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C & CUDA Codes for SAXPY 

kernel launching 
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CUDA programming 
 Parallel execution and thread management are 

automatic. 
 All thread creation, scheduling, and termination is 

handled for the programmer by the underlying system. 
 A Tesla architecture GPU performs all thread 

management directly in hardware. 
 The threads of a block execute concurrently and may 

synchronize at a synchronization barrier by calling 
_syncthreads() intrinsic. 

 Threads in a block, which should reside on the same 
multiprocessor, may communicate with each other by 
writing and reading per-block shared memory at a 
synchronization barrier. 

 # of threads ? # of thread blocks ?  # of processors 
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CUDA programming 
 A CUDA program is a unified C/C++ program for 

a heterogeneous CPU and GPU system. 
 It execute on the CPU and dispatches parallel 

work to the GPU. 
 This work consists of a data transfer from main 

memory and a thread dispatch. 
 A thread is a piece of the program for the GPU. 

 Programmers specify the number of threads in a 
thread block and the number of thread blocks 
they wish to start executing on the GPU. 
 All the threads in the thread block are scheduled  to 

run on the same multiprocessor so they all share the 
same local memory. 
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CUDA programming 
 Thus, they can communicate via loads and stores 

instead of messages. 
 The CUDA compiler allocates registers to 

each thread, under the constraints that the 
registers per thread time thread per thread 
block does not exceed the 8192 registers per 
multiprocessors. 

 A thread block can be up to 512 threads 
 Each group of 32 threads in a thread block is 

packed into warps. 



CUDA Programming 
 Massive number (>10000) of light-weight threads. 
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CUDA Program 

 Scalar program 
   
 float A[4][8]; 
 do-all(i=0;i<4;i++){ 
     do-all(j=0;j<8;j++){ 
         A[i][j]++;  
     } 
 }  

 CUDA program 
 

 float A[4][8];  
   
 kernelF<<<(4,1),(8,1)>>>(A); 
   
 __global__    kernelF(A){ 
     i = blockIdx.x; 
     j = threadIdx.x; 
     A[i][j]++; 
 } 
   

 

• CUDA program expresses data level parallelism (DLP) in terms of 
thread level parallelism (TLP). 

• Hardware converts TLP into DLP at run time.  

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7 



Two Levels of Thread Hierarchy 
 kernelF<<<(4,1),(8,1)>>>(A); 
   
 __global__    kernelF(A){ 
     i = blockIdx.x; 
     j = threadIdx.x; 
     A[i][j]++; 
 } 
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y, x ? wrong 
x,y ! correct 



Multi-dimension Thread and Block ID 

 kernelF<<<(2,2),(4,2)>>>(A); 
   
 __global__    kernelF(A){ 
     i = blockDim.x * blockIdx.y 
         + blockIdx.x; 
     j = threadDim.x * threadIdx.y 
         + threadIdx.x; 
     A[i][j]++; 
 } 
   

 

Both grid and thread block can have two dimensional index. 
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Scheduling Thread Blocks on SM 
Example: 
Scheduling 4 thread blocks on 3 SMs. 
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Executing Thread Block on SM 

Executed on machine with width of 4: 

Executed on machine with width of 8: 

Notes: the number of Processing 
Elements (PEs) is transparent to 
programmer. 

 kernelF<<<(2,2),(4,2)>>>(A); 
   
 __device__    kernelF(A){ 
     i = blockDim.x * blockIdx.y 
         + blockIdx.x; 
     j = threadDim.x * threadIdx.y 
         + threadIdx.x; 
     A[i][j]++; 
 } 
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Locate Thread by Built-in Variables 

 Built-in Variables 
 gridDim 

 x, y 
 blockIdx 

 x, y 
 blockDim 

 x, y, z 
 threadIdx 

 x, y, z 

 

Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

       

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

The index of a thread and its thread ID relate to each other in 
a straightforward way: For a one-dimensional block, they are 
the same; for a two-dimensional block of size (Dx, Dy), the 
thread ID of a thread of index (x, y) is (x + y Dx); for a three-
dimensional block of size (Dx, Dy, Dz), the thread ID of a 
thread of index (x, y, z) is (x + y Dx + z Dx Dy).  



