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History of GPUs 
 A major justification for adding SIMD instruction 

 Many microprocessors were connected to graphic 
displays in PCs and workstations 

 So an increasing fraction of processing time  was used  
for graphics. 

 Improve graphics processing by using the transistors 
available due to Moore’s law 

 Video graphics controller chips added functions to 
accelerate 2D and 3D graphics. 
 High-end graphics cards for TV advertisement and 

movies 
 Video graphics controllers had a target to shoot for as  

processing resources increased, just like microprocessors 
borrowed ideas from supercomputers 
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History of GPUs 
 A major driving force was the computer game 

industry 
 3D graphics cards for PCs and game consoles like 

Sony PlayStation 
 Positive feedback: Moore’s Law ⇒ lower cost, higher 

density, more functions 
 Graphics Processing Units (GPU) 

 Evolved its own style of processing and terminology 
 Processors oriented to 3D graphics tasks 
 Vertex/pixel processing, shading, texture mapping, 

rasterization 
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Characteristics of GPUs 
 GPUs are accelerators that supplement a CPU 

 No need to be able to perform all the tasks of  a CPU 
 CPU-GPU combination: heterogeneous 

multiprocessing 
 The programming interfaces to GPUs are  

 high-level application programming interfaces (APIs) 
such as OpenGL and Microsoft’s DirectX, coupled 
with  

 high-level graphics shading languages, such as 
NVIDIA’s C for Graphics (Cg), and Microsoft’s High 
lelel shader language (HLSL) 
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Characteristics of GPUs 
 This environment leads to more rapid innovation 

in GPUs than in CPUs. 
 The language compilers target industry-standard 

intermediate languages instead of machine instructions. 
 GPU driver software generates optimized GPU-specific 

machine instructions. 
 While these APIs and languages evolve rapidly to 

embrace new CPU resources enabled by Moore’s law, 
GPGPU designers are free form backward binary 
instruction compatibility 

 Graphics processing involves drawing vertices of 
3D geometry primitives such as lines and triangles 
and shading or rendering pixel fragments of 
geometric primitives 
 Video games, for example, draw 20 to 30 times as 

many pixels as vertices. 
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Characteristics of GPUs 
 Each pixel can be drawn independently, and 

each pixel fragment can be rendered 
independently. 
 To render millions of pixels per frame rapidly, the GPU 

evolved to execute many thread from vertex and pixel 
shader programs in parallel. 

 The graphics data types are 
 Vertices: (x,y,z,w) coordinates, 32-bit floating-point 

number  
 Pixels: (red, green, blue, alpha) color components, 8-

bit unsigned integer (single-precision floating-point 
number between 0.0 and 1.0 in recent GPUs) 

 The working set is hundreds MB 
 Does not show temporal locality 
 A great del of data parallel in these tasks. 
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GPU Architecture 
 GPU relay on having enough threads to hide the 

latency to memory 
 GPU do not rely on multilevel caches  
 Between the time of memory request and the time that 

data arrives, the GPU executes 100s K threads that 
are independent of that request 

 The GPU main memory is thus oriented toward 
bandwidth rather than latency. 
 Even separate DRAM chips for GPU that are wider 

and have higher bandwidth that DRAMs for CPUs. 
 Traditionally had smaller main memories than 

conventional microprocessors. 
 GPUs: 1 GB or less,       CPUs:  2 to 32 GB 

 For general-purpose computation, must include the 
time to transfer the data between CPU memory and 
GPU memory, since GPU is a coprocessor. 
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GPU Architecture 
 GPUs were designed for a narrower set of 

applications. 
 Given the four-element nature of the graphics 

data types, GPU s historically have SIMD 
instructions, like CPUs, 
 However, recent GPUs are focusing more on scalar 

instructions to improve programmability and efficiency. 
 Unlike CPUs, there has been no support for 

double precision floating-point arithmetic. 
 In 2008, the first GPUs to support double precision in 

hardware were announced. 
 Nevertheless, single precision operations will still be 8 

to 10 times faster than double precision, even on these 
new GPUs   
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GPU Architecture 
 Recent GPUs are heading toward identical 

general-purpose processors to give more 
flexibility in programming. 
 Unifying the processors also delivers very effective 

load balancing. 
 Making them more like multicore designs found in 

mainstream computing. 
 In the past, GPU relies on heterogeneous special 

purpose processors to deliver performance needed for 
graphics applications. 

