Computer Aided Ship Design Lecture Note

Computer Aided Ship Design

Part I. Optimization Method Ch. 1 Overview of Optimal Design

September, 2013 Prof. Myung-Il Roh

Department of Naval Architecture and Ocean Engineering, Seoul National University of College of Engineering

Computer Aided Ship Design, I-1. Overview of Optimal Design, Fall 2013, Myung-Il Roh

Ch. 1 Overview of Optimal Design

Computer Aided Ship Design, I-1. Overview of Optimal Design, Fall 2013, Myung-Il Roh

Indeterminate and Determinate Problems (1/2)

Variables: x_1, x_2, x_3

Equation: $x_1 + x_2 + x_3 = 3$

- ✓ Number of variables: 3
- ✓ Number of equations: 1

Because the number of variables is larger than that of equations, this problem forms an indeterminate system.

Solution for the indeterminate problem:

We assume <u>two</u> unknown variables Number of variables(3) - Number of equations(1) Example) assume that $x_1 = 1, x_2 = 0$ $\Rightarrow x_3 = 2$ **Equation of straight line**

 $y = a_0 + a_1 x$ Where a_0, a_1 are given.

- \checkmark Number of variables: 2 x, y
- ✓ Number of equations: 1
- \square We can get the value of y by assuming x.

Finding intersection point (x^*, y^*) of two straight lines

$$y = a_0 + a_1 x$$
 Where a_0, a_1, b_0, b_1 are given.

$$y = b_0 + b_1 x$$

- \checkmark Number of variables: 2 *x*, *y*
- ✓ Number of equations: 2

Because the number of variables is equals to that of equations, this problem forms an determinate system.

3

Indeterminate and Determinate Problems (2/2)

Determinate problem

Variables: x_1, x_2, x_3 Equations: $f_1(x_1, x_2, x_3)=0$ $f_2(x_1, x_2, x_3)=0$ $f_3(x_1, x_2, x_3)=0$

- If f_1, f_2 , and f_3 are linearly independent,
 - ✓ Number of variables: 3
 - ✓ Number of equations: 3

Since the number of equations is equal to that of variables, this problem can be solved.

What happens if $2 \times f_3 = f_2$? Then f_2 and f_3 are linearly dependent. Since the number of equations, which are linearly independent, is less than that of variables, this problem forms an indeterminate system.

Indeterminate problem

```
Variables: x_1, x_2, x_3
Equations: f_1(x_1, x_2, x_3)=0
             f_2(x_1, x_2, x_3)=0
             f_3(x_1, x_2, x_3)=0
```

If f_1 and f_2 are only linearly independent, then

 \checkmark Number of variables: 3

 \checkmark Number of equations: 2

Since the number of equations is less than that of variables, one equation should be added to solve this problem.

Added Equation Solution $f_4^1 = 0$ (x_1^1, x_2^1, x_3^1) solutions by assuming

We can obtain many sets of $f_4^2 = 0$ (x_1^2, x_2^2, x_3^2) different equations. Indeterminate problem

We need a certain criteria to determine the proper solution. By adding the criteria, this problem can be formulated as an optimization problem.

Example of a Design Problem

Esthetic* Design of a Dress

Find(Design variables)

- Size, material, color, etc.

Constraints

- There are some requirements, but it is difficult to formulate them.
- By using the sense of a designer, the requirements are satisfied.

Objective function(Criteria to determine the proper design variables)

- There are many design alternatives.
- Among them, we should select the best one. How?
- Criteria: Preference, cost, etc.
- It is difficult to formulate the objective function.

Indeterminate, optimization problem

Mathematical Model for Determination of the Principal Dimensions(L, B, D, T, C_B) of a Ship(Summary)

- "Conceptual Ship Design Equation"

Physical constraint

→ Displacement - Weight equilibrium (Weight equation) – Equality constraint $L \cdot B \cdot T \cdot C_B \cdot \rho_{sw} \cdot C_{\alpha} = DWT_{given} + LWT(L, B, D, C_B)$ $= DWT_{given} + C_s \cdot L^{1.6}(B+D) + C_o \cdot L \cdot B$ $+C_{nower} \cdot (L \cdot B \cdot T \cdot C_R)^{2/3} \cdot V^3 \cdots (2.3)$

Economical constraints(Owner's requirements)

→ Required cargo hold capacity (Volume equation) - Equality constraint $V_{H reg} = C_H \cdot L \cdot B \cdot D \cdots (3.1)$

Regulatory constraint

→ Freeboard regulation(1966 ICLL) - Inequality constraint

$$D \ge T + C_{FB} \cdot D \cdots (4)$$

Objective function(Criteria to determine the proper principal dimensions)

- DFOC(Daily Fuel Oil Consumption) : It is related with the resistance and propulsion.
- Delivery date : It is related with the shipbuilding process.