Multiple Levels of Memory Hierarchy 
Name Cache? cycle read-only? 
Global L1/L2 200~400 (cache miss) R/W 
Shared No 1~3 R/W 
Constant Yes 1~3 Read-only 
Texture Yes ~100 Read-only 
Local L1/L2 200~400 (cache miss) R/W 
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Explicit Management of Shared Mem 

Shared memory is frequently used to exploit locality. 
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Shared Memory and Synchronization 

kernelF<<<(1,1),(16,16)>>>(A); 
  
__global__    kernelF(A){ 
    __shared__ smem[16][16]; //allocate smem 
    i = threadIdx.y; 
    j = threadIdx.x; 
    smem[i][j] = A[i][j]; 
    __sync(); 
    A[i][j] = ( smem[i-1][j-1] 
                   + smem[i-1][j] 
                   ... 
                   + smem[i+1][i+1] ) / 9; 
} 
  
 

Example: average filter with 3x3 
window 

3x3 window on image 

Image data in DRAM 
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Shared Memory and Synchronization 

kernelF<<<(1,1),(16,16)>>>(A); 
  
__global__    kernelF(A){ 
    __shared__ smem[16][16]; 
    i = threadIdx.y; 
    j = threadIdx.x; 
    smem[i][j] = A[i][j]; // load to smem 
    __sync(); // thread wait at barrier 
    A[i][j] = ( smem[i-1][j-1] 
                   + smem[i-1][j] 
                   ... 
                   + smem[i+1][i+1] ) / 9; 
} 
  
 

Example: average filter over 3x3 
window 

3x3 window on image 

Stage data in shared mem 
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Shared Memory and Synchronization 

kernelF<<<(1,1),(16,16)>>>(A); 
  
__device__    kernelF(A){ 
    __shared__ smem[16][16]; 
    i = threadIdx.y; 
    j = threadIdx.x; 
    smem[i][j] = A[i][j]; 
    __sync(); // every thread is ready 
    A[i][j] = ( smem[i-1][j-1] 
                   + smem[i-1][j] 
                   ... 
                   + smem[i+1][i+1] ) / 9; 
} 
  
 

Example: average filter over 3x3 
window 

3x3 window on image 

all threads finish the load 
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Shared Memory and Synchronization 

kernelF<<<(1,1),(16,16)>>>(A); 
  
__device__    kernelF(A){ 
    __shared__ smem[16][16]; 
    i = threadIdx.y; 
    j = threadIdx.x; 
    smem[i][j] = A[i][j]; 
    __sync(); 
    A[i][j] = ( smem[i-1][j-1] 
                   + smem[i-1][j] 
                   ... 
                   + smem[i+1][i+1] ) / 9; 
} 
  
 

Example: average filter over 3x3 
window 

3x3 window on image 

all threads finish the load 
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Classifying GPUs 
 Don’t fit nicely into SIMD/MIMD model 

 Conditional execution in a thread allows an 
illusion of MIMD 
 But with performance degredation 
 Need to write general purpose code with care 

Static: Discovered 
at Compile Time 

Dynamic: Discovered 
at Runtime 

Instruction-Level 
Parallelism 

VLIW Superscalar 

Data-Level 
Parallelism 

SIMD or Vector Tesla Multiprocessor 
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Interconnection Networks 
 Network costs include  

 number of switches 
 number of links 
 width per link 
 length of the links 

 Networks are normally drawn as graphs, 
with each arc representing a link 
 Processor-memory node as a black square 
 Switch as a blue circle 

 All links are bidirectional in this book 

§7.8 Introduction to M
ultiprocessor N

etw
ork Topologies 
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Networks Topology 
 Network topologies 

 Arrangements of processors, switches, and links 

Bus Ring 

2D Torus (Grid) 
N-cube (N = 3) 

Fully connected 
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Network Characteristics 
 Network bandwidth: informally the peak transfer 

rate of a network. 
 Can refer to the speed of a single link or the collective 

transfer rate of all links in the network. 
 Bisection bandwidth: the bandwidth between two 

equal parts of a multiprocessors 
 This measure is for a worst case split of the 

multiprocessor. 