 GPGPU (general-purpose GPU) : specify their 
applications to tap the high potential 
performance of GPUs. 
 Developed C-inspired programming language 
 NVIDIA’s CUDA (compute unified device architecture) 
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CUDA 
 A scalable parallel programming model and 

language based on C/C++.  
 It is a parallel programming platform for GPUs and 

multicore CPUs. 
 The CUDA programming model has an SPMD 

software style. 
 CUDA also provides a facility for programming 

multiple CPU cores as well 
 So CUDA is an environment for writing parallel 

programs for the entire heterogeneous computer 
system. 

 discrete GPU chip sits on a separate card that plugs 
into a standard PC over the PCI-Express interconnect 
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Graphics and Computing 
 With the addition of CUDA and GPU computing, 

the GPU can be used as both a graphics 
processor and a computing processor at the 
same time 
 Combining these uses for visual computing 

applications. 
 Underlying processor architecture of the GPU 

is exposed in two ways 
 As implementing the programmable graphics API 
 As a massively parallel processor array 

programmable in C/C++ with CUDA 
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GPU and Visual Computing 
 GPU computing: using  a GPU for computing via 

a parallel programming language and API 
 Without using the traditional graphics API and 

graphics pipeline model. <-> GPGPU 
 Visual Computing: A mix of graphics processing 

and computing that lets you visually interact with 
computed objects via graphics, images, and 
video.  
 

 GeFroce 8800 GTX 
 16 MP: multiplrocessor 
 8 SP/MP: streaming processor 
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Example: GeForce 8800 GTX 
 Speak single precision multiply-add performance 

 16 MPs x 8 SPs/ MP x 2 FLOPS/ instr/SP 
   x 1.35 GHz  = 345.6 GFLOPs/second 

 Each multiprocessor has a software-managed 
local store with 16 KB plus 8192 32-bit registers 
 Each SP has 1024 32-bit registers 

 The memory system of 8800 GTX consists of 6 
partitions of 900 MHz Graphics DDR3 DRAM, 
each  8 bytes wide and with 128 MB of capacity. 
 Total memory size = 128 x 6 = 768 MB 
 Peak DDR3 memory bandwidth = 
    6 x 8 bytes/transfer x 2 transfer/clock x 900 MHz 
    = 86.4 GB/second 
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Example: 8800 GTX 
 To hide memory latency, each streaming 

processor has HW-supported threads. 
 Each group of 32 threads is called warp 
 A warp is the unit of scheduling 
 The active threads in a warp execute in parallel in 

SIMD fashion 
 Compare a Tesla multiprocessor to a SUN 

UltraSPARC T2 core. 
 Both are hardware multithreaded by scheduling 

threads over time, shown on the vertical axis. 
 Each Tesla multiprocessor consists of 8 streaming 

processors, which execute eight parallel threads per 
clock showing horizontally. 
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NVIDIA Tesla & Sun T2 
The T2 core is a single 
processor and uses hardware-
supported multithreading with 
eight threads. The T2 can 
switch threads every clock 
cycle. 

The Tesla multiprocessor contains eight streaming 
processors and uses hardware-supported 
multithreading with 24 warps of 32 threads (eight 
processors times four clock cycles). The Tesla can 
switch threads only every two or four clock cycles.  

