
Chapter 7C
Multicores,
Multiprocessors, and
Clusters

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

C & CUDA Codes for SAXPY

kernel launching

Chapter 7 — Multicores, Multiprocessors, and Clusters — 3

CUDA programming
 Parallel execution and thread management are

automatic.
 All thread creation, scheduling, and termination is

handled for the programmer by the underlying system.
 A Tesla architecture GPU performs all thread

management directly in hardware.
 The threads of a block execute concurrently and may

synchronize at a synchronization barrier by calling
_syncthreads() intrinsic.

 Threads in a block, which should reside on the same
multiprocessor, may communicate with each other by
writing and reading per-block shared memory at a
synchronization barrier.

 # of threads ? # of thread blocks ? # of processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

CUDA programming
 A CUDA program is a unified C/C++ program for

a heterogeneous CPU and GPU system.
 It execute on the CPU and dispatches parallel

work to the GPU.
 This work consists of a data transfer from main

memory and a thread dispatch.
 A thread is a piece of the program for the GPU.

 Programmers specify the number of threads in a
thread block and the number of thread blocks
they wish to start executing on the GPU.
 All the threads in the thread block are scheduled to

run on the same multiprocessor so they all share the
same local memory.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

CUDA programming
 Thus, they can communicate via loads and stores

instead of messages.
 The CUDA compiler allocates registers to

each thread, under the constraints that the
registers per thread time thread per thread
block does not exceed the 8192 registers per
multiprocessors.

 A thread block can be up to 512 threads
 Each group of 32 threads in a thread block is

packed into warps.

CUDA Programming
 Massive number (>10000) of light-weight threads.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 6

CUDA Program

 Scalar program

 float A[4][8];
 do-all(i=0;i<4;i++){
 do-all(j=0;j<8;j++){
 A[i][j]++;
 }
 }

 CUDA program

 float A[4][8];

 kernelF<<<(4,1),(8,1)>>>(A);

 __global__ kernelF(A){
 i = blockIdx.x;
 j = threadIdx.x;
 A[i][j]++;
 }

• CUDA program expresses data level parallelism (DLP) in terms of
thread level parallelism (TLP).

• Hardware converts TLP into DLP at run time.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

Two Levels of Thread Hierarchy
 kernelF<<<(4,1),(8,1)>>>(A);

 __global__ kernelF(A){
 i = blockIdx.x;
 j = threadIdx.x;
 A[i][j]++;
 }

Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

y, x ? wrong
x,y ! correct

Multi-dimension Thread and Block ID

 kernelF<<<(2,2),(4,2)>>>(A);

 __global__ kernelF(A){
 i = blockDim.x * blockIdx.y
 + blockIdx.x;
 j = threadDim.x * threadIdx.y
 + threadIdx.x;
 A[i][j]++;
 }

Both grid and thread block can have two dimensional index.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 9

Scheduling Thread Blocks on SM
Example:
Scheduling 4 thread blocks on 3 SMs.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 10

Executing Thread Block on SM

Executed on machine with width of 4:

Executed on machine with width of 8:

Notes: the number of Processing
Elements (PEs) is transparent to
programmer.

 kernelF<<<(2,2),(4,2)>>>(A);

 __device__ kernelF(A){
 i = blockDim.x * blockIdx.y
 + blockIdx.x;
 j = threadDim.x * threadIdx.y
 + threadIdx.x;
 A[i][j]++;
 }

Chapter 7 — Multicores, Multiprocessors, and Clusters — 11

Locate Thread by Built-in Variables

 Built-in Variables
 gridDim

 x, y
 blockIdx

 x, y
 blockDim

 x, y, z
 threadIdx

 x, y, z

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

The index of a thread and its thread ID relate to each other in
a straightforward way: For a one-dimensional block, they are
the same; for a two-dimensional block of size (Dx, Dy), the
thread ID of a thread of index (x, y) is (x + y Dx); for a three-
dimensional block of size (Dx, Dy, Dz), the thread ID of a
thread of index (x, y, z) is (x + y Dx + z Dx Dy).

