
Chapter 7B
Multicores,
Multiprocessors, and
Clusters

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

History of GPUs
 A major justification for adding SIMD instruction

 Many microprocessors were connected to graphic
displays in PCs and workstations

 So an increasing fraction of processing time was used
for graphics.

 Improve graphics processing by using the transistors
available due to Moore’s law

 Video graphics controller chips added functions to
accelerate 2D and 3D graphics.
 High-end graphics cards for TV advertisement and

movies
 Video graphics controllers had a target to shoot for as

processing resources increased, just like microprocessors
borrowed ideas from supercomputers

§7.7 Introduction to G
raphics P

rocessing U
nits

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

History of GPUs
 A major driving force was the computer game

industry
 3D graphics cards for PCs and game consoles like

Sony PlayStation
 Positive feedback: Moore’s Law ⇒ lower cost, higher

density, more functions
 Graphics Processing Units (GPU)

 Evolved its own style of processing and terminology
 Processors oriented to 3D graphics tasks
 Vertex/pixel processing, shading, texture mapping,

rasterization

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Characteristics of GPUs
 GPUs are accelerators that supplement a CPU

 No need to be able to perform all the tasks of a CPU
 CPU-GPU combination: heterogeneous

multiprocessing
 The programming interfaces to GPUs are

 high-level application programming interfaces (APIs)
such as OpenGL and Microsoft’s DirectX, coupled
with

 high-level graphics shading languages, such as
NVIDIA’s C for Graphics (Cg), and Microsoft’s High
lelel shader language (HLSL)

§7.7 Introduction to G
raphics P

rocessing U
nits

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Characteristics of GPUs
 This environment leads to more rapid innovation

in GPUs than in CPUs.
 The language compilers target industry-standard

intermediate languages instead of machine instructions.
 GPU driver software generates optimized GPU-specific

machine instructions.
 While these APIs and languages evolve rapidly to

embrace new CPU resources enabled by Moore’s law,
GPGPU designers are free form backward binary
instruction compatibility

 Graphics processing involves drawing vertices of
3D geometry primitives such as lines and triangles
and shading or rendering pixel fragments of
geometric primitives
 Video games, for example, draw 20 to 30 times as

many pixels as vertices.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

Characteristics of GPUs
 Each pixel can be drawn independently, and

each pixel fragment can be rendered
independently.
 To render millions of pixels per frame rapidly, the GPU

evolved to execute many thread from vertex and pixel
shader programs in parallel.

 The graphics data types are
 Vertices: (x,y,z,w) coordinates, 32-bit floating-point

number
 Pixels: (red, green, blue, alpha) color components, 8-

bit unsigned integer (single-precision floating-point
number between 0.0 and 1.0 in recent GPUs)

 The working set is hundreds MB
 Does not show temporal locality
 A great del of data parallel in these tasks.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

GPU Architecture
 GPU relay on having enough threads to hide the

latency to memory
 GPU do not rely on multilevel caches
 Between the time of memory request and the time that

data arrives, the GPU executes 100s K threads that
are independent of that request

 The GPU main memory is thus oriented toward
bandwidth rather than latency.
 Even separate DRAM chips for GPU that are wider

and have higher bandwidth that DRAMs for CPUs.
 Traditionally had smaller main memories than

conventional microprocessors.
 GPUs: 1 GB or less, CPUs: 2 to 32 GB

 For general-purpose computation, must include the
time to transfer the data between CPU memory and
GPU memory, since GPU is a coprocessor.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

GPU Architecture
 GPUs were designed for a narrower set of

applications.
 Given the four-element nature of the graphics

data types, GPU s historically have SIMD
instructions, like CPUs,
 However, recent GPUs are focusing more on scalar

instructions to improve programmability and efficiency.
 Unlike CPUs, there has been no support for

double precision floating-point arithmetic.
 In 2008, the first GPUs to support double precision in

hardware were announced.
 Nevertheless, single precision operations will still be 8

to 10 times faster than double precision, even on these
new GPUs

Chapter 7 — Multicores, Multiprocessors, and Clusters — 9

GPU Architecture
 Recent GPUs are heading toward identical

general-purpose processors to give more
flexibility in programming.
 Unifying the processors also delivers very effective

load balancing.
 Making them more like multicore designs found in

mainstream computing.
 In the past, GPU relies on heterogeneous special

purpose processors to deliver performance needed for
graphics applications.

