8 Symmetric Matrices

8.1 Properties of Symmetric matrix

We know that an $\mathrm{n} \times \mathrm{n}$ symmetric matrix A has only real eigenvalues.

$$
\left.\frac{(A-\lambda I}{\text { real }}\right) x=0
$$

so the eigenvectors are also real.They are, in fact, perpendicular.

Example .

(symmetric)

$$
\left.\begin{array}{ll}
\cdot A=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right] \text { has an orthonormal basis of eigenvectors } & \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \begin{array}{l}
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
\\
\\
\cdot A=\lambda_{1}=8
\end{array} \rightarrow \lambda_{2}=2 \\
1 & 1
\end{array}\right] \text { has an orthonormal basis of eigenvectors } \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

(Not symmetric)

$$
\mathrm{A}=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right] \text { has only one eigenvector }\left[\begin{array}{l}
c \\
0
\end{array}\right]
$$

Theorem An $n \times n$ real symmetric matrix has an orthonormal basis of eigenvector for \mathbb{R}^{n}

$$
\Uparrow \mathrm{x}_{i}^{\mathrm{T}} \mathrm{x}_{j}=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array}\right.
$$

Partial Proof

(Eigenvectors of a real sym.matrix corresponding to different eigenvalues are perpendicular)

> Let $\quad \mathrm{Ax}=\lambda_{1} \mathrm{x}, \quad \mathrm{Ay}=\lambda_{2} \mathrm{y}, \quad \lambda_{1} \neq \lambda_{2}, \quad \mathrm{~A}=\mathrm{A}^{\mathrm{T}}$.
> Then $\quad\left(\lambda_{1} x\right)^{T} y=(A x)^{T}=x^{T} A^{T} y=x^{T} A y=x^{T} \lambda_{2} y$
> $\lambda_{1} x^{1 /}{ }^{T}$
> $\lambda_{2} \mathrm{x}^{\mathrm{T}} \mathrm{y}$.
> $\lambda_{1} \neq \lambda_{2} \quad \Rightarrow \mathrm{x}^{\mathrm{T}} \mathrm{y}=0!!$

Recall Diagonalization $\mathrm{A}=\mathrm{X} \Lambda \mathrm{X}^{-1}$
For a symmetric matrix A,

Construct X using n orthonormal eigenvectors.
Then

$$
\begin{gathered}
\mathrm{X}^{\mathrm{T}} \mathrm{X}=\left[\begin{array}{ccc}
-- & x_{1}^{\mathrm{T}} & -- \\
& \vdots & \\
-- & x_{n}^{\mathrm{T}} & --
\end{array}\right]\left[\begin{array}{ccc}
\mid & & \mid \\
x_{1} & \cdots & x_{n} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 \cdots & 0 \\
& \ddots & \\
& & 1
\end{array}\right]=I . \\
\therefore \quad \mathrm{X}^{-1}=\mathrm{X}^{\mathrm{T}}
\end{gathered}
$$

Theorem [Spectral Theorem or Principal Axis Theorem]

Every symmetric matrix has the factorization $\mathbf{A}=\mathbf{X} \Lambda \mathbf{X}^{\mathrm{T}}$ with real eigenvalues in Λ and orthonormal eigenvectors in X.

- Consider a quadratic form then,

$$
\begin{gathered}
q=\mathrm{x}^{\mathrm{T}} \mathrm{X} \Lambda \mathrm{X}^{\mathrm{T}} \mathrm{x} \\
\text { set } \mathrm{y}=\mathrm{X}^{\mathrm{T}} \mathrm{X} . \quad \text { Then } \mathrm{x}=\mathrm{X} \mathrm{y}, \quad \text { and } \mathrm{x}^{\mathrm{T}} \mathrm{X}=\mathrm{y}^{\mathrm{T}} \\
\therefore q=\mathrm{y}^{\mathrm{T}} \Lambda \mathrm{y}=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \quad \leftarrow(\text { This is called the principal axis form })
\end{gathered}
$$

Example . Find the axes of the tilted ellipse

$$
\begin{aligned}
& 5 x_{1}^{2}+8 x_{1} x_{2}+5 x_{2}^{2}=1 \\
& \text { " } \\
& q=\mathrm{x}^{\mathrm{T}} \mathrm{Ax} \quad \text { where } \mathrm{A}=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]
\end{aligned}
$$

The eigenvalues of A :

$$
\lambda_{1}=9, \lambda_{2}=1 \quad \Rightarrow \quad \Lambda=\left[\begin{array}{ll}
9 & \\
& 1
\end{array}\right]
$$

Corresponding eigenvectors :

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \Rightarrow \quad \mathrm{X}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Set

$$
\mathrm{y}=\mathrm{X}^{\mathrm{T}} \mathrm{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\Rightarrow \quad y_{1}=\frac{1}{\sqrt{2}}\left(x_{1}+x_{2}\right), \quad y_{2}=\frac{1}{\sqrt{2}}\left(x_{1}-x_{2}\right)
$$

And

$$
\begin{aligned}
q & =9\left(\frac{x_{1}+x_{2}}{\sqrt{2}}\right)^{2}+\left(\frac{x_{1}-x_{2}}{\sqrt{2}}\right)^{2} \\
& =\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}
\end{aligned}
$$

This example shows why the previous theorem is called the principal axis theorem.

8.2 Positive Definite Matrices

Note In the above example, for any nonzero vector $\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$,

$$
q=\mathrm{x}^{\mathrm{T}} \mathrm{Ax}=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2} \quad>0
$$

Such a matrix A is called positive definite. (Strang, page331)

Definition A symmetric matrix A is positive definite if $\mathrm{x}^{\mathrm{T}} \mathbf{A x}>0$ for every nonzero vector x .

Recall

$$
q=\mathrm{x}^{\mathrm{T}} \mathrm{Ax}=\sum_{i=1}^{n} y_{i}^{2} \lambda_{i} \quad \text { where } \lambda_{1}, \cdots, \lambda_{n} \text { are eigenvalues of } \mathrm{A} .
$$

- Suppose that $\lambda_{k} \leq 0$. Then for $\mathrm{y}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right] \leftarrow k^{t h}$,
$q=\lambda_{k} \leq 0 . \quad$ Thus, there exists a nonzero vector $\mathrm{x}=\mathrm{Xy}$ s.t. $q \leq 0$. -If all $\lambda_{i}>$, then $q>0$ for every nonzero x.

Therefore we have the following theorem :
Theorem A: $\mathrm{n} \times \mathrm{n}$ symmetric matrix. Then,
All n eigenvalues are positive
$\mathrm{x}^{\mathrm{T}} \mathbf{A x}>0$ except at $\mathrm{x}=0$ (A is positive definite).
$\underline{2 \times 2 \text { case }} \quad \mathrm{A}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right], \quad$ when is A positive definite?

$$
|\mathrm{A}-\lambda \mathrm{I}|=(a-\lambda)(c-\lambda)-b^{2}=\lambda^{2}-(a+c) \lambda+a c-b^{2}=0
$$

- If $\lambda_{1}, \lambda_{2}>0, \quad \begin{gathered}\lambda_{1}+\lambda_{2}=a+c>0 \\ \lambda_{1} \lambda_{2}=a c-b^{2}>0\end{gathered}$

If $a>0$ and $c \leq 0, \quad$ then $a c-b^{2} \leq 0$
If $a \leq 0$ and $c>0, \quad$ then $a c-b^{2} \leq 0$
Therefore, we have $a>0, c>0$ and $a c-b^{2}>0$

- Now, suppose $\underline{a>0}$ and $a c-b^{2}>0$
1×1 upperleft $\quad 2 \times 2$ determinant determinant

This foces $c>0$

$$
\begin{gathered}
\Rightarrow \quad \lambda_{1}+\lambda_{2}>0, \quad \lambda_{1} \lambda_{2}>0 \\
\therefore \lambda_{1}, \lambda_{2}>0
\end{gathered}
$$

$$
\begin{aligned}
& \cdot \mathrm{x}^{\mathrm{T}} \mathrm{Ax}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2} \\
& =a\left(x_{1}+\frac{b}{a} x_{2}\right)^{2}+\left(\frac{a c-b^{2}}{a}\right) x_{2}^{2} \\
& =\left[\begin{array}{ll}
x_{1}+\frac{b}{a} x_{2} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
a & \\
& \frac{a c-b^{2}}{a}
\end{array}\right]\left[\begin{array}{c}
x_{1}+\frac{b}{a} x_{2} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\frac{b}{a} & 1
\end{array}\right]\left[\begin{array}{ll}
a & \\
& \frac{a c-b^{2}}{a}
\end{array}\right]\left[\begin{array}{ll}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\mathrm{x}^{\mathrm{T}} \mathrm{LDL}^{\mathrm{T}} \mathrm{x}
\end{aligned}
$$

Recall the factorization of a symmetric matrix $\mathrm{A}=\mathrm{LDL}^{\mathrm{T}}$
D contains the diagonal elements of the upper triangular matrix, and they are pivots!

$$
\begin{aligned}
& \text { 户 first pivot (if } a>0 \text {) } \\
& {\left[\begin{array}{lc}
a & b \\
b & c
\end{array}\right] \quad \longrightarrow \quad\left[\begin{array}{cc}
a & b \\
0 & \underline{c-\frac{b}{a} b}
\end{array}\right]}
\end{aligned}
$$

second pivot
Thus, $\mathrm{x}^{\mathrm{T}} \mathrm{Ax}>0$ except at $\mathrm{x}=0$ mean positive pivots and vice versa.
The above analysis holds for $\mathrm{n} \times \mathrm{n}$ symmetric matrices.

Theorem For an $\mathbf{n} \times \mathbf{n}$ symmetric matrix \mathbf{A}, the following are equivalent.

1. All n eigenvalues are positive.
2. All n upperleft determinants are positive.
3. All n pivots are positive.
4. $x^{T} A x>0$ except at $x=0$. (A is positive definite)

- Suppose A is positive definite. Then,
(i) $x^{T} A x=1$ is an ellipse.

$$
\left(x^{T} A x=y^{T} \Lambda y=1\right)
$$

(ii) the quadratic function

$$
f(x)=\mathrm{x}^{\mathrm{T}} \mathrm{~A} \mathrm{x}
$$

has a minimum at $\mathrm{x}=0$.