8 SPs in a SM 
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Graphics in the System 

Circa 1990 

IBM PS/2  PC (1987) 
VGA: video graphic array 

Display standards 
 
QXGA (2028 x 1536), 
Full HD (1920 x 1080p) 
SXGA (1280 x 1024),  
HD (1280 x 720p),  
XGA (1024 X 768)  
SVGA (800 x 600),  
VGA (640 x 480),  
QVGA (320 x 240) 

 A discrete GPU chip sits on a separate card that plugs into a 
standard PC over the PCI-Express interconnect 
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Graphics in the System 

A contemporary PC with an Intel CPU 

PCI_Express (PCIe) 
 
A standard system I/O 
interconnect that uses 
point-to-point links. 
links have a configurable 
number of lanes and  
bandwidth.  
A lane is composed of  
a transmit and receive  
pair of differential lines.  
Each lane is composed  
of 4 wires or signal paths, 
meaning conceptually,  
each lane is a full-duplex 
byte system. 
The per-lane throughput of 
PCIe 2.0 rises from 250 
MB/s to 500 MB/s.  

4GB/s 

72pin 

240pin 
FBDIMM 
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Graphics in the System 

A contemporary PC with an AMD CPU 

HyperTransport  provides a 
high-speed, hig-performance, 
point-to-point dual simplex link for 
interconnectring IC components 
on a PCB. 
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System Variations 
 A low-cost system variation, a UMA system, 

uses only CPU system memory, omitting GPU 
memory from the system 

 A high performance system variation uses 
multiple attached GPUs, typically 2 to 4 working 
in parallel with their displays daisy-chained. 
 An example is the NVIDIA SLI (scalable link 

interconnect) multi-GPU system, designed for high 
performance gaming and workstations. 

 The next system category integrates the GPU 
with the north bridge (Intel) or chipsets (AMD) 
with and without dedicated graphic memory. 



GPU Architecture  
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System Architecture 
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DDR: 2.5V 
GDDR2: 2.5V  
DDR2: 1.8V 
GDDR3: 2.0V (Samsung) 
               1.8V (others) 
DDR3: 1.5V 
DDR4: 1.2V 



GPU Architecture 
NVIDIA Fermi, 512 Processing Elements (PEs) 
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GTC: cluster 
SM: streaming multiprocessor 
ROP: raster operation 



General Purposed Computing 

ref: http://www.nvidia.com/object/tesla_computing_solutions.html 
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The Gap Between CPU and GPU 

ref: Tesla GPU Computing Brochure 
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Given the same chip area, the achievable performance of 
GPU is 10x higher than that of CPU. 



Evolution of Intel Pentium 
Pentium I Pentium II 

Pentium III Pentium IV 

Chip area 
breakdown 

Q: What can you observe? Why? 
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Extrapolation of Single Core CPU 
If we extrapolate the trend, in a few generations, Pentium 
will look like: 

Of course, we know it did not happen.  
 
Q: What happened instead? Why? 
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Evolution of Multi-core CPUs 
Penryn Bloomfield 

Gulftown Beckton 

Chip area 
breakdown 

Q: What can you observe? Why? 
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Let's Take a Closer Look 

Less than 10% of total chip area is used for the real execution. 
 
Q: Why? 
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The Memory Hierarchy 

Notes on Energy at 45nm:  
64-bit Int ADD takes about 1 pJ. 
64-bit FP FMA (fused multiply-add)  takes about 200 pJ. 

It seems we can not further increase the computational density. 
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The Brick Wall -- UC Berkeley's View 
Power Wall: power expensive, transistors free 
Memory Wall: Memory slow, multiplies fast 
ILP Wall: diminishing returns on more ILP HW 
 
 Power Wall + Memory Wall + ILP Wall = Brick Wall 

David Patterson, "Computer Architecture is Back - The Berkeley View of the Parallel Computing Research Landscape",  
Stanford EE Computer Systems Colloquium, Jan 2007, link  
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How to Break the Brick Wall? 