 GPGPU (general-purpose GPU) : specify their
applications to tap the high potential
performance of GPUs.
 Developed C-inspired programming language
 NVIDIA’s CUDA (compute unified device architecture)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 10

CUDA
 A scalable parallel programming model and

language based on C/C++.
 It is a parallel programming platform for GPUs and

multicore CPUs.
 The CUDA programming model has an SPMD

software style.
 CUDA also provides a facility for programming

multiple CPU cores as well
 So CUDA is an environment for writing parallel

programs for the entire heterogeneous computer
system.

 discrete GPU chip sits on a separate card that plugs
into a standard PC over the PCI-Express interconnect

Chapter 7 — Multicores, Multiprocessors, and Clusters — 11

Graphics and Computing
 With the addition of CUDA and GPU computing,

the GPU can be used as both a graphics
processor and a computing processor at the
same time
 Combining these uses for visual computing

applications.
 Underlying processor architecture of the GPU

is exposed in two ways
 As implementing the programmable graphics API
 As a massively parallel processor array

programmable in C/C++ with CUDA

Chapter 7 — Multicores, Multiprocessors, and Clusters — 12

GPU and Visual Computing
 GPU computing: using a GPU for computing via

a parallel programming language and API
 Without using the traditional graphics API and

graphics pipeline model. <-> GPGPU
 Visual Computing: A mix of graphics processing

and computing that lets you visually interact with
computed objects via graphics, images, and
video.

 GeFroce 8800 GTX
 16 MP: multiplrocessor
 8 SP/MP: streaming processor

Chapter 7 — Multicores, Multiprocessors, and Clusters — 13

Example: GeForce 8800 GTX
 Speak single precision multiply-add performance

 16 MPs x 8 SPs/ MP x 2 FLOPS/ instr/SP
 x 1.35 GHz = 345.6 GFLOPs/second

 Each multiprocessor has a software-managed
local store with 16 KB plus 8192 32-bit registers
 Each SP has 1024 32-bit registers

 The memory system of 8800 GTX consists of 6
partitions of 900 MHz Graphics DDR3 DRAM,
each 8 bytes wide and with 128 MB of capacity.
 Total memory size = 128 x 6 = 768 MB
 Peak DDR3 memory bandwidth =
 6 x 8 bytes/transfer x 2 transfer/clock x 900 MHz
 = 86.4 GB/second

Chapter 7 — Multicores, Multiprocessors, and Clusters — 14

Example: 8800 GTX
 To hide memory latency, each streaming

processor has HW-supported threads.
 Each group of 32 threads is called warp
 A warp is the unit of scheduling
 The active threads in a warp execute in parallel in

SIMD fashion
 Compare a Tesla multiprocessor to a SUN

UltraSPARC T2 core.
 Both are hardware multithreaded by scheduling

threads over time, shown on the vertical axis.
 Each Tesla multiprocessor consists of 8 streaming

processors, which execute eight parallel threads per
clock showing horizontally.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 15

NVIDIA Tesla & Sun T2
The T2 core is a single
processor and uses hardware-
supported multithreading with
eight threads. The T2 can
switch threads every clock
cycle.

The Tesla multiprocessor contains eight streaming
processors and uses hardware-supported
multithreading with 24 warps of 32 threads (eight
processors times four clock cycles). The Tesla can
switch threads only every two or four clock cycles.

8 SPs in a SM

Chapter 7 — Multicores, Multiprocessors, and Clusters — 16

Graphics in the System

Circa 1990

IBM PS/2 PC (1987)
VGA: video graphic array

Display standards

QXGA (2028 x 1536),
Full HD (1920 x 1080p)
SXGA (1280 x 1024),
HD (1280 x 720p),
XGA (1024 X 768)
SVGA (800 x 600),
VGA (640 x 480),
QVGA (320 x 240)

 A discrete GPU chip sits on a separate card that plugs into a
standard PC over the PCI-Express interconnect

Chapter 7 — Multicores, Multiprocessors, and Clusters — 17

Graphics in the System

A contemporary PC with an Intel CPU

PCI_Express (PCIe)

A standard system I/O
interconnect that uses
point-to-point links.
links have a configurable
number of lanes and
bandwidth.
A lane is composed of
a transmit and receive
pair of differential lines.
Each lane is composed
of 4 wires or signal paths,
meaning conceptually,
each lane is a full-duplex
byte system.
The per-lane throughput of
PCIe 2.0 rises from 250
MB/s to 500 MB/s.