 A fully connected network 
 total network BW: O(P(P-1)/2) 
 bisection BW:       O(P/2)2 
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Network Characteristics 
 Single-stage vs. multi-stage network:  

 One switch or more between the input and the output 
 Omega network: identical perfect shuffle 

between each stage 
 used less hardware than the crossbar networks 
 2nlog2n versus n2 switches 
 Contention can occurs between messages 

 No contention in the crossbar or fully connected 
networks 
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Omega Networks 

64 switches 
Support arbitrary connection 

48 switches 
Some connection are not  supported 

? The connection  
of 1st stage is wrong 

Is the crossbar network  
a multi-stage network? 
 
Single stage 
Multi-stage 
Crossbar 

pass through or cross over 
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Modeling Performance 
 Assume performance metric of interest is 

achievable GFLOPs/sec 
 Measured using computational kernels from 

Berkeley Design Patterns 
 For a given computer, determine 

 Peak GFLOPS : from data sheet 
 Peak memory bytes/sec: by using Stream 

benchmark 
 Demands on the memory system [bytes/sec] 

 Floating-point operation per sec divided by the 
arithmetic intensity, the average number of 
floating-point operation per byte. 

§7.10 R
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Stream Benchmark 
 The STREAM benchmark is a simple synthetic 

benchmark program that measures sustainable 
memory bandwidth (in MB/s), which intended to 
measure the bandwidth from main memory.   

 The STREAM benchmark is specifically designed to 
work with data sets much larger than the available 
cache on any given system and no temporal locality. 

 Computer CPUs are getting faster much more quickly 
than computer memory systems.  

 As this progresses, more and more programs will be 
limited in performance by the memory bandwidth of 
the system, rather than by the computational 
performance of the CPU.  
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Arithmetic intensity: specified as the number of float-point 
operations to run the program divided by the number of 
bytes accessed in main memory [Williams, Patterson, 2008]. 

Arithmetic Intensity 

FLOPs per byte of memory accessed 
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Roofline Model 
 This model ties floating-point performance, 

arithmetic intensity, memory performance together 
in a 2D graph. 

 The roofline diagram in Fig 7.13 is for a computer 
 Y-axis:  available floating-point performance 

[GFLOPS/second] 
 X-axis: arithmetic intensity 
   [FLOPS/DRAM bytes accessed] 

 For a given kernel, we can find a point on the X-
axis.  
 The performance of the kernel on that computer must 

lie where along the line which can be obtained by 
drawing a vertical line through the point 

for the computer 
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Roofline Diagram 
Attainable peak GPLOPs/sec 
= Max ( Peak Memory BW × Arithmetic Intensity, Peak FP Performance ) 

The ridge point offers 
an interesting insight  
into the computer. 
 
If the ridge point is far to the 
right, then only kernels with 
very high arithmetic intensity 
can achieve the max  
performance of the computer. 
 
If it is far to the left, then  
almost any kernel can  
potentially hit the max  
performance. 

Hit to the max memory BW 

a log-log scale 
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Roofline Model 
 This example on the Opteron X2 has  

 a peak floating-point performance of 16 GFLOPS/sec  
 a peak memory bandwidth of 16 GB/sec from the 

Stream benchmark.  
 Since stream is actually four measurements, this line is 

the average of the four. 
 Kernel 1, which has an arithmetic intensity of 0.5 

FLOPs/byte, is limited by memory bandwidth to no 
more than 8 GFLOPS/sec.  

