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3.1 Gradient Method

1. Steepest Descent Method

2. Conjugate Gradient Method

3. Newton’'s Method

4. Davidon-Fletcher-Powell(DFP) Method

5. Broyden-Fletcher-Goldfarb-Shanno(BFGS)
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3.1 Gradient Method
1. Steepest Descent Method (1/6)

= Step 1: The search direction(d) is taken as the negative of the gradient of the objective function(y) at
current iteration since the objective function decrease mostly rapidly.

= The direction of gradient vector of /', V/(x), is the direction of maximum increase of /at x

Search direction — —C = —Vf(x)

Ref) Appendix A.1:
Directional Derivative & Gradient Vector

= Step 2: Iterate successively to find the optimum design point.

Ex) Minimize the objective function
X2

F (X1,X2)
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3.1 Gradient Method
1. Steepest Descent Method (2/6): Example

M By using the steepest descent method, find the minimum design
point for the following function of 2-variables.

Given: Starting design point x@ = (0, 0), convergence tolerance ¢ = 0.001

Find: x@, x(
« . . ) » = Optimization problem with
Minimize f(x1 ) xz) =X, —X, +2X; +2X,X, + X3 two unknown variables
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3.1 Gradient Method
1. Steepest Descent Method (3/6): Example

o o e 2 2 . . )
Minimize f(x,,x,) =x, —x, +2x; +2x,X, + X, Starting design point x= (0, 0)
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14+ 4x, +2x, ;TO minimize f(x""),
VIi(x)=Vf(x,x,)= R N _
f( ) f( 1 2) —1+2x1+2x2 Idf(x())i 90 = 410 .‘.X(l):( lj
. da ] :
B 1st Iteration: Find x" ch How can we differentiate f with respectto o/ ?
Vi) = v 0) (1+4x +2x, 1 )¢ X,
0) \-1+2x+2x,) (—1): 2

X(l) — X(O) . a(O)Vf(X(O)) 15 : Q ]
: [ 0
— 0 — o I — « Replacing " to a forE d) X ]
0 —1 a convenience I

Substituting x" =(-,a) into the objective :
function . O )
&M =—a-a+2a’-2a’+a’ : : X

—a’ -2«




3.1 Gradient Method
1. Steepest Descent Method (4/6): Example

Minimize f(x,,x,)=x, —x, + 2)612 +2x,x, + x22 Starting design point x( = (0, 0)

m 2nd Iteration° Find x**

O 1+4x1+2x2 —1
V)= Vf C142x +2x,) |1

— (_ IJ _ 0!(_ IJ — ( I+ 0[) Replacing a to a for \
1 _1 1+ o convenience 15 _
I X 2)
[ I
Substituting x* =(-1+a,1+ ) into the objective 11 x5 _
function [
(2)y — 2 I
f(x)=5" -2a -1 05|
To minimize f(x*), 05
[ (0)
df (x** \ X
it ):10a—2:0 —> a=0.2 [
da 05y
1.2 -1L .



3.1 Gradient Method
1. Steepest Descent Method (5/6): Example

Minimize f(x,,x,)=x, —x, + 2)612 +2x,x, + x22 Starting design point x( = (0, 0)

m 39 Iteration: Find x©*
2 0.8) (1+4x+2x, ) (02
VI (x*)=Vf = =
1.2 —1+2x, +2x, —0.2

x@ = x@ _g®Ovrx?)
X7

-0.8 0.2 —-0.8-0.2c 2y N
= — — Replacing oV |
1.2 —-0.2 1.2+02a )to & for

convenience 19

Substituting x” =(-0.8-0.2¢,1.2+0.2a) into the 1 |
objective function
f(x?)=0.040> —0.08cx —1.2 05|
To minimize 1 (x"?), 05

(3)
YT 0 080-0.08=0 — a=1.0 :
da 05|

x| |
1.4 -1L




3.1 Gradient Method
1. Steepest Descent Method (6/6): Example

o o e 2 2 . . )
Minimize f(x,,x,) =x, —x, +2x; +2x,X, + X, Starting design point x= (0, 0)

B 4t Jteration: Find the minimum design point.
To obtain the minimum design point, we have to iterate.

If [x“"-x*“|<s, then stop the iterative process because x¢*) can be

assumed as the minimum design point.
X2

2[..r. —T T T T T
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[Reference] Differentiation of Function of x with Respect to
the Another Variable

2 2 . . )
Minimize f (x1 , xz) =X, —X,+2Xx +2x,x,+Xx, Startingdesign point x= (0, 0)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII LA R R RLEEREEREEEREEEREENEERRLERRRNERNEERREEREALELERERERRERRERENNN]
u

ﬁf(xl,xz) = f(x) : f is the function of x.
xD = (—a’ 05) : x is the function of a
» Substituting x ® into f, f is, then, a

function of a and can be differentiated with
respecttoa.

In the similar way, we can consider the followings:

To minimize f(x +Ax),
The second-order Taylor series expansion of /(x +Ax)
f(xX +Ax) = f(x )+c Ax +%AXTH(X*) Ax
1 _
Substituting| x = (-a,e)tinto the objective PO+ A% — F(x) T Ax+ LAXTH(X) Ax
function : 2
f(X(l)) ——a—-a+2a’-2a’+a’ = | Inthe above equation, we assume that
E x* is a constant and Ax is a variable.
= a2 -2 E f(Ax) = CTAX-F%AXTH(X*) AX
: | To minimize £,
To m|n|m|zef(x(”) : s
_________ . df (AX) .
1 (1) : _1 n =C+H(X)AX=O
Ldf (x) C o) _ - dAx
:—;2—2 0 > a=1.0 SXT = . .
L, 2% ] I . = H(x ) Ax=-
°<) How can we differentiate f with respectto 7‘ = AX :_I_igx_)_ c JI ‘Newton’s method’
. 10




3.1 Gradient Method
2. Con'lugate Gradient Method (1/5)

M This method requires only a simple modification to the
steepest descent method and dramatically improves the
convergence rate of the optimization process.

M The current steepest descent direction is modified by
adding a scaled direction used in the previous iteration.