Hint: how to exploit the parallelism inside the application? 
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Step 1: Trade Latency with Throughput 

Hind the memory latency through fine-grained interleaved 
threading. 
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Interleaved Multi-threading 

The granularity of interleaved multi-threading: 
• 100 cycles: hide off-chip memory latency 
• 10 cycles: + hide cache latency 
• 1 cycle: + hide branch latency, instruction dependency 
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Interleaved Multi-threading 

The granularity of interleaved multi-threading: 
• 100 cycles: hide off-chip memory latency 
• 10 cycles: + hide cache latency 
• 1 cycle: + hide branch latency, instruction dependency 

 
Fine-grained interleaved multi-threading: 
Pros: ? 
Cons: ? 
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Interleaved Multi-threading 

The granularity of interleaved multi-threading: 
• 100 cycles: hide off-chip memory latency 
• 10 cycles: + hide cache latency 
• 1 cycle: + hide branch latency, instruction dependency 

 
Fine-grained interleaved multi-threading: 
Pros: remove branch predictor, OOO scheduler, large cache 
Cons: register pressure, etc. 
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Fine-Grained Interleaved Threading 

Pros:  
reduce cache size, 
no branch predictor,  
no OOO scheduler 
 
Cons:  
register pressure, 
thread scheduler, 
require huge parallelism 

Without and with fine-grained interleaved threading 
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HW Support 
Register file supports zero 
overhead context switch 
between interleaved 
threads. 

Chapter 7 — Multicores, Multiprocessors, and Clusters — 37 



Can We Make Further Improvement? 

 Reducing large cache gives 2x computational density. 
 

 Q: Can we make further improvements? 

Hint: 
We have only utilized thread 
level parallelism (TLP) so far. 
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Step 2: Single Instruction Multiple Data 

SSE has 4 data lanes GPU has 8/16/24/... data lanes 

GPU uses wide SIMD: 8/16/24/... processing elements (PEs) 
CPU uses short SIMD: usually has vector width of 4. 
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Hardware Support 
Supporting interleaved threading + SIMD execution 
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Single Instruction Multiple Thread (SIMT) 
Hide vector width using scalar threads. 
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Example of SIMT Execution 
Assume 32 threads are grouped into one warp. 
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Step 3: Simple Core 
The Stream Multiprocessor (SM) is a 
light weight core compared to IA core. 

Light weight PE: 
Fused Multiply Add 
(FMA) 
 
SFU: 
Special Function 
Unit 
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NVIDIA's Motivation of Simple Core 

"This [multiple IA-core] approach is analogous to trying to 
build an airplane by putting wings on a train." 

--Bill Dally, NVIDIA 
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Review: How Do We Reach Here? 
NVIDIA Fermi, 512 Processing Elements (PEs) 
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Throughput Oriented Architectures 

1. Fine-grained interleaved threading (~2x comp density) 
2. SIMD/SIMT (>10x comp density) 
3. Simple core (~2x comp density) 

 
Key architectural features of throughput oriented 

processor. 

ref: Michael Garland. David B. Kirk, "Understanding throughput-oriented architectures", CACM 2010. (link) 
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NVIDIA Tesla 
 Tesla-based GPUs chips are offered with 

between 1 and 16 nodes, which NVIDIA 
calls multiprocessors 
 GeForce 8800 GTX has 16 multiprocessors 

and a clock rate of 1.35 GHz 
 Each multiprocessors contains 8 

multithreaded single-precision floating-point 
units and integer  units, which NVIDIA calls 
streaming processors.  
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NVIDIA Tesla 
Streaming 

multiprocessor 

8 × Streaming 
processors 
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Data parallel problem 

 Decompose the problem 
into many small problems 
that can be solved in 
parallel. 

 Each multiprocessor 
computes a block, and 
each thread computes an 
element 

 
 Grid:        a set of blocks 
 Block:      a set of threads 
 Element:  a thread 
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NVIDIA Tesla & Sun T2 
The T2 core is a single 
processor and uses hardware-
supported multithreading with 
eight threads. The T2 can 
switch every clock cycle. 

The Tesla multiprocessor contains eight streaming 
processors and uses hardware-supported 
multithreading with 24 warps of 32 threads (eight 
processors times four clock cycles). The Tesla can 
switch only every two or four clock cycles.  

8 SPs in a SM 
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SIMT 
 The best performance comes when all 32 

threads of a warp execute together in a SIMD-
like fashion, which Tesla architecture calls 
single-instruction multiple-thread (SIMT). 
 SIMT dynamically discovers  

 which threads can execute the same instruction together, and 
 which threads are idle that cycle. 