 Kernel 2, which has an arithmetic intensity of 4 
FLOPs/byte is limited only computationally to 16 
GFLOPS/s.  

 This data is based on the AMD Opteron X2 (Revision F) 
using dual cores running at 2 GHz in a dual socket 
system. 
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Comparing two systems 
 Example: Opteron X2 vs.     
                    Opteron X4 

 2-core vs. 4-core,  
 2x peak FP performance/core 
 Similar clock 2.2GHz vs. 2.3GHz 
 Used the same sockets   
      same memory system  

 To get higher performance 
on X4 than X2 
 Need high arithmetic intensity 
 Or working set must fit in X4’s 

2MB L-3 cache 
The higher edge point in X4 means 
memory-performance bound for  
lower arithmetic intensity on X4 
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Optimizing Performance 

 To reduce computational 
bottleneck, the following 
two optimizations can help 
almost any kernel 
 1. Floating-point operation 

mix by balancing  adds & 
multiplies 
 For a fused multiply-add 

instructions or 
 Because # of fp adders = # 

of fp multipliers 
 2. Improve ILP and apply 

SIMD 
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Optimizing Performance 

 To reduce memory 
bottleneck, the 
following two 
optimizations can help 

 3. Software prefetch 
 Avoid load stalls 

 4. Memory affinity 
 Memory controller on a 

chip 
 Multiple memory-

processor pairs on a 
system. 

 Avoid non-local data 
accesses 
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Optimizing Performance 
 Choice of optimization depends on arithmetic intensity of 

code 



Chapter 7 — Multicores, Multiprocessors, and Clusters — 35 

Optimizing Performance 

 Arithmetic intensity is 
not always fixed 

 Arithmetic intensity may scale 
with problem size (for Dense 
Matrix, and N-boy problems): 
so weak scaling is better than 
strong scaling 

 Caching reduces memory 
accesses  Increases 
arithmetic intensity 
 loop unrolling 
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Benchmarking 4 multicores 
  Examine 4 multicore systems for two kernels of 

the design patterns: sparse matrix and structured 
grid. All dual socket systems. 
 (a) Intel Xeon  e5345 (Clovertown) : 8 cores 
 (b) AMD Opteron X4 2356 (Barcleona): 8 cores 
 (c) Sun UltraSPARC T2 5140 (Niagara 2): 16 cores 
 (d) IBM Cell QS20: 16 cores 

§7.11 R
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Xeon e5345 (Clovertown) 

FSB: a weak link 

Core: 2.33 GHz 

Two dual-core  
chips per socket 

Peak performance: 75 GFLOPS, which cacn be obtained  
at arithmetic intensity of 8 or more 
Dual FSBs interfere each other  yield relatively low memory BW to programs 
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Opteron X4 2356 (Barcelona) 

A quad-core chip per socket. Each core: 2.30 GHz 
Peak performance: 74 GFLOPS,  
Ridge point is at an arithmetic intensity of 5 FLOPS/byte 
Two sockets communicates through Hypertransport links  
     glueless multichip systems 
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UltraSPARC T2 5140 (Niagara 2) 

8 relatively simple cores per chip. Each core: 1.17 GHz 
Fine-grained multithreading with 8 thread per core 
A chip has 4 memory controllers, but  two of them are connected to join two T2 chips 
Peak performance: 22 GFLOPS,  
The ridge point is an very low arithmetic intensity of 1/3 FLOPS/byte 
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IBM Cell QS20 

It is a heterogeneous design: one PowerPC core and 8 SPEs with SIMD-like ISA 
An SPE with 256K local memory loads/stores data from/to main memory  with DMA 
 tow chips are connected via dedicated links. A core operates at 3.2 GHz and uses  
XDR DRAMs chips with high BW and low capacity.  Peak double precision performance 
of SPEs is 29 GFLOPS. The ridge point  is an low arithmetic intensity of 3/4 FLOPS/byte. 
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Memory systems 
  They have very different approaches to the 

memory system.  
 (a) Intel Xeon  e5345 (Clovertown) : each core has an L1 cache.  