B Step 1 : Estimate a starting design point as x. Set the iteration
counter k=0. Also, specify a tolerance ¢ for stopping criterion.
Calculate

d(O) — _c(O) — —Vf(X(O))

Check stopping criterion. If |c¢”|<z, then stop. Otherwise, go
to Step 4.

It is noted that Step 1 of the conjugate gradient method and
steepest descent method is the same.

P P2 SYstem
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3.1 Gradient Method
2. Con'lugate Gradient Method (2/5)

B Step 2 : Compute the gradient of the objective function as ¢ =vf(x*).
If |c*|<&, then stop; otherwise continue.

B Step 3 : Calculate the new search direction as

A= (e ”H>

The current search direction is calculated by adding a scaled direction used in the previous iteration.

B Step 4 : Compute a step size =«, to minimize f(x"“ +ad"").

B Step 5 : Change the design point as follows, then set r=t+1 and go

ep 2.
to Step LD 2 () +05kd(k)

5 g b?SYstem
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3.1 Gradient Method
2. Conjugate Gradient Method (3/5) : Example

o o e 2 2 : : :
Minimize f(Xl, xz) =X, — X, T 2x1 + 2x1x2 + X, Starting design point x(% = (0, 0)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll S EEE I NN NN I NN EEEEE NN NN NN NN NN NN EEE NN NN NN EEEEEEEE

1+4x +2x ! To minimize f(x"),
Vf(X) = Vf (x,,x,) = o :
—1+4+2x, + 2x, dr (x")
. . 0 : =2a0-2=0 - a=1.0
M 1st Iteration: Find x :  da 1
O E ote: Step 1 of the conjugate gradient metho ) M —
d(O) = —C(O) — _vf(X(O)) — _vf( j E zln:I s.tzfapee;t Jt::cent nie?hct:d?s t(Ii1e s:ame.th ‘ X (1 )
1+4x, +2x, 1 -1\ : \
o =1+2x +2x,)  (-1) L1 15 Q |
: 1 D
(1) _ (0 (0) : : X !
XU =x"+ad Replacing &, to @ for: '
0 —1 —( \ convenience . \
— +a — : 05}
(Oj ( 1 j ( o j : :
Substituting x” = (-a,«) into the objective 0} (0)
function : : X
& =-a-a+2a’-2a’ +a’ : 05
=a’-2a y \



3.1 Gradient Method

2. Con'lugate Gradient Method (4/5): Examele

o o e 2 2
Minimize f (x,,Xx,) =x, —x, +2x; +2x,x, + X,

m 2nd Jteration-Find x* X :Clj
Compute the gradient of the objective function as
e = Vf(x(l)) d© = —Vf(x(o)) _ [_ j
_ Vf(_lj _ ( 1+4x, +2x, j _ (—1) d® = —¢® 1 g g%y
1 —14+2x, +2x, —1 B, = (Hch)H/Hc(’f—UH)2

Calculate the new search direction as

Vf(x(l)
d(l) _ _c(l) +ﬂld(0) _ _c(l) + . d(O)

vr(x®)
SHEH
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3.1 Gradient Method
2. Conjugate Gradient Method (5/5): Example

o o e 2 2
Minimize f (x,,Xx,) =x, —x, +2x; +2x,x, + X,

x D = x® 4 g q®

x? = x4 Olld(l)

—1 0 —1 . . xV = -1 d? = 0
— + — Replacing &, to ¢ for convenience 1 2

1 2 1+ 2
1+4x, +2x,
Substituting x” =(-11+2«) into the objective function Vi) =Vf (xl,x2)=(_1+2x] +2x,
X
I ) \
To minimize 7 (x""), 15|
d X(2) [ 1)
J( )=8a—2=0 — a=0.25 n X
da 1 *
1.5 05

. .. —Minimum design point |
Check stopping criterion. [

e = Vf(x(z)) _ Vf(l—;j _ (Oj 0 x(©

0 05|

|c¢?|=0<& —Stop!
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3.1 Gradient Method
3. Newton’'s Method (1)

Given: f(x)

Find: x* which minimizes /' (x)

ﬂx(k+1))

Assume that f{x) has minimum at x“*" =x + Ax“,

Consider the quadratic approximation of the
function f(x) at x=x® using the second-order Taylor

expansion.

P+ AR = f(x (k))+df(x ) Axh) ;d ];ix(k))(Ax(k))2+0 (k)))3

In this equation, x® is a constant and Ax'"is a variable. So,
the following equation is a quadratic function in terms of Ax”)

1 d f(x( ))( (k))

2 dx’

Differentiate this equation with respect to Ax

FGO+ &) &), ESET) ) o) _ > tor mmemamionortie
dAX(k) dx dxz function

£ +Ax(k>):f(x(k>)+df(x )Ax (k)
dx

Calculate the small change Ax" in design.

Axh) [_ df(x(“)j / (deozc““)j
dx dx

NO

k=k+1

YES

Set x = x"*

and stop the iteration. 16




3.1 Gradient Method

3. Newton’'s Method (2/9): Examp|E Assume that f{x) has minimum at x" =x© + Ax?.

/Given: f(x)= xt=2x+2

-

Starting design point x(© =3
Find: x* which minimizes 1 (x) y

N

fix) k=0

fix)

Consider the quadratic approximation of the
function f{x) at x=x(¥ using the second-order Taylor
expansion.

df (x¥ 1 d? f(x” 2
f(x(o)+Ax(o))=f(x(0))+ fi’x )AX(O)-l_E ];)(CZ )(AX(O))

\/

In this equation, x© is a constant and Ax”is a variable. So,
the following equation is a quadratic function in terms of Ax'".

FEO+ A = (V) + &) Ax© 4+ lw( Ar® )2

dx 2 dx’
Differentiate this equation with respect to Ax©,
HED+ AT _ ) &GP )0 - g ormmmsionorns
dA)C(O) dx de function
\/

Calculate the small change Ax'” in design.