 The minimum unit of switching warps is two clock 
cycles across eight streaming processors (SPs). 

 With this restriction, the hardware is much simpler 
 Each GPU thread has its own private registers, 

private per-thread memory, program counter, 
and thread execution state 
 Can execute an independent code path 
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Streaming Processor (SP) 
 Each SP is hardware multithreaded, 

supporting up to 64 threads  
 Limited by the number of registers 
 Its 1024 registers are partitioned among the 

assigned threads 
 Programs declares their register demand 

 Typically 16 ~ 64 scalar 32-bit registers per thread 
 Each SP supports 32 threads when 32 registers are 

required per thread, which corresponds to 256 
threads per multiprocessor. 

 Each SP core execute an instruction for 4 
individual threads of a warp using 4 clocks. 
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Tesla Multiprocessor 

SFU: special  
function unit 
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CUDA Paradigm 
 CUDA provides three key abstractions 

 A hierarchy of thread groups 
 Shared memories 
 Barrier synchronization  

 The programmer writes a serial program that 
calls parallel kernels 

 The programmer organizes these threads into 
a hierarchy of thread blocks and grids of 
thread blocks. 

 A kernel: a program or function for one thread, 
designed to be executed by many threads. 
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CUDA Paradigm 
 CUDA provides three key abstractions 

 A hierarchy of thread groups 
 Shared memories 
 Barrier synchronization  

 The programmer writes a serial program that 
calls parallel kernels 

 The programmer organizes these threads into 
a hierarchy of thread blocks and grids of 
thread blocks. 

 A kernel: a program or function for one thread, 
designed to be executed by many threads. 



Grids and Blocks 
 A kernel is executed as a 

grid of thread blocks 
 All threads share data 

memory space 
 A thread block is a batch of 

threads that can cooperate 
with each other by: 
 Synchronizing their 

execution 
 For hazard-free shared 

memory accesses 
 Efficiently sharing data 

through a low latency shared 
memory 

 Two threads from two 
different blocks cannot 
cooperate 

Host 

Kernel 
1 

Kernel 
2 

Device 

Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 
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CUDA Paradigm 
 When invoking a kernel, the programmer 

specifies the number of threads per block and 
the number of blocks comprising the grid. 

 Each thread is given a unique thread ID number 
and  each thread block is given a unique block 
ID number. 

 _global_  declaration specifier indicates that the 
procedure is a kernal entry point 

 CUDA program launch parallel kernels with the 
extended function call syntax 
 kernel_specifier <<<dimGrid, dimBlock>>>  
                              ( .., param list, ); 
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C & CUDA Codes for SAXPY 

kernel launching 
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CUDA programming 
 Parallel execution and thread management 

are automatic. 
 All thread creation, scheduling, and termination is 

handled for the programmer by the underlying 
system. 

 A Tesla architecture GPU performs all thread 
management directly in hardware. 

 The thread of a block execute concurrently and 
may synchronize at a synchronization barrier by 
calling _syncthreads() intrinsic. 

 Threads in a block, which should reside on the 
same multiprocessor, may communicate with each 
other by writing and reading per-block shared 
memory at a synchronization barrier. 
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CUDA programming 
 A CUDA program is a unified C/C++ program 

for a heterogeneous CPU and GPU system. 
 It execute on the CPU and dispatches parallel 

work to the GPU. 
 This work consists of a data transfer from main 

memory and a thread dispatch. 
 A thread is a piece of the program for the GPU. 

 Programmers specify the number of threads in 
a thread block and the number of thread 
blocks they wish to start executing on the GPU. 
 All the threads in the thread block are scheduled  to 

run on the same multiprocessor so they all share 
the same local memory. 
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CUDA programming 
 Thus, they can communicate via loads and stores 

instead of messages. 
 The CUDA compiler allocates registers to 

each thread, under the constraints that the 
registers per thread time thread per thread 
block does not exceed the 8192 registers per 
multiprocessors. 

 A thread block can be up to 512 threads 
 Each group of 32 threads in a thread block is 

packed into warps. 
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