Thread
 Per process items

 Address space, Global variables
 Open files, Child processes
 Pending alarms: OS notifies after a specified time
 Signals and signal handlers: A process handles

signals just like OS does interrupts. A process can
send signals only to members of its process group

 Accounting information
 Per process items

 Program counter
 Registers
 Stack
 State: running, blocked, ready, or terminated

Beyond single thread ILP
 There can be much higher natural parallelism in

some applications
(e.g., Database or Scientific codes)

 Explicit Thread Level Parallelism or Data Level
Parallelism

 Thread: instruction stream with own PC and data
 thread may be a process part of a parallel program of multiple

processes, or it may be an independent program
 Each thread has all the state (instructions, data, PC, register state,

stack, and so on) necessary to allow it to execute

 Data Level Parallelism: Perform identical
operations on data, and lots of data

Chapter 7 — Multicores, Multiprocessors, and Clusters — 46

Thread Level Parallelism (TLP)
 ILP exploits implicit parallel operations within a

loop or straight-line code segment
 TLP explicitly represented by the use of

multiple threads of execution that are
inherently parallel

 Goal: Use multiple instruction streams to
improve
 Throughput of computers that run many programs
 Execution time of multi-threaded programs

 TLP could be more cost-effective to exploit
than ILP

Chapter 7 — Multicores, Multiprocessors, and Clusters — 47

Chapter 7 — Multicores, Multiprocessors, and Clusters — 48

Hardware Multithreading
 Memory itself can be shared through the virtual

memory mechanisms, which already support
multiprogramming

 A thread switch should be much more efficient
than a process switch.
 A context switch: 100s to 1000s cycles
 A thread switch: instantaneous with hardware

support
 Two approaches to hardware multithreading

 Fine-grained
 Coarse-grained

§7.5 H
ardw

are M
ultithreading

Fine-Grained Multithreading
 Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

 Usually done in a round-robin fashion, skipping
any stalled threads

 CPU must be able to switch threads every clock

 Advantage: it can hide both short and long stalls.
 Disadvantage: it slows down execution of

individual threads.
 since a thread ready to execute without stalls will be

delayed by instructions from other threads
 Used on Sun’s Niagara

Chapter 7 — Multicores, Multiprocessors, and Clusters — 49

Coarse-Grained Multithreading
 Switches threads only on costly stalls

 such as L2 cache misses

 Advantages
 Relieves need to have very fast thread-switching

 Disadvantage
 Hard to overcome throughput losses from shorter

stalls, due to pipeline start-up costs
 Coarse-grained multithreading is better for

reducing penalty of high cost stalls, where
pipeline refill is much less than the stall time

 Used in IBM AS/400

Chapter 7 — Multicores, Multiprocessors, and Clusters — 50

Do both ILP and TLP? SMT
 TLP and ILP exploit two different kinds of parallel

structure in a program
 Could a processor oriented at ILP to exploit TLP?

 functional units are often idle in data path designed for
ILP because of either stalls or dependences in the
code

 Could the TLP be used as a source of
independent instructions that might keep the
processor busy during stalls?

 Could TLP be used to employ the functional units
that would otherwise lie idle when insufficient ILP
exists?

 SMT is a variation of hardware multithreading that
exploits both ILP and TLP

Chapter 7 — Multicores, Multiprocessors, and Clusters — 51

Chapter 7 — Multicores, Multiprocessors, and Clusters — 52

Simultaneous Multithreading
 In multiple-issue dynamically scheduled

processor
 Schedule instructions from multiple threads
 Instructions from independent threads execute

when function units are available
 Within threads, dependencies handled by

scheduling and register renaming
 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Simultaneous Multi-threading

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CC Cycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CC Cycle
Two threads, 8 units

Chapter 7 — Multicores, Multiprocessors, and Clusters — 53

Why SMT?
 An insight that dynamically scheduled processor

already has many HW mechanisms to support
multithreading
 Large set of virtual registers that can be used to hold

the register sets of independent threads
 Register renaming provides unique register identifiers
 Out-of-order completion allows the threads to execute

out of order, and get better utilization of the HW
 Just adding a per-thread renaming table and

keeping separate PCs
 Independent commitment can be supported by logically

keeping a separate reorder buffer for each thread
Chapter 7 — Multicores, Multiprocessors, and Clusters — 54

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le)

 Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

Chapter 7 — Multicores, Multiprocessors, and Clusters — 55

Chapter 7 — Multicores, Multiprocessors, and Clusters — 56

Instruction and Data Streams
 Flynn’s classification (1966)

§7.6 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, and Vector

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

 SPMD: Single Program Multiple Data
 A single program runs across all processors
 A parallel program on a MIMD computer
 Conditional code for different processors

Examples of MIMD Machines
 Symmetric Multiprocessor

 Multiple processors in box with shared
memory communication

 Current MultiCore chips like this
 Every processor runs copy of OS

P P P P

Bus

Memory

Chapter 7 — Multicores, Multiprocessors, and Clusters — 57

Examples of MIMD Machines
 Non-uniform shared-memory with separate

I/O through host
 Multiple processors

 Each with local memory
 general scalable network

 Extremely light “OS” on node provides simple
services
 Scheduling/synchronization

 Network-accessible host
 for I/O

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

P/M P/M P/M P/M

Host

Chapter 7 — Multicores, Multiprocessors, and Clusters — 58

Examples of MIMD Machines
 Cluster

 Many independent machine connected with
general network

 Communication through messages

Network

Chapter 7 — Multicores, Multiprocessors, and Clusters — 59

Chapter 7 — Multicores, Multiprocessors, and Clusters — 60

SIMD
 Operate element-wise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers
 128 = 8 x 16

 MMX: multimedia extension
 SSE: streaming SIMD extension

 All processors execute the same instruction at
the same time
 Each with different data address, etc.

 Simplifies synchronization
 Reduced instruction control hardware
 Works best for highly data-parallel applications

Chapter 7 — Multicores, Multiprocessors, and Clusters — 61

Vector Processors
 An older and more elegant interpretation of

SIMD
 Cray computers

 It is a great match to problems with lots of data
parallelism

 Employs highly pipelined functional units
 For example, rather than having 64 ALUs perform

64 addition simultaneously, like old array
processors, the vector architectures pipelined ALU
to get good performance with lower cost.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 62

Vector Processors
 Stream data from/to vector registers to units

 Data collected from memory into registers
 Operate on them sequentially in registers
 Results stored from registers to memory

 A key feature of vector architectures is a set of
vector registers
 32 × vector registers (each: 64 64-bit elements)

 Example: Vector extension to MIPS
 Vector instructions

 lv, sv: load/store vector
 addv.d: add vectors of double
 addvs.d: add scalar to each element of vector of double

Chapter 7 — Multicores, Multiprocessors, and Clusters — 63

Example: DAXPY (Y = aX + Y)
 Conventional MIPS code
 l.d $f0,a($sp) ;load scalar a
 addiu r4,$s0,#512 ;upper bound: 64 x 8
loop: l.d $f2,0($s0) ;load x(i)
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i)
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i)
 addiu $s0,$s0,#8 ;increment index to x
 addiu $s1,$s1,#8 ;increment index to y
 subu $t0,r4,$s0 ;compute bound
 bne $t0,$zero,loop ;check if done

 Vector MIPS code
 l.d $f0,a($sp) ;load scalar a
 lv $v1,0($s0) ;load vector x
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply ax
 lv $v3,0($s1) ;load vector y
 addv.d $v4,$v2,$v3 ;add y to product
 sv $v4,0($s1) ;store the result to y

Chapter 7 — Multicores, Multiprocessors, and Clusters — 64

Comparison
 Significantly reduces instruction-fetch

bandwidth
 VMIPS: 6 instructions
 MIPS: almost 600 instructions
 This reduction saves power

 Frequency of pipeline hazards
 In the MIPS code: two dependencies for each

iteration for the loop
 add.d must wait mul.d
 s.d must wait add.d

 In VMIPS: only for the first element in a vector
 About 64x higher in the MIPS code

 Can be reduced by using loop-unrolling, though.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 65

Example: DAXPY (Y = a × X + Y)
 Conventional MIPS code
 l.d $f0,a($sp) ;load scalar a
 addiu r4,$s0,#512 ;upper bound of what to load
loop: l.d $f2,0($s0) ;load x(i)
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i)
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i)
 addiu $s0,$s0,#8 ;increment index to x
 addiu $s1,$s1,#8 ;increment index to y
 subu $t0,r4,$s0 ;compute bound
 bne $t0,$zero,loop ;check if done

 Vector MIPS code
 l.d $f0,a($sp) ;load scalar a
 lv $v1,0($s0) ;load vector x
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
 lv $v3,0($s1) ;load vector y
 addv.d $v4,$v2,$v3 ;add y to product
 sv $v4,0($s1) ;store the result

Chapter 7 — Multicores, Multiprocessors, and Clusters — 66

Elaboration
 In the previous example, the loop size exactly

matched the vector length (64).
 What if not matched?
 When loops are shorter

 Vector architectures use a register that reduces the
length of vector operations

 When loops are larger
 We add bookkeeping code to iterate full-length vector

operations and to handle the leftovers.
 The latter process is called strip mining.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 67

Vector vs. Scalar
 Vector architectures and compilers

 Simplify data-parallel programming
 Explicit statement of absence of loop-carried

dependences
 Reduced checking for data hazard in hardware

 Regular memory access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops
 Vector: more general than ad-hoc media

extensions (such as MMX, SSE)
 Better match with compiler technology

Chapter 7 — Multicores, Multiprocessors, and Clusters — 68

Vector vs. Multimedia Extension
 The number of operations

 X86 SSE: a few
 Vector: dozens

 The number of elements in a vector operation is
not in the opcode but in a separate register

 Data transfers
 X86 SSE: need to be contiguous
 Vector: support both strided and indexed accesses

 Flexibility in data widths in vector
 32 64-bit, 64 32-bit, 128 16-bit, 2556 8-bit

 Vector architecture: more efficient to execute data
parallel processing programs.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 69

Elaboration
 Given the advantages of vector, why aren’t they

more popular outside high-performance
computing?
 There were concerns about the larger state for vector

registers increasing context switch time and difficulty
of handling page faults in vector loads and stores

 SIMD instructions achieved some of the benefits of
instructions.

 However, recently, Intel announced Advanced Vector
Instruction (AVI) will expand the width of the SSE
registers form 128 bits to 256 bits immediately and
allow eventual expansion to 1024 bits (16 double-
precision floating-point numbers)

 Intel introduced a GPU named “Larrabee”

Chapter 7 — Multicores, Multiprocessors, and Clusters — 70

Elaboration
 Another advantage of vector and multimedia

extensions is that it is relatively easy to extend a
scalar instruction set architecture with these
instructions to improve performance of data
parallel operations.

Homework: chapter 7
 Due before starting the final exam on Dec. 8
 Exercise 7.8
 Exercise 7.10
 Exercise 7.16
 Exercise 7.19
 Exercise 7.23

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

	Chapter 7A
	Introduction
	Introduction
	Categorization
	Hardware and Software
	Sections in chapter 7
	What We’ve Already Covered
	§3.6: Parallelism and Computer Arithmetic
	Parallel Programming
	Parallel Programming
	Parallel Programming
	Speed-up Challenge
	Strong vs Weak Scaling
	Speed-up challenge
	For bigger problem
	The size of the problem
	Gustafson’s law
	A driving metaphor
	Weak Scaling
	Load Balancing
	Shared Memory
	Organization of a SMP
	Single-Bus UMA SMP
	NUMA
	Shared Memory Multiprocessors
	What does SMP stand for?
	Example: Sum Reduction
	Last four levels of a reduction
	Example: Sum Reduction
	Multiprocessor Organizations
	Message Passing & Clusters
	A Message Passing Multiprocessor
	Clusters: Loosely Coupled
	Memory Efficiency
	Sum Reduction (Again)
	Sum Reduction (Again)
	Sum Reduction (Again)
	Example: Elaboration
	Message Passing
	Cluster
	Cluster
	Grid Computing
	Hardware Multithreading
	Process Model (OS)
	Process and Thread
	Beyond single thread ILP
	Thread Level Parallelism (TLP)
	Hardware Multithreading
	Fine-Grained Multithreading
	Coarse-Grained Multithreading
	Do both ILP and TLP? SMT
	Simultaneous Multithreading
	Simultaneous Multi-threading
	Why SMT?
	Multithreaded Categories
	Instruction and Data Streams
	Examples of MIMD Machines
	Examples of MIMD Machines
	Examples of MIMD Machines
	SIMD
	Vector Processors
	Vector Processors
	Example: DAXPY (Y = aX + Y)
	Comparison
	Example: DAXPY (Y = a × X + Y)
	Elaboration
	Vector vs. Scalar
	Vector vs. Multimedia Extension
	Elaboration
	Elaboration
	Homework: chapter 7