A® (_ df(x("))j /£d2f<x<°>>)

dx dx?
=(2x+ 2)}623 / (2))623 =2

k=k+1
=0+1=1

NO

t‘“%% §TSYsiem
T
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3.1 Gradient Method
3. Newton’'s Method (3/9): Example

/Given: f(x):x2—2x+2 h

Starting design point x(© =3

\Find: x* which minimizes 1 (x) y

Assume that f{x) has minimum at x@ =x® + Ax" .

Consider the quadratic approximation of the
function f{(x) at x=x(¥ using the second-order Taylor

expansion.

f(x(l) +Ax(1)) fx (1))+ df(x(l))Ax(l) 1 d f(x(l))(Axa))

2 dx’

v

In this equation, x( is a constant and Ax")is a variable. So,
the following equation is a quadratic function in terms of At

() )
7+ aa) = £+ L D) 04 LS ()

Differentiate this equatlon with respect to Ax'".

fix)

L s

1) 1) 1) 1) The necessary condition
df(x + Ax ) df(x ) d f(x )Ax(l) —> for minimization of this
dAx(l) dx dx2 function
\/

Calculate the small change Ax"" in design.

A [_ df(x(”)] / [d2f<x<“>]

dx dx?
= (—Zx + 2)x:1 /(2)x:1 =0

Is it possible to find the x* which minimizes a

cubic function at once?

YES

Set x* = x®@

and stop the iteration. 18




3.1 Gradient Method

3. Newton’s Method (4/9): ExampIEe Assume that f{x) has minimum at x =x* + Ax” |
¢

Is it possible to find the x* which
minimizes a cubic function at once?

Given: f(x) = x—=3x* +2x
Starting design point x(© =3
Find: x* which minimizes 1'(x)

fix®)

Coy

)

k=0

Consider the quadratic approximation of the
function f{x) at x=x(? using the second-order Taylor

expansion. o
160+ 860 = 20+ LCD o LETCT) )(M(°))2+(M3

v

In this equation, x© is a constant and Ax” is a variable. So,
the following equation is a quadratic function in terms of Ax*.

£+ AXO) = £+ df (x") A® 4 L9 ) ( M(O))Z

dx 2 dx’
Differentiate this equation with respect to Ax©,
O+ M) A (V) | dESG) y 0 _ s T condion
dAx(O) dx dxz function
Vi

Calculate the small change Ax'” in design.

A [_ df(x“”)] /(dzf(x“”)j

\/ ) — ZL X dx dx’ .
12 _ 2 _
=(-3x"+6x-2) /(6x-6) _, = 5
k=k+1 "o

=0+1=1

‘%3 bTSYsiem
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3.1 Gradient Method
3. Newton’s Method (5/9): Examplf i Assume that f{x) has minimum at x® =x +Ax¥ .
¢ : .

Is it possible to find the x* which
minimizes a cubic function at once?

Given: f(x) = x—=3x* +2x
Starting design point x(© =3
Find: x* which minimizes 1'(x)

k=1

)

L x® =3

| \/ 0 =2.083
x® =170

»
|

Consider the quadratic approximation of the
function f{x) at x=x(¥ using the second-order Taylor

expansion.
60+ Ay = £(xD) + df(x(l)) (1)+ld2f(x(l)) <1>))3
2 dx

v/

(M"Y +0

In this equation, x( is a constant and Ax" is a variable. So,
the following equation is a quadratic function in terms of Ax'".

df (x") 1d'f(x") 2
() MY — £(+D (1) (1)
f(x + Ax )—f(x )+7A)€ +57(Ax )
Differentiate this equation with respect to Aoty
df(x(l) +Ax(l)) df(x(l)) d f(x(l)) A =
dAx" dx dx’

The necessary condition
—> for minimization of this
function

Calculate the small change Ax"" in design.

AxD = _df(x"") / d’ f(x")
dx’

dx
=(-3x" +6x-2) ,5/(6x—6) 25 =—0.388
12

x=——
12

Why is it not possible to k=k+1
find the x* which minimizes . _
a cubic function at once? =1+1=2

NO

Since the second-order Taylor expansion is just an approximation for f{(x) at the point x(¥ or x(,
xD or x2 will probably not be the precise minimum design point of f(x).

20



3.1 Gradient Method
3. Newton’s Method (6/9): Example of Function of Two Variables

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

o'f of
1+4x +2 ox.  ox,0 4 2
VI (x) = Vf(x,x,) = fx1 _ +4x, +2x, | H(x): X X,0X, _
. —1+2x, +2x, o f 0 f 7 9
Ox,0x,  Ox,

m 1st Iteration: Find x'"
Assume that f{x) has minimum at x"" =x9 + Ax'?.

Consider the quadratic approximation of the function f(x) at x=x©® usmg the
second-order Taylor expansion. i‘;How'P

S+ Ax?) = F(x@)+ v (x?)T AX© + = (Ax<°>)TH(x<°>)Ax<°> -

In this equation, x© is a constant and Ax'” is a variable. So, the following
equation is a quadratic function in terms of Ax".

f(X(O) _|_AX(O)) _ f(X(O))‘i‘Vf(X(O))TAX(O) _|_%(AX(0))TH(X(O))AX(0)

‘%‘ ¥z S Ystem
BT, »
i D) Loboratory
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3.1 Gradient Method
3. Newton’'s Method (7/9): Example of Function of Two Variables

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

. 1St Iteration: Find X(l) . f(x(o)+Ax(°>)=f(x(o))+Vf(x(°))TAx(°>+%(Ax(0))TH(x(°))Ax(O)
e f, 1+4x +2x
. . . . . 0 How? Vf(X)=Vf(xpxz)=( *‘J= e
Differentiate this equation with respect to Ax' ).C‘.; > 1. (—1+2xl+2xzj
(0) (0)
(X +AXT) =V (x'")+ H(X(O))AX(O) —() —> The necessary condition for
o(Ax") minimization of function f(x, x,)
0 X —
Calculate the small change Ax'” in design. 21 \
~ |
H(x?)Ax? = -V£(x?) ol )
Ax® = THE'VFED) :
ofr of 11
o~ [1 O\ _ ox;  Ox0x (4 2 A
l e )‘(1} M ey ey [2 2) \
ox,0x,  Ox