Each pair of cores shares an L2 cache. They are connected 
through a shared memory controller. 

 (b) AMD Opteron X4 2356 (Barcleona):  has a separate memory 
controller and memory per chip. Each core has private L1 and L2 
caches. 

 (c) Sun UltraSPARC T2 5140 (Niagara 2):  has a on-chip memory 
controller and 4 separate DRAM channels per chip. 8 Cores shares 
the L2 cache with 4 banks 

 (d) IBM Cell QS20: local private memory to SPE and DMA between 
the local memory and  DRAM.  

 In (c) and (d): many memory accesses in flight are sustained with 
many cores and  multithreading/DMA 
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And Their Rooflines 
Kernels 

 SpMV: sparse vector 
multiply (left) 

 LBHMD: Lattice-
Boltzmann Magneto-
Hydrodynamics (right) 

Some optimizations 
change arithmetic 
intensity 

 x86 systems have 
higher peak GFLOPs 
 But harder to achieve, 

given memory bandwidth 
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And Their Rooflines 
Note the ridge points for the four microprocessors 

intersect the X-axis at the arithmetic intensities of 8, 5, 1/3, 
and 3/4, respectively.  

The dashed vertical lines are for the two kernels of this 
section and the stars mark the performance achieved for 
these kernels after all the optimizations.  

SpMV is the pair of dashed vertical lines on the left. It has 
two lines because its arithmetic intensity improved from 
0.166 to 0.255 based on register blocking optimizations.  
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And Their Rooflines 

LBMHD is the dashed vertical lines on the right. It has a 
pair of lines in (a) and (b) because a cache optimization 
skips filling the cache block on a miss when the processor 
would write new data into the entire block.  

That optimization increases the arithmetic intensity from 
0.70 to 1.07.  

 It’s a single line in (c) at 0.70 because UltraSPARC T2 
does not offer the cache optimization.  

 It is a single line at 1.07 in (d) because Cell has local store 
loaded by DMA, so the program doesn’t fetch 
unnecessary data as do caches. 
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Performance on SpMV 
 Sparse matrix/vector multiply 

 Irregular memory accesses, memory bound 
 Arithmetic intensity 

 0.166 before memory optimization, 0.25 after 
 Xeon vs. Opteron 

 Similar peaks: 75 FLOPS 
 Xeon limited by shared FSBs 

and chipset 

 UltraSPARC/Cell vs. x86 
 20 – 30 vs. 75 peak GFLOPs 
 More cores and memory 

bandwidth 

 All scales well except Xeon 
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Performance on LBMHD 
 Fluid dynamics: structured grid over time steps 

 Each point: 75 FP read/write, 1300 FP ops 
 Arithmetic intensity 

 0.70 before optimization, 1.07 after 

 Opteron vs. UltraSPARC 
 More powerful cores, not 

limited by memory bandwidth 

 Xeon vs. others 
 Still suffers from memory 

bottlenecks 
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Achieving Performance 
 Compare naïve vs. optimized code 

 If naïve code performs well, it’s easier to write 
high performance code for the system 

System Kernel Naïve 
GFLOPs/sec 

Optimized 
GFLOPs/sec 

Naïve as % of 
optimized 

Intel Xeon SpMV 
LBMHD 

1.0 
4.6 

1.5 
5.6 

64% 
82% 

AMD 
Opteron X4 

SpMV 
LBMHD 

1.4 
7.1 

3.6 
14.1 

38% 
50% 

Sun UltraSPARC 
T2 

SpMV 
LBMHD 

3.5 
9.7 

4.1 
10.5 

86% 
93% 

IBM Cell QS20 SpMV 
LBMHD 

Naïve code 
not feasible 

6.4 
16.7 

0% 
0% 
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