Multiple Levels of Memory Hierarchy
Name Cache? cycle read-only?
Global L1/L2 200~400 (cache miss) R/W
Shared No 1~3 R/W
Constant Yes 1~3 Read-only
Texture Yes ~100 Read-only
Local L1/L2 200~400 (cache miss) R/W

Chapter 7 — Multicores, Multiprocessors, and Clusters — 13

Explicit Management of Shared Mem

Shared memory is frequently used to exploit locality.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 14

Shared Memory and Synchronization

kernelF<<<(1,1),(16,16)>>>(A);

__global__ kernelF(A){
 __shared__ smem[16][16]; //allocate smem
 i = threadIdx.y;
 j = threadIdx.x;
 smem[i][j] = A[i][j];
 __sync();
 A[i][j] = (smem[i-1][j-1]
 + smem[i-1][j]
 ...
 + smem[i+1][i+1]) / 9;
}

Example: average filter with 3x3
window

3x3 window on image

Image data in DRAM

Chapter 7 — Multicores, Multiprocessors, and Clusters — 15

Shared Memory and Synchronization

kernelF<<<(1,1),(16,16)>>>(A);

__global__ kernelF(A){
 __shared__ smem[16][16];
 i = threadIdx.y;
 j = threadIdx.x;
 smem[i][j] = A[i][j]; // load to smem
 __sync(); // thread wait at barrier
 A[i][j] = (smem[i-1][j-1]
 + smem[i-1][j]
 ...
 + smem[i+1][i+1]) / 9;
}

Example: average filter over 3x3
window

3x3 window on image

Stage data in shared mem

Chapter 7 — Multicores, Multiprocessors, and Clusters — 16

Shared Memory and Synchronization

kernelF<<<(1,1),(16,16)>>>(A);

__device__ kernelF(A){
 __shared__ smem[16][16];
 i = threadIdx.y;
 j = threadIdx.x;
 smem[i][j] = A[i][j];
 __sync(); // every thread is ready
 A[i][j] = (smem[i-1][j-1]
 + smem[i-1][j]
 ...
 + smem[i+1][i+1]) / 9;
}

Example: average filter over 3x3
window

3x3 window on image

all threads finish the load

Chapter 7 — Multicores, Multiprocessors, and Clusters — 17

Shared Memory and Synchronization

kernelF<<<(1,1),(16,16)>>>(A);

__device__ kernelF(A){
 __shared__ smem[16][16];
 i = threadIdx.y;
 j = threadIdx.x;
 smem[i][j] = A[i][j];
 __sync();
 A[i][j] = (smem[i-1][j-1]
 + smem[i-1][j]
 ...
 + smem[i+1][i+1]) / 9;
}

Example: average filter over 3x3
window

3x3 window on image

all threads finish the load

Chapter 7 — Multicores, Multiprocessors, and Clusters — 18

Chapter 7 — Multicores, Multiprocessors, and Clusters — 19

Classifying GPUs
 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD
 But with performance degredation
 Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered
at Runtime

Instruction-Level
Parallelism

VLIW Superscalar

Data-Level
Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 7 — Multicores, Multiprocessors, and Clusters — 20

Interconnection Networks
 Network costs include

 number of switches
 number of links
 width per link
 length of the links

 Networks are normally drawn as graphs,
with each arc representing a link
 Processor-memory node as a black square
 Switch as a blue circle

 All links are bidirectional in this book

§7.8 Introduction to M
ultiprocessor N

etw
ork Topologies

Chapter 7 — Multicores, Multiprocessors, and Clusters — 21

Networks Topology
 Network topologies

 Arrangements of processors, switches, and links

Bus Ring

2D Torus (Grid)
N-cube (N = 3)

Fully connected

Chapter 7 — Multicores, Multiprocessors, and Clusters — 22

Network Characteristics
 Network bandwidth: informally the peak transfer

rate of a network.
 Can refer to the speed of a single link or the collective

transfer rate of all links in the network.
 Bisection bandwidth: the bandwidth between two

equal parts of a multiprocessors
 This measure is for a worst case split of the

multiprocessor.