Ax”) (4 -1y (Ax®) (-1 ol
o |~ — o | = I
AX, 2 2 ] AX, 1.5 of o
Sx =x0 4+ AxY = ’ + - = - o5
0) (1.5) (1.5 \




3.1 Gradient Method
3. Newton’'s Method (8/9): Example of Function of Two Variables

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

m 2nd Jteration-Find x*’ x‘”{_lj
In the same way as 15t Iteration,

Assume that f{x) has minimum atx"”) = x"" + Ax""

Consider the quadratic approximation of the function f{x) at x=x() using the
second-order Taylor expansion.

f(x(1)+AX(1)) f(X(l))-l-Vf(X(l)) Ax? + — (Ax(l))TH(X(l))AX(l)

In this equation, x® is a constant and Ax"" is a variable. So, the following
equation is a quadratic function in terms of Ax()

f(x(l) +Ax(1))=f(x(1))+Vf(x(”) Ax D +E(AX(1))TH(X(1))AX(1)

Differentiate this equation with respect to Ax
of (x" + Ax'")
o(Ax'")

1 | | The necessary condition
=Vf(x")+H(x")Ax"" =0 —— for minimization of
function f(x, x,)

RS bTSYsiem
é;ﬁ% Ly }iDesn n 23
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3.1 Gradient Method
3. Newton’'s Method (9/9): Example of Function of Two Variables

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

m 2nd Iteration-Find x** x“){l_;
Calculate the small change Ax'" in design.

H(x")Ax" = -vF(x") |
Ax" = {HE]VF(Y)

J/{Vf(xm)(g]’}](xm) jf} a;icz}[j ij 2,,,,,,.
1 ox,0x,  0x; 2) (1 \

Ax) (4 2)7(0) [Ax) (0 15| |
o | T - |~ [
ax) ) 2 2) (o) Tlax!) Lo |
Sx® =X A = - + (! |

1.5 0 1.5 051

—Optimal design point

1+4x, +2x,

Vf(x) =Vf(x,x,) :(]{xl ] :[

—1+2x, +2x,

()]
~

Check stopping criterion.
Mﬂ%20<5

—Stop! | \
1 .




3.1 Gradient Method
3. Modified Newton’'s Method (1/2)

M In this method, we treat Ax* = [Hx“)]'v/(x*) of the Newton'’s
method as the search direction and use any of the one-
dimensional search methods to calculate the step size in the
search direction.

B Step 1 : Estimate a starting design point x)

Set iteration counter k£ =0. Specify a tolerance ¢ for the stopping
criterion.

B Step 2 : Calculate ¢’ =3f(x*)/dx, for i=1to n.If [¢*|<z, then
stop the iterative process. Otherwise, continue.

B Step 3 : Calculate the Hessian matrix H"“at current design

- (k)
point x’ . H®) — o f i
Ox,0x ’

:1,...,’1; j:l’...,n

e Sz SYstem
éfﬁaﬂg{% %Design 25
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3.1 Gradient Method
3. Modified Newton’'s Method (2/2)

B Step 4 : Calculate the search direction as follows:

df (Ax)/dAx =c+H(x)Ax =0
= H(x)Ax=-c¢= Ax=-H(x") ¢

B Step 5 : Update the design point as kx”‘“) =x"“ +ad"”, where «
is calculated to minimize f(x"“ +ad). Any one-dimensional
search method may be used to calculate <.

B Step 6 : Set £k =k+1 and go to Step 2.

< Q2 SYstem
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3.1 Gradient Method
3. Disadvantages of the Newton’'s Method

The Newton’s method is not very useful in practice, due to
following features of the method:

1. It requires the storing of the nx»n matrix H(x"*).

2. It becomes very difficult and sometimes, impossible
to compute the elements of the matrix H(x").

3. It requires the inversion of the matrix Hx'"") at each
iteration.

4. It requires the evaluation of the quantity Hx")"'vfx")
at each iteration.
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3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (1/6)

M This method builds an approximation for the inverse of
the Hessian matrix of /(x) using only the first derivatives.

B Step 1 : Estimate a starting design point x”,

Choose a symmetric positive definite nxn» matrix A as an
approximation for the inverse of the Hessian matrix of the
objective function. In the absence of more information, A” =1
may be chosen. Also, specify a tolerance ¢ for the stopping

criterion. Set k£ =0 and compute the gradient vector
as d¥ = - =-vrx").

B Step 2 : Calculate the norm of the gradient vector as ‘C(k)H.
If c(k)‘ < &, then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest
descent method are the same.
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3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (2/6)

B Step 3 : Calculate the search direction as follows:

Newton’s method

= ) — (k) o (k)
Elldlllll: II_IéIIIIGIIIIE AX(k) = _[H(X(k) )]_1 Vf(X(k))
S d® = —(HWY W

Here, the matrix A is used as an estimate for the inverse of
the Hessian matrix H™' of the objective function.

B Step 4 : Compute optimum step size o, = to minimize fx" +ad®),

(k+1)

B Step 5 : Update the design point as x“*"” =x“ +«,d"".

BB 2
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3.1 Gradient MEthOd d : search direction
4. Davidon-Fletcher-Powell(DFP) Method (3/6) «" :optimum stepsize

B Step 6 : Update the matrix A"“’- approximation for the inverse of
the Hessian matrix of the objective function - as follows:

AU = AW L BO L CH - px 1 matrix

where, the correction matrices B*) and C' are calculated as

below.
" S(k) (S(k))T " _Z(k) (Z(k))T
B = GENG ; nxn matrix C" = OERG ;  NXn matrix
(s -y) (y'-z")
k k
s") = Olkd( ) . nx1 matrix
y© =" ™ : nx1 matrix
¢ = v . nx1 matrix
2" = AWy™ . [nxn][nx1]=[nx1] matrix

WM Step 7:Set k=k+1 and go to Step 2.

e P2 SYstem
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3.1 Gradient Method
4. Davidon-Fletcher-Powell(DFP) Method (4/6): Example

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

1+ 4x, +2x, . Substitute x" =(-a.,) into the objective
VI(x) =Vf(x,x,) [49e 42 : function
— xl x2 E f(X(l)) — aZ . za
B 1st Iteration: Find x'"  To minimize /(x"), 1
: M . -
x(® :(O} A© 1 dfc(;; ) =20-2=0 - a=1.0 s x :(1 j
oy [1F40FZ0 (1) x| \
—1+2-0+2-0 —1 15| Q ]
Check stopping criterion. o xV |
Hc(o)‘ :\/12+(—1)2 ={2>¢ :
: 05|
d© = —A©O — _e©® = _o® (_IJ [
1 : :
X(l) — X(O) + aod(()) E O X(O)
. 0 -1 _ | T& |Replacing &, to for- ‘0-55
_ O + (04 1 _ o convenience : \
: 11 .