4GB/s

72pin

240pin
FBDIMM

Chapter 7 — Multicores, Multiprocessors, and Clusters — 18

Graphics in the System

A contemporary PC with an AMD CPU

HyperTransport provides a
high-speed, hig-performance,
point-to-point dual simplex link for
interconnectring IC components
on a PCB.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 19

System Variations
 A low-cost system variation, a UMA system,

uses only CPU system memory, omitting GPU
memory from the system

 A high performance system variation uses
multiple attached GPUs, typically 2 to 4 working
in parallel with their displays daisy-chained.
 An example is the NVIDIA SLI (scalable link

interconnect) multi-GPU system, designed for high
performance gaming and workstations.

 The next system category integrates the GPU
with the north bridge (Intel) or chipsets (AMD)
with and without dedicated graphic memory.

GPU Architecture

Chapter 7 — Multicores, Multiprocessors, and Clusters — 20

System Architecture

Chapter 7 — Multicores, Multiprocessors, and Clusters — 21

DDR: 2.5V
GDDR2: 2.5V
DDR2: 1.8V
GDDR3: 2.0V (Samsung)
 1.8V (others)
DDR3: 1.5V
DDR4: 1.2V

GPU Architecture
NVIDIA Fermi, 512 Processing Elements (PEs)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 22

GTC: cluster
SM: streaming multiprocessor
ROP: raster operation

General Purposed Computing

ref: http://www.nvidia.com/object/tesla_computing_solutions.html
Chapter 7 — Multicores, Multiprocessors, and Clusters — 23

The Gap Between CPU and GPU

ref: Tesla GPU Computing Brochure
Chapter 7 — Multicores, Multiprocessors, and Clusters — 24

Given the same chip area, the achievable performance of
GPU is 10x higher than that of CPU.

Evolution of Intel Pentium
Pentium I Pentium II

Pentium III Pentium IV

Chip area
breakdown

Q: What can you observe? Why?
Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Extrapolation of Single Core CPU
If we extrapolate the trend, in a few generations, Pentium
will look like:

Of course, we know it did not happen.

Q: What happened instead? Why?

Chapter 7 — Multicores, Multiprocessors, and Clusters — 26

Evolution of Multi-core CPUs
Penryn Bloomfield

Gulftown Beckton

Chip area
breakdown

Q: What can you observe? Why?

Chapter 7 — Multicores, Multiprocessors, and Clusters — 27

Let's Take a Closer Look

Less than 10% of total chip area is used for the real execution.

Q: Why?

Chapter 7 — Multicores, Multiprocessors, and Clusters — 28

The Memory Hierarchy

Notes on Energy at 45nm:
64-bit Int ADD takes about 1 pJ.
64-bit FP FMA (fused multiply-add) takes about 200 pJ.

It seems we can not further increase the computational density.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 29

The Brick Wall -- UC Berkeley's View
Power Wall: power expensive, transistors free
Memory Wall: Memory slow, multiplies fast
ILP Wall: diminishing returns on more ILP HW

 Power Wall + Memory Wall + ILP Wall = Brick Wall

David Patterson, "Computer Architecture is Back - The Berkeley View of the Parallel Computing Research Landscape",
Stanford EE Computer Systems Colloquium, Jan 2007, link

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

How to Break the Brick Wall?

Hint: how to exploit the parallelism inside the application?

Chapter 7 — Multicores, Multiprocessors, and Clusters — 31

Step 1: Trade Latency with Throughput

Hind the memory latency through fine-grained interleaved
threading.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 32

Interleaved Multi-threading

The granularity of interleaved multi-threading:
• 100 cycles: hide off-chip memory latency
• 10 cycles: + hide cache latency
• 1 cycle: + hide branch latency, instruction dependency

Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Interleaved Multi-threading

The granularity of interleaved multi-threading:
• 100 cycles: hide off-chip memory latency
• 10 cycles: + hide cache latency
• 1 cycle: + hide branch latency, instruction dependency

Fine-grained interleaved multi-threading:
Pros: ?
Cons: ?

Chapter 7 — Multicores, Multiprocessors, and Clusters — 34

Interleaved Multi-threading

The granularity of interleaved multi-threading:
• 100 cycles: hide off-chip memory latency
• 10 cycles: + hide cache latency
• 1 cycle: + hide branch latency, instruction dependency

Fine-grained interleaved multi-threading:
Pros: remove branch predictor, OOO scheduler, large cache
Cons: register pressure, etc.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 35

Fine-Grained Interleaved Threading

Pros:
reduce cache size,
no branch predictor,
no OOO scheduler

Cons:
register pressure,
thread scheduler,
require huge parallelism

Without and with fine-grained interleaved threading

Chapter 7 — Multicores, Multiprocessors, and Clusters — 36

HW Support
Register file supports zero
overhead context switch
between interleaved
threads.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 37

Can We Make Further Improvement?

 Reducing large cache gives 2x computational density.