 A fully connected network
 total network BW: O(P(P-1)/2)
 bisection BW: O(P/2)2

Chapter 7 — Multicores, Multiprocessors, and Clusters — 23

Network Characteristics
 Single-stage vs. multi-stage network:

 One switch or more between the input and the output
 Omega network: identical perfect shuffle

between each stage
 used less hardware than the crossbar networks
 2nlog2n versus n2 switches
 Contention can occurs between messages

 No contention in the crossbar or fully connected
networks

Chapter 7 — Multicores, Multiprocessors, and Clusters — 24

Omega Networks

64 switches
Support arbitrary connection

48 switches
Some connection are not supported

? The connection
of 1st stage is wrong

Is the crossbar network
a multi-stage network?

Single stage
Multi-stage
Crossbar

pass through or cross over

Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Modeling Performance
 Assume performance metric of interest is

achievable GFLOPs/sec
 Measured using computational kernels from

Berkeley Design Patterns
 For a given computer, determine

 Peak GFLOPS : from data sheet
 Peak memory bytes/sec: by using Stream

benchmark
 Demands on the memory system [bytes/sec]

 Floating-point operation per sec divided by the
arithmetic intensity, the average number of
floating-point operation per byte.

§7.10 R
oofline A S

im
ple P

erform
ance M

odel

Chapter 7 — Multicores, Multiprocessors, and Clusters — 26

Stream Benchmark
 The STREAM benchmark is a simple synthetic

benchmark program that measures sustainable
memory bandwidth (in MB/s), which intended to
measure the bandwidth from main memory.

 The STREAM benchmark is specifically designed to
work with data sets much larger than the available
cache on any given system and no temporal locality.

 Computer CPUs are getting faster much more quickly
than computer memory systems.

 As this progresses, more and more programs will be
limited in performance by the memory bandwidth of
the system, rather than by the computational
performance of the CPU.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 27

Arithmetic intensity: specified as the number of float-point
operations to run the program divided by the number of
bytes accessed in main memory [Williams, Patterson, 2008].

Arithmetic Intensity

FLOPs per byte of memory accessed

Chapter 7 — Multicores, Multiprocessors, and Clusters — 28

Roofline Model
 This model ties floating-point performance,

arithmetic intensity, memory performance together
in a 2D graph.

 The roofline diagram in Fig 7.13 is for a computer
 Y-axis: available floating-point performance

[GFLOPS/second]
 X-axis: arithmetic intensity
 [FLOPS/DRAM bytes accessed]

 For a given kernel, we can find a point on the X-
axis.
 The performance of the kernel on that computer must

lie where along the line which can be obtained by
drawing a vertical line through the point

for the computer

Chapter 7 — Multicores, Multiprocessors, and Clusters — 29

Roofline Diagram
Attainable peak GPLOPs/sec
= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

The ridge point offers
an interesting insight
into the computer.

If the ridge point is far to the
right, then only kernels with
very high arithmetic intensity
can achieve the max
performance of the computer.

If it is far to the left, then
almost any kernel can
potentially hit the max
performance.

Hit to the max memory BW

a log-log scale

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

Roofline Model
 This example on the Opteron X2 has

 a peak floating-point performance of 16 GFLOPS/sec
 a peak memory bandwidth of 16 GB/sec from the

Stream benchmark.
 Since stream is actually four measurements, this line is

the average of the four.
 Kernel 1, which has an arithmetic intensity of 0.5

FLOPs/byte, is limited by memory bandwidth to no
more than 8 GFLOPS/sec.

 Kernel 2, which has an arithmetic intensity of 4
FLOPs/byte is limited only computationally to 16
GFLOPS/s.

 This data is based on the AMD Opteron X2 (Revision F)
using dual cores running at 2 GHz in a dual socket
system.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 31

Comparing two systems
 Example: Opteron X2 vs.
 Opteron X4

 2-core vs. 4-core,
 2x peak FP performance/core
 Similar clock 2.2GHz vs. 2.3GHz
 Used the same sockets
 same memory system

 To get higher performance
on X4 than X2
 Need high arithmetic intensity
 Or working set must fit in X4’s

2MB L-3 cache
The higher edge point in X4 means
memory-performance bound for
lower arithmetic intensity on X4

Chapter 7 — Multicores, Multiprocessors, and Clusters — 32

Optimizing Performance

 To reduce computational
bottleneck, the following
two optimizations can help
almost any kernel
 1. Floating-point operation

mix by balancing adds &
multiplies
 For a fused multiply-add

instructions or
 Because # of fp adders = #

of fp multipliers
 2. Improve ILP and apply

SIMD

Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Optimizing Performance

 To reduce memory
bottleneck, the
following two
optimizations can help

 3. Software prefetch
 Avoid load stalls

 4. Memory affinity
 Memory controller on a

chip
 Multiple memory-

processor pairs on a
system.