3.1 Gradient Method

1+4x, +2x,
—1+42x, + 2x,

VI (x) =Vf(x,x,) E

4. Davidon-Fletcher-Powell(DFP) Method (5/6): ExamE e

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

m 2nd Jteration: Find x*

_ 7050

Update the matrix A""- approximation forg C”=—4—5%

the inverse of the Hessian matrix of the
objective function - as follows:

A(l) :A(O) +B(0) +C(0)
S(0>S<0)T

0) _
B = (0) | v(0)

s -y

60—y d© = (1—1)

1 —1
- [_J, ¢V = (_1)

y© = ¢® _e® — (62)
oo _(1 -1
s''s —(_1 1)

(0) _
Los .y P =2
_(0.5 —0.5)

- -0.5 0.5

N

y -z

A0 -1/
0

2® = AOyO _ (—2)

y©® .2 =4

., _(4 0
7 Z _(0 0

(o'

0.5
-0.5

y

0

|

AD ZAO® L BO L C©
0.5

1 0
= +
0 1 —0.5

—-0.5
1.5

—-0.5 -1 0
_|_
0.5 0O O
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3.1 Gradient Method

4. Davidon-Fletcher-Powell(DFP) Method (6/6): Exam

f(x)=Vf(x,x,)= P2
Vi(x)=V
b —1+2xl+2x2

Minimize / (x) = f(x,,x,) = X,

m 2 [teration: Find x**
Check stopping criterion.

(1)‘ 2> e

_AMeM 0
1

x® =x" 1 g d"

J

d(l)

Substitute x*’ =(-11+a) into the objective
function

f&xN=a’-a-1
To minimize f(x*?),

(2)
YT 5y 120 = 2=05
do

... X(z) — _1 :
1.5 ) —=Optimal design point :

_ -1 +a 0 _ -1 Replacing &, toaé
1 1 1+ for convenience

— xz -+ 2x1 + 2x1x2 + xz , Starting design point x(© = (0, 0)

1+4-(-1)+2-1.5 0
( 1+2-(-1D)+2- 15] (O]

: ! Check stopping criterion.

=0<¢
— Stop!

2[..r. —T T T T T

e

X;
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3.1 Gradient Method
5. Broxden-FIetcher-GoIdfarb-Shanno(BFGS) Method (1/6)

M This method updates the Hessian matrix rather than its
inverse at every iteration.

B Step 1 : Estimate a starting design point x"’ i
Choose a symmetric positive definite nxn» matrix H” as
an approximation for the Hessian matrix of the objective function.
In the absence of more information, let H” =1 . Specify
a tolerance ¢ for the stopping criterion. Set £ =0, and compute
the gradient vector as ¢ = Vf(x(o))-

B Step 2 : Calculate the norm of the gradient vector as Hc(k)H.
If ‘c(")H < ¢, then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest
descent method are the same.
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3.1 Gradient Method
5. Broxden-FIetcher-GoIdfarb-Shanno(BFGS) Method (2/6)

B Step 3 : Solve the linear system of the following equation to

obtain the search direction. Newton’s method
PRLTTILLLLEETL sssssmmmmEnnns : AX(k) — _[H(X(k))]—lvf(x(k))
d(k) _ _(H(k))—lc(/’c)E - d® = —(H®) W

This equation looks like d" = —(H"")™'¢'” of the Newton's method,
but H" is an approximated Hessian matrix H") comprised of the
first order derivatives.

B Step 4 : Compute optimum step size o, =a to minimize f(x" +ad™),

(k+1) (k) d(k)

B Step 5 : Update the design pointas x* ' =x"+¢,

BB s
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3.1 Gradient Method
5. Broxden-FIetcher-GoIdfarb-Shanno(BFGS) Method (3/6)

B Step 6 : Update the matrix H'*)- approximation for the Hessian
matrix of the objective function - as follows:

H*Y =H® +D® +E® . 5 xpn matrix
where, the correction matrices D and E"“ are given as below.

i o k) (k)T
D A S
(y(k) . S(k)) ’ (C(k) . d(k)) ’
S(k) _ akd(k) : change in design

d® : search direction

(k) _ o~(k+1) _ (k) :change in gradient
y =C C g 9 a® optimum step size

c(k+1) — Vf(X(k+1))

WM Step 7 :Set k=k+1 and go to Step 2.

BB
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3.1 Gradient Method
5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (4/6): Example

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

1

0

1+ 4x, +2x, . Substitute x" =(-a,2) into the objective
VI(x) =Vf(x,x,) functlon
_1+2x1+2x2 . f(X(l))_a2_2a
E o o e (1)
W 1st Iteration: Find x‘” gTZfT;'agr)mzef(x ) (o[
: 20-2=0 > a=1.0 " 1
X(0):() HO = da D e
0) Xy | \
0 yr ) = 1+4.-0+2-0 _ 1 15| Q ]
-1+2-0+2-0 -1) [ L
: 11
Check stopping criterion. ;
Hc”)\ = JP+(-1 =2>¢ 05}
—1) [
d© = —(H®)"¢® = J¢©@ = —¢© = : o
1 : [ x?
x =x© +¢,d? :
: -05 |
0 —1 — |Replacing &, to & for‘ :\
= +a = o convenience . 1 .