Min.Roll Period :*e.g.*

$$T_R \ge 12 \text{ sec}.....(6)$$

Stability regulation(MARPOL, SOLAS, ICLL)

 $GM \geq GM_{\text{Required}} \cdots (5)$

 $GZ \ge GZ_{\text{Reauired}}$ Building Cost = $C_{PS} \cdot C_s \cdot L^{1.6} (B+D) + C_{PO} \cdot C_o \cdot L \cdot B + C_{PM} \cdot C_{power} \cdot (L \cdot B \cdot T \cdot C_B)^{2/3} \cdot V^3$

4 variables(L, B, D, C_B), 2 equality constraints((2.3), (3.1)), 3 inequality constraints((4), (5), (6)) Optimization problem

Determination of the Optimal Principal Dimensions of a Ship

Characteristics of the constraint

- ✓ <u>Physical constraints are</u> usually formulated as <u>equality constraints</u>. (Example of ship design: Weight equation)
- ✓ <u>Economical constraints, regulatory constraints</u>, and constraints related with <u>politics and culture</u> are formulated as <u>inequality constraints</u>.

(Example of ship design: Required cargo hold capacity(Volume equation), Freeboard regulation(1966 ICLL))

Classification of Optimization Problems and Optimization Methods

	Unconstrained optimization		Constrained optimization problem		
	Linear Nonlinear		Linear	Nonlinear	
Objective function (example)	$\begin{array}{l} \text{Minimize } f(\mathbf{x}) \\ f(\mathbf{x}) = x_1 + 2x_2 \end{array}$	Minimize $f(\mathbf{x})$ $f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$	$\begin{array}{l} \text{Minimize } f(\mathbf{x}) \\ f(\mathbf{x}) = x_1 + 2x_2 \end{array}$	Minimize $f(\mathbf{x})$ $f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$	Minimize $f(\mathbf{x})$ $f(\mathbf{x}) = x_1^2 + x_2^2 - 3x_1x_2$
Constraint (example)	None	None	$h(\mathbf{x}) = x_1 + 5x_2 = 0$ $g(\mathbf{x}) = -x_1 \le 0$	$h(\mathbf{x}) = x_1 + 5x_2 = 0$ $g(\mathbf{x}) = -x_1 \le 0$	$g_1(\mathbf{x}) = \frac{1}{6}x_1^2 + \frac{1}{6}x_2^2 - 1.0 \le 0$ $g_2(\mathbf{x}) = -x_1 \le 0$
Optimization methods for continuous value	 Direct search method Hooke & Jeeves method Nelder & Mead method Gradient method Steepest descent method Conjugate gradient method Newton method Davidon-Fletcher-Powell(DFP) method Broyden-Fletcher-Goldfarb- Shanno(BFGS) method 		Linear programming (LP) method is usually used.	Penalty Function Method : Converting the constrained optimization problem to the unconstrained optimization problem by using the penalty function, the problem can be solved using unconstrained optimization method.	
			Simplex Method (Linear programming)	Quadratic programming(QP) method	SLP(Sequential Linear Programming) First, linearize the nonlinear problem and then obtain the solution to this linear approximation problem using the linear programming method. And ,then, repeat the linearization
					Sequential Quadratic Programming(SQP) method First, approximate a quadratic objective function and linear constraints, find the search direction and then obtain the solution to this quadratic programming problem in this direction. And ,then, repeat the approximation
Optimization methods for discrete value	Integer programming: ① Cut algorithm ② Enumeration algorithm ③ Constructive algorithm				
Heuristic optimization	Genetic algorithm(GA), Ant algorithm, Simulated annealing, etc.				