 Avoid non-local data
accesses

Chapter 7 — Multicores, Multiprocessors, and Clusters — 34

Optimizing Performance
 Choice of optimization depends on arithmetic intensity of

code

Chapter 7 — Multicores, Multiprocessors, and Clusters — 35

Optimizing Performance

 Arithmetic intensity is
not always fixed

 Arithmetic intensity may scale
with problem size (for Dense
Matrix, and N-boy problems):
so weak scaling is better than
strong scaling

 Caching reduces memory
accesses Increases
arithmetic intensity
 loop unrolling

Chapter 7 — Multicores, Multiprocessors, and Clusters — 36

Benchmarking 4 multicores
 Examine 4 multicore systems for two kernels of

the design patterns: sparse matrix and structured
grid. All dual socket systems.
 (a) Intel Xeon e5345 (Clovertown) : 8 cores
 (b) AMD Opteron X4 2356 (Barcleona): 8 cores
 (c) Sun UltraSPARC T2 5140 (Niagara 2): 16 cores
 (d) IBM Cell QS20: 16 cores

§7.11 R
eal S

tuff: B
enchm

arking Four M
ulticores …

Chapter 7 — Multicores, Multiprocessors, and Clusters — 37

Xeon e5345 (Clovertown)

FSB: a weak link

Core: 2.33 GHz

Two dual-core
chips per socket

Peak performance: 75 GFLOPS, which cacn be obtained
at arithmetic intensity of 8 or more
Dual FSBs interfere each other yield relatively low memory BW to programs

Chapter 7 — Multicores, Multiprocessors, and Clusters — 38

Opteron X4 2356 (Barcelona)

A quad-core chip per socket. Each core: 2.30 GHz
Peak performance: 74 GFLOPS,
Ridge point is at an arithmetic intensity of 5 FLOPS/byte
Two sockets communicates through Hypertransport links
 glueless multichip systems

Chapter 7 — Multicores, Multiprocessors, and Clusters — 39

UltraSPARC T2 5140 (Niagara 2)

8 relatively simple cores per chip. Each core: 1.17 GHz
Fine-grained multithreading with 8 thread per core
A chip has 4 memory controllers, but two of them are connected to join two T2 chips
Peak performance: 22 GFLOPS,
The ridge point is an very low arithmetic intensity of 1/3 FLOPS/byte

Chapter 7 — Multicores, Multiprocessors, and Clusters — 40

IBM Cell QS20

It is a heterogeneous design: one PowerPC core and 8 SPEs with SIMD-like ISA
An SPE with 256K local memory loads/stores data from/to main memory with DMA
 tow chips are connected via dedicated links. A core operates at 3.2 GHz and uses
XDR DRAMs chips with high BW and low capacity. Peak double precision performance
of SPEs is 29 GFLOPS. The ridge point is an low arithmetic intensity of 3/4 FLOPS/byte.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 41

Memory systems
 They have very different approaches to the

memory system.
 (a) Intel Xeon e5345 (Clovertown) : each core has an L1 cache.

Each pair of cores shares an L2 cache. They are connected
through a shared memory controller.

 (b) AMD Opteron X4 2356 (Barcleona): has a separate memory
controller and memory per chip. Each core has private L1 and L2
caches.

 (c) Sun UltraSPARC T2 5140 (Niagara 2): has a on-chip memory
controller and 4 separate DRAM channels per chip. 8 Cores shares
the L2 cache with 4 banks

 (d) IBM Cell QS20: local private memory to SPE and DMA between
the local memory and DRAM.

 In (c) and (d): many memory accesses in flight are sustained with
many cores and multithreading/DMA

Chapter 7 — Multicores, Multiprocessors, and Clusters — 42

And Their Rooflines
Kernels

 SpMV: sparse vector
multiply (left)

 LBHMD: Lattice-
Boltzmann Magneto-
Hydrodynamics (right)

Some optimizations
change arithmetic
intensity

 x86 systems have
higher peak GFLOPs
 But harder to achieve,

given memory bandwidth

Chapter 7 — Multicores, Multiprocessors, and Clusters — 43

And Their Rooflines
Note the ridge points for the four microprocessors

intersect the X-axis at the arithmetic intensities of 8, 5, 1/3,
and 3/4, respectively.