I 1+4x +2
3.1 Gradient Method Vf(x)zvf(xlsz):( N xzj
—1+42x, + 2x,

5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (5/6): Example

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

m 2nd Jteration: Findx® o —€VeOT
Update the matrix H'”- approximation for : BT = RONFO
the Hessian matrix of the objective : N
function - as follows: 0 [ 1 4@ 7
HO = H© + D© L E© : -1) 1
Do _ y<0)y<0) ROROS 1 -1
- y(© . §© : -1 1
| S(O) = ad(o) = (1_1) E C(O) . d(o) =-2

| -1 e
c® :[ j, e :(_1) : (=05 05
-l ) 05 -05

ﬁ(l) :ﬁ(o) +DO L O

y(O)y(O)T :[4 Oj B 1 0 | 2 0 | -0.5 0.5
©0) (0) _ 20 0 o 1 0 0 0.5 -=-0.5
Y= : 2.5 0.5

38



. 1+4 2
3.1 Gradient Method V() =V (. x2) = ( 1+ i xzj
+2x, + 2x,

5. Broyden-Fletcher-Goldfarb-Shanno(BFGS) Method (6/6): Example

o« o e 2 2 . . .
Minimize f (X) = f(x,,x,) =X, —x, +2Xx, +2X,x, 4+ X, , Starting design point x = (0, 0)

m 2nd Iteration: Find x** o) @y _[1T4 (=D +2-1.5 0
. . . = C = Vf(X )
Check stopplng criterion. : —1+2-(-1)+2-1.5 0
Hc(”‘ J2>¢ : Check stopping criterion.
AOQD = —¢®  a® = —(AD) O : H (2)‘ =0<¢
- (25 05 @ _ (0 o 1 : —Stop!
H()_(o.s 0.5]’ d _(2) :(—1) X2 P ———
x? =x" 4+, d" E :
— Ty — Replacing &, to & : :
1 2 1 + 2 |for convenience 1
Substitute x* =(-1,1+2a) into the objective |
function : 05
f(x(z)):4a2—2a—1 . ;
To minin(izi)ze f(x?), : OE
YO _8y-220 - =025 P os)
do .
-1[

. X(z) - _1 .
1.5 ] —Optimal design point :



3.2 Golden Section Search Method
(One Dimensional Search Method)

Naval Architecture & Ocean Engineering
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3.2 Golden Section Search Method
- Phase 1: Global Search (1/2)

M Searching for the interval in which the minimum lies

B In the figure, starting at ¢ =0, we evaluate f(a) at ¢ =, where § >0
is a small number. If the value f(0) is smaller than the value 7(0), we
then take an increment of 1.6180 in the step size(i.e., the increment is
1.618 times the previous increment o ). (See Fibonacci sequence)

Ao q=0,0,=0

1
g=la,=5+1.6185=2.6185= 5(1.618)’

J=0

2
g =20, =2.6185+1.618(1.6185) = 5.2365 = > 5(1.618)’

Jj=0

3
g=30a,=52365+(1.618)°5 =9.4725 = > 5(1.618)’

J=0

4
g=4a,=94725+(1.618)*5 =16.3265 = »_5(1.618)’

J=0

1 2 3

q .
4o La,=).6(1.618), 4=0,1,2,...
j=0

»
|

|
|
|
|
o
.
, |
, |
, |
o

g=0 !
| | .
52.6185 52365 94726 163265 «

0

G &z SYstem ‘
B, o
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh L IDlLaboratory



3.2 Golden Section Search Method
- Phase 1: Global Search (2/2)

B If the function at &, is smaller than that at the previous point &,
and the next point «_, (i.e., f(o, )< f(e,,). f(a, )< f(a,)) the
minimum point lies between ¢ and @,

(The interval in which the minimum lies is called the interval of uncertainty.)

fla)t | . Sl
: The interval of uncertainty I The interval of uncertainty
: lllllllllllllllllllllllll r. :
| |
| |
| |
| |
| | |
| | | » | .
I | | : : |
: | : | | I
| | % | : |
i ..1 IIIIIIIII : IIIIIIIIIII ILII : : J:. 1.0:1.618=0.382:0.618
1 Y N |
| | | | | {10 11618 ||
I | | | I I A | N |
! ! I I ! . r 4 g
T T T T T » I ] I v
0 & 2.6185 5.2366 9.4726  16.3265 Q. Oy a4, a
n I I lower g upper
Gy v Oy Gy @, () (a,) ()

B Therefore, upper and lower Iimits on the interval of uncertainty are

q-1
a =a _25(1 618),a, =z, 25(1 618)' ,a,=a,, =Y 5(1.618)
=0

upper j=0 lower



[Reference] Fibonacci Sequence

Fibonacci sequence defined as
E):O, Fi:l, F;1:E1—1+Fn—29 nzz, 3,

Any number of the Fibonacci sequence for n(>1) is obtained by adding
the previous two numbers, so the sequence is given as follows.

=2 0,1,1,2,3,5, 8, 13, 21, 34, 55, 89, ...

0" —(1-9) 1++/5

General term: F = , Q= ~1.6180339887---
J5 2
: 1
Property: lIim—*—=¢, 1-p=——
" v (.*1_—(p<lj
@
o' —(1-9) (1— b
. n-1 (0_(1_(0)
lim 2 = lim (”1_(1_(”) — =lim—2%— —lim L),
rEa et =(1-p) T e - (1-9) (1

< ‘%% STSYstem ;
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3.2 Golden Section Search Method
- Phase 2: Local Search (1/3)