 Q: Can we make further improvements?

Hint:
We have only utilized thread
level parallelism (TLP) so far.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 38

Step 2: Single Instruction Multiple Data

SSE has 4 data lanes GPU has 8/16/24/... data lanes

GPU uses wide SIMD: 8/16/24/... processing elements (PEs)
CPU uses short SIMD: usually has vector width of 4.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 39

Hardware Support
Supporting interleaved threading + SIMD execution

Chapter 7 — Multicores, Multiprocessors, and Clusters — 40

Single Instruction Multiple Thread (SIMT)
Hide vector width using scalar threads.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 41

Example of SIMT Execution
Assume 32 threads are grouped into one warp.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 42

Step 3: Simple Core
The Stream Multiprocessor (SM) is a
light weight core compared to IA core.

Light weight PE:
Fused Multiply Add
(FMA)

SFU:
Special Function
Unit

Chapter 7 — Multicores, Multiprocessors, and Clusters — 43

NVIDIA's Motivation of Simple Core

"This [multiple IA-core] approach is analogous to trying to
build an airplane by putting wings on a train."

--Bill Dally, NVIDIA

Chapter 7 — Multicores, Multiprocessors, and Clusters — 44

Review: How Do We Reach Here?
NVIDIA Fermi, 512 Processing Elements (PEs)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 45

Throughput Oriented Architectures

1. Fine-grained interleaved threading (~2x comp density)
2. SIMD/SIMT (>10x comp density)
3. Simple core (~2x comp density)

Key architectural features of throughput oriented

processor.

ref: Michael Garland. David B. Kirk, "Understanding throughput-oriented architectures", CACM 2010. (link)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 46

Chapter 7 — Multicores, Multiprocessors, and Clusters — 47

NVIDIA Tesla
 Tesla-based GPUs chips are offered with

between 1 and 16 nodes, which NVIDIA
calls multiprocessors
 GeForce 8800 GTX has 16 multiprocessors

and a clock rate of 1.35 GHz
 Each multiprocessors contains 8

multithreaded single-precision floating-point
units and integer units, which NVIDIA calls
streaming processors.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 48

NVIDIA Tesla
Streaming

multiprocessor

8 × Streaming
processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 49

Data parallel problem

 Decompose the problem
into many small problems
that can be solved in
parallel.

 Each multiprocessor
computes a block, and
each thread computes an
element

 Grid: a set of blocks
 Block: a set of threads
 Element: a thread

Chapter 7 — Multicores, Multiprocessors, and Clusters — 50

NVIDIA Tesla & Sun T2
The T2 core is a single
processor and uses hardware-
supported multithreading with
eight threads. The T2 can
switch every clock cycle.

The Tesla multiprocessor contains eight streaming
processors and uses hardware-supported
multithreading with 24 warps of 32 threads (eight
processors times four clock cycles). The Tesla can
switch only every two or four clock cycles.

8 SPs in a SM

Chapter 7 — Multicores, Multiprocessors, and Clusters — 51

SIMT
 The best performance comes when all 32

threads of a warp execute together in a SIMD-
like fashion, which Tesla architecture calls
single-instruction multiple-thread (SIMT).
 SIMT dynamically discovers

 which threads can execute the same instruction together, and
 which threads are idle that cycle.

 The minimum unit of switching warps is two clock
cycles across eight streaming processors (SPs).

 With this restriction, the hardware is much simpler
 Each GPU thread has its own private registers,

private per-thread memory, program counter,
and thread execution state
 Can execute an independent code path

Chapter 7 — Multicores, Multiprocessors, and Clusters — 52

Streaming Processor (SP)
 Each SP is hardware multithreaded,

supporting up to 64 threads
 Limited by the number of registers
 Its 1024 registers are partitioned among the

assigned threads
 Programs declares their register demand

 Typically 16 ~ 64 scalar 32-bit registers per thread
 Each SP supports 32 threads when 32 registers are

required per thread, which corresponds to 256
threads per multiprocessor.

 Each SP core execute an instruction for 4
individual threads of a warp using 4 clocks.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 53

Tesla Multiprocessor

SFU: special
function unit

Chapter 7 — Multicores, Multiprocessors, and Clusters — 54

CUDA Paradigm
 CUDA provides three key abstractions

 A hierarchy of thread groups
 Shared memories
 Barrier synchronization

 The programmer writes a serial program that
calls parallel kernels

 The programmer organizes these threads into
a hierarchy of thread blocks and grids of
thread blocks.

 A kernel: a program or function for one thread,
designed to be executed by many threads.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 55

CUDA Paradigm
 CUDA provides three key abstractions

 A hierarchy of thread groups
 Shared memories
 Barrier synchronization

 The programmer writes a serial program that
calls parallel kernels

 The programmer organizes these threads into
a hierarchy of thread blocks and grids of
thread blocks.

 A kernel: a program or function for one thread,
designed to be executed by many threads.

Grids and Blocks
 A kernel is executed as a

grid of thread blocks
 All threads share data

memory space
 A thread block is a batch of

threads that can cooperate
with each other by:
 Synchronizing their

execution
 For hazard-free shared

memory accesses
 Efficiently sharing data

through a low latency shared
memory

 Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Chapter 7 — Multicores, Multiprocessors, and Clusters — 56

Chapter 7 — Multicores, Multiprocessors, and Clusters — 57

CUDA Paradigm
 When invoking a kernel, the programmer

specifies the number of threads per block and
the number of blocks comprising the grid.

 Each thread is given a unique thread ID number
and each thread block is given a unique block
ID number.

 _global_ declaration specifier indicates that the
procedure is a kernal entry point

 CUDA program launch parallel kernels with the
extended function call syntax
 kernel_specifier <<<dimGrid, dimBlock>>>
 (.., param list,);

Chapter 7 — Multicores, Multiprocessors, and Clusters — 58

C & CUDA Codes for SAXPY

kernel launching

Chapter 7 — Multicores, Multiprocessors, and Clusters — 59

CUDA programming
 Parallel execution and thread management

are automatic.
 All thread creation, scheduling, and termination is

handled for the programmer by the underlying
system.

 A Tesla architecture GPU performs all thread
management directly in hardware.

 The thread of a block execute concurrently and
may synchronize at a synchronization barrier by
calling _syncthreads() intrinsic.

 Threads in a block, which should reside on the
same multiprocessor, may communicate with each
other by writing and reading per-block shared
memory at a synchronization barrier.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 60

CUDA programming
 A CUDA program is a unified C/C++ program

for a heterogeneous CPU and GPU system.
 It execute on the CPU and dispatches parallel

work to the GPU.
 This work consists of a data transfer from main

memory and a thread dispatch.
 A thread is a piece of the program for the GPU.

 Programmers specify the number of threads in
a thread block and the number of thread
blocks they wish to start executing on the GPU.
 All the threads in the thread block are scheduled to

run on the same multiprocessor so they all share
the same local memory.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 61

CUDA programming
 Thus, they can communicate via loads and stores

instead of messages.
 The CUDA compiler allocates registers to

each thread, under the constraints that the
registers per thread time thread per thread
block does not exceed the 8192 registers per
multiprocessors.

 A thread block can be up to 512 threads
 Each group of 32 threads in a thread block is

packed into warps.

	Chapter 7B
	History of GPUs
	History of GPUs
	Characteristics of GPUs
	Characteristics of GPUs
	Characteristics of GPUs
	GPU Architecture
	GPU Architecture
	GPU Architecture
	CUDA
	Graphics and Computing
	GPU and Visual Computing
	Example: GeForce 8800 GTX
	Example: 8800 GTX
	NVIDIA Tesla & Sun T2
	Graphics in the System
	Graphics in the System
	Graphics in the System
	System Variations
	GPU Architecture
	System Architecture
	GPU Architecture
	General Purposed Computing
	The Gap Between CPU and GPU
	Evolution of Intel Pentium
	Extrapolation of Single Core CPU
	Evolution of Multi-core CPUs
	Let's Take a Closer Look
	The Memory Hierarchy
	The Brick Wall -- UC Berkeley's View
	How to Break the Brick Wall?
	Step 1: Trade Latency with Throughput
	Interleaved Multi-threading
	Interleaved Multi-threading
	Interleaved Multi-threading
	Fine-Grained Interleaved Threading
	HW Support
	Can We Make Further Improvement?
	Step 2: Single Instruction Multiple Data
	Hardware Support
	Single Instruction Multiple Thread (SIMT)
	Example of SIMT Execution
	Step 3: Simple Core
	NVIDIA's Motivation of Simple Core
	Review: How Do We Reach Here?
	Throughput Oriented Architectures
	NVIDIA Tesla
	NVIDIA Tesla
	Data parallel problem
	NVIDIA Tesla & Sun T2
	SIMT
	Streaming Processor (SP)
	Tesla Multiprocessor
	CUDA Paradigm
	CUDA Paradigm
	Grids and Blocks
	CUDA Paradigm
	C & CUDA Codes for SAXPY
	CUDA programming
	CUDA programming
	CUDA programming