The dashed vertical lines are for the two kernels of this
section and the stars mark the performance achieved for
these kernels after all the optimizations.

SpMV is the pair of dashed vertical lines on the left. It has
two lines because its arithmetic intensity improved from
0.166 to 0.255 based on register blocking optimizations.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 44

And Their Rooflines

LBMHD is the dashed vertical lines on the right. It has a
pair of lines in (a) and (b) because a cache optimization
skips filling the cache block on a miss when the processor
would write new data into the entire block.

That optimization increases the arithmetic intensity from
0.70 to 1.07.

 It’s a single line in (c) at 0.70 because UltraSPARC T2
does not offer the cache optimization.

 It is a single line at 1.07 in (d) because Cell has local store
loaded by DMA, so the program doesn’t fetch
unnecessary data as do caches.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 45

Performance on SpMV
 Sparse matrix/vector multiply

 Irregular memory accesses, memory bound
 Arithmetic intensity

 0.166 before memory optimization, 0.25 after
 Xeon vs. Opteron

 Similar peaks: 75 FLOPS
 Xeon limited by shared FSBs

and chipset

 UltraSPARC/Cell vs. x86
 20 – 30 vs. 75 peak GFLOPs
 More cores and memory

bandwidth

 All scales well except Xeon

Chapter 7 — Multicores, Multiprocessors, and Clusters — 46

Performance on LBMHD
 Fluid dynamics: structured grid over time steps

 Each point: 75 FP read/write, 1300 FP ops
 Arithmetic intensity

 0.70 before optimization, 1.07 after

 Opteron vs. UltraSPARC
 More powerful cores, not

limited by memory bandwidth

 Xeon vs. others
 Still suffers from memory

bottlenecks

Chapter 7 — Multicores, Multiprocessors, and Clusters — 47

Achieving Performance
 Compare naïve vs. optimized code

 If naïve code performs well, it’s easier to write
high performance code for the system

System Kernel Naïve
GFLOPs/sec

Optimized
GFLOPs/sec

Naïve as % of
optimized

Intel Xeon SpMV
LBMHD

1.0
4.6

1.5
5.6

64%
82%

AMD
Opteron X4

SpMV
LBMHD

1.4
7.1

3.6
14.1

38%
50%

Sun UltraSPARC
T2

SpMV
LBMHD

3.5
9.7

4.1
10.5

86%
93%

IBM Cell QS20 SpMV
LBMHD

Naïve code
not feasible

6.4
16.7

0%
0%

	Chapter 7C
	C & CUDA Codes for SAXPY
	CUDA programming
	CUDA programming
	CUDA programming
	CUDA Programming�
	CUDA Program
	Two Levels of Thread Hierarchy
	Multi-dimension Thread and Block ID
	Scheduling Thread Blocks on SM
	Executing Thread Block on SM
	Locate Thread by Built-in Variables
	Multiple Levels of Memory Hierarchy
	Explicit Management of Shared Mem
	Shared Memory and Synchronization
	Shared Memory and Synchronization
	Shared Memory and Synchronization
	Shared Memory and Synchronization
	Classifying GPUs
	Interconnection Networks
	Networks Topology
	Network Characteristics
	Network Characteristics
	Omega Networks
	Modeling Performance
	Stream Benchmark
	Arithmetic Intensity
	Roofline Model
	Roofline Diagram
	Roofline Model
	Comparing two systems
	Optimizing Performance
	Optimizing Performance
	Optimizing Performance
	Optimizing Performance
	Benchmarking 4 multicores
	Xeon e5345 (Clovertown)
	Opteron X4 2356 (Barcelona)
	UltraSPARC T2 5140 (Niagara 2)
	IBM Cell QS20
	Memory systems
	And Their Rooflines
	And Their Rooflines
	And Their Rooflines
	Performance on SpMV
	Performance on LBMHD
	Achieving Performance