(m Reduction of the interval of uncertainty by comparing) ihgmtervalofuncertainty

function values at o, and ¢, A

« We consider two points symmetrically located from
either end as shown in the figure - points ¢, and «, are

|
|
|
|
|
|
|
|
N
!
|
|
|
|
|

I
I
I
|
located at a distance of 7 I» from either end of the g
. | Repeat to reduce
Interval. the interval of |
- Comparing function values at «, and q,, either the left uncertainty |
(., a,) or the right (o, , ,) portion of the interval gets Q-2 @,
. fai H 1 1
\_ discarded because the minimum cannot lie there. ) a a.
(<ifr=2/3> ® )
A®=(2/3)I®
(a)
@ Ta“ |
If fle,) < f(a,), then minimum j 1 - 9I%=1/3)I%® d®=(2,
point lies between ¢, and ;. | |
j [UHD=gJ0)=(2/3) [®
(b) v{ — : LV
/
o, 7 L a,
For new interval of uncertainty, we always Tl(kéﬂ) (1 - T)I( ketD)
have to_compute fAea,), fley’). W/ \i/ v W/ >
<Question> o 7 a, 7 a, 7 a, 7 o
Is there any method to use the previous

Kunction values? //




3.2 Golden Section Search Method
- Phase 2: Local Search (2/3)

B Reduction of the interval of uncertainty by comparing function values at «, and ¢,
e We consider two points symmetrically located from either end as shown in the figure — points
a, and g, are located at a distance of 7 I® from either end of the interval.
) d® ;
() |
a? a, o,
[ a-i®
If fla,) < flay), then minimum | | |
point lies between ¢;and ;. ' | JO+) =7 ®) -
J [+ | @-o1% |
b) ¢ — o,
(7] ~‘aa o a,
(1 - I%D | L k+D) g
1. fla,) will be used for the next interval of uncertainty 74D, ’
2. q, can be equal to ¢, or ¢, of the next interval of 3-2. Assume that a,is equal to &,". | &, =@,
uncertainty 7%+, a4
; : _ 7k _ kD)
3-1. Assume that ¢ isequalto o,”. | 4 =g : (=21 d
@ 1-0) % =¢.0. I
A-7) [ =(1-7)1*D o (1-7) o
1-0)IP =(1-7)d® rd =(1=-0)I" =0
76 — g " +7-1=0

K Because 7=1, this assumption is wrong. —>7r=0.618,-1.618 —> O.6Iy




3.2 Golden Section Search Method
- Phase 2: Local Search (3/3)

B Reduction of the interval of uncertainty by comparing function values at o, and ¢,

e We consider two points symmetrically located from either end as shown in the figure — points
a, and ¢, are located at a distance of 7 I® from either end of the interval.

s ~
A®

ab au

1 - 9I®

A 4

\ 4

\ 4

(a)

If fla) > f(e), then minimum |
point lies between ¢, and q,. JE+D) = (k)

(1 - oI+ 7]+

A 4

A~

(2 [ @ T 23 ’ ,
L] k+D) | (1-17) J(+1)

1. fiay) will be used for the next interval of uncertainty 74D,
2. q can be equal to ¢, or ¢, of the next interval of 3-2. Assume that a,is equal to @,”. |, =
uncertainty 7%+, a

4

, A=) =g
: N6 — k)
(=)™ = (1—7)[*D (-0 =7-7.1
(A=) =(1=7)yd® r-d® - (1-2)1" =0
76 — g P +7-1=0

K Because 7=1, this assumption is wrong. —>7r=0.618,-1.618 —> O.6ly

3-1. Assume that ¢, is equal to ¢,’. a,=a,




3.2 Golden Section Search Method: Summary (1/3)

®
Aa® Je  (-1®

al [ Aa a ab I au
(- 91 a0

A A A o

B Step 1: For a chosen small number §, let ¢ be the smallest integer
to satisfy /() </(a..). f(a,)< /() where @, @, ,, and @, are
calculated from «, =) 5(1.618), (¢=0,1,2,..). The upper and lower
bounds on «  (the oﬁ%imum value for @) are given as follows.

a,=a, =

MQ

q-—2
5(1.618) 0, =, , =) 5(1.618)’
=0

[
(e

J

B Step 2 : Compute f(¢,) and f(c,) where o, =, +0.382] and
a, =a,+0.6181 (interval of uncertainty / =«, — ;).

B Step 3 : Compute f(¢,) and f(2,), and go to Step 4, Step 5 or Step 6.

«‘U b?SYstem
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3.2 Golden Section Search Method: Summary (2/3)

— < I® 4 u I®
> = 7 Step Step 5 - >
l "
e »le ! * e p
. - I®» | I J (1- I® :
! JO+D) =g ' . !
< > ! JU+I) =71 k) L
\‘:/4 d**D Al (1 T)I( ket l\:/ : e+l k+1 X
Bl Ll P W (1 - 1—)]( P &+ \:/
@ ’ Ll Dl P
a a’ ‘o a, (b)
< > b > o a’ | & o %
1 - I¢+D &) 2D g -9 JOED

W Step 4:If f(e,)</f(e,), then minimum point " lies between ¢,
and «@,, i.e., &, <a <a,.The new limits for the reduced interval of
uncertainty are ,'=¢,anda,'=«,. Also, a,'=«,. Compute f(a,'),
where o,'=,'+0.382(,'-,') and go to Step 7.

m Step 5:If f(2,)> f(2,), then minimum point « lies between«,
and «,, i.e., a, <a <a,. Similar to the procedure in Step 4, let
a,'=a, and a,'=¢,, so that o,'=,. Compute f(¢,'), where

a,'=a,'+0.618(a,'-¢,") and go to Step 7.

mStep6:If f(a,)=f(2,), let ¢, =, and @, =, and return to Step 2.

c“U RS bTSYsiem
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3.2 Golden Section Search Method: Summary (3/3)
— L Step 4 - Step 5 ""’

\ 4

al
<€ 5
< 7l =| P A® q
d Ll
O
all < > g a 1 Id ;T‘ﬂh g Ia “
! &
Ao ; | | d=or% .
' g &) =7 ®) % ! J+1) =)
- » =T
1 k+1 - k+1)| ' P
\‘I/ < &+ >le (1 T)I( > \:/ (1 - DI f+D X
af > z a,’ b Ve an <hg
! & » Aa a ab » “ ( ) (27 a,’ [+78 ’ a, ’
Ld D > “ P
1 - DI**D o %+D) A%+D T - gret

B Step 7 : If the new interval of uncertainty /'=¢ '-¢,'is small
enough to satisfy a stopping criterion (i.e., I'<¢ ), let ¢ =(a,'-a,")/2
and stop. Otherwise, delete the primes(’) on ¢,', @¢,', @," and ¢,

and return to Step 3.
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ineering

3.3 Direct Search Method

1. Hooke & Jeeves Direct Search Method
2. Nelder & Mead Simplex Method

Naval Architecture & Ocean Eng
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Direct Search Method (1/1 ()= —=="==n™

3. Local Pattern Search

M This method is a sequential technique, each step of which consists
of two kinds of move, the ‘Local Pattern Search’ at a base point
and ‘Global Pattern Move’ to the optimal design point.

F (X1,X2)
i

\\
\
W
|
|
i
/]

uuuuuuuuuuuuuuu

Global Pattern Move/

Base point | y
0 \V/ x, ]
Local Pattern Search

e Sz SYstem
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method (2/16) 2. Global Pattern Move

3. Local Pattern Search

1. ‘Local Pattern Search’ at the
base point b’

*Search in x, direction.

- No improvement of the value of the
objective function in x, direction 2> No
movement in x, direction

*Search in x, direction.

- Improvement of the value of the objective
function in x, direction > Movement in the
positive x, direction

»x, °*Move and define the base point b2.

2. ‘Global Pattern Move’ at the
base point b?

F (X1,X2)

*Find a temporary base point t,? by
symmetrical displacement of b' to b2.

*Because the value of the objective
function at t,? is better than that at b?,
perform the ‘Local Pattern Search’ at t,°.

|
L] I~

OPTIMUM ( MINIMUM )

Gt SNgSYstem :
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method (3/16) 2. Global Pattern Move

3. Local Pattern Search

3. ‘Local Pattern Search’ at the
temporary base point t,?

*Search in x, direction.

- Improvement of the value of the objective

function in x, direction = Movement in the
positive x, direction

*Search in x2 direction.

- Improvement of the value of the objective

function in x, direction = Movement in the
positive x, direction

¢t > X «Move and define the base point b3.

4. ‘Global Pattern Move’ at the
base point b3

*Find a temporary base point t,* by
symmetrical displacement of b? to b3.

| *Because the value of the objective
; function at t,° is not better than that at b3,
perform the ‘Local Pattern Search’ at b3.

|
| ~

OPTIMUM ( MINIMUM )

< Q2 SYstem |
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method (4/16) 2. Global Pattern Move

3. Local Pattern Search

5. ‘Local Pattern Search’ at the
base point b3

*Search in x, direction.

- Improvement of the value of the objective
function in x, direction > Movement in the
positive x, direction

*Search in x, direction.

- No improvement of the value of the objective
function in x, direction > No movement in x,
direction

*Move and define the base point b*.

le

F (X1,X2)

6. ‘Global Pattern Move’ at the
base point b*

*Find a temporary base point t,* by
symmetrical displacement of b3 to b*.
B i *Because the value of the objective
| function at t,* is better than that at b?,
perform the ‘Local Pattern Search’ at t,* .

| —
[ —
T

\
|
/]

OPTIMUM ( MINIMUM )

< Q2 SYstem |
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3.3 Direct Search Method 1. Base Point
1. Hooke & Jeeves Method (5/16) 2. Global Pattern Move

3. Local Pattern Search

7. ‘Local Pattern Search’ at the
temporary base point t,*

*Search in x, direction.

- No improvement of the value of the objective
function in x, direction - No movement in x,
direction
-Search in x, direction.

- No improvement of the value of the objective
function in x, direction > No movement in x,
direction
Because there is no improvement of the

value of the objective function in x; and
F o % x, direction, the current base point is
defined as the base point b°.

8. ‘Global Pattern Move’ at the
base point b°

*Find a temporary base point t,° by
symmetrical displacement of b* to b°.

== “ *Because the value of the objective
function at t,° is not better than at b3,
perform the ‘Local Pattern Search’ at b°.

\
|
/]

OPTIMUM ( MINIMUM )
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3.3 Direct Search Method

1. Hooke & Jeeves Method (6/16) 2. Global Pattern Move

le

F (X1,X2)

| —
[ —
T

\
|

OPTIMUM ( MINIMUM )

1. Base Point

3. Local Pattern Search

9. ‘Local Pattern Search’ at the
base point b°
*Search in x, direction.

- No improvement of the value of the
objective function in x, direction < No
movement in x, direction

*Search in x, direction.

- No improvement of the value of the
objective function in x, direction - No
movement in X, in X, direction

Because there is no improvement of the
value of the objective function in x1 and
x2 direction, the current base point
defined as base point b¥.

*Because b® = b, reduce the step size by
half and perform the ‘Local Pattern
Search’ at bS.

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh
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3.3 Direct Search Method
1. Hooke & Jeeves Method (7/16): Rule of the ‘Local Pattern Search’ (1)

Rule of the ‘Local Pattern Search’

(F: Fail, S: Success)

Rule @ Search in the positive x; direction.

- Move the exploratory point in the positive
x; direction and evaluate the value of the
objective function at that point.

- If the value of the
objective function
is increased

(Fail)

- Come back to the previous point
and search in the negative x;
direction.

o—
bk

- If the value of the
objective function
is decreased
(Success)

- Search in the x,,; direction at the

current point.
o——lS

bk

Rule @ Search in the negative x; direction.

- If the search in the positive x; direction is
failed, move the exploratory point in the
negative x; direction and evaluate the
value of the objective function at that point.

- If the value of the
objective function
is increased

(Fail)

- Come back to the previous point
and search in x;,, direction.

+«—-o0----OF
bk

- If the value of the
objective function
is decreased
(Success)

- Search in the x,,; direction at the
current point.

Sl—zfu—oF

- This process of the ‘Local Pattern Search’ is continued fori=1,..., n.
- After searching in x, direction, the current point is defined as new base point b**/,

57



3.3 Direct Search Method
1. Hooke & Jeeves Method (8/16): Rule of the ‘Local Pattern Search’ (2)

N t,
X, )
/P/&,,_I\ 4
/ Case 3
7
I_Case; / 4 O t4 = b5
, V2 CXAN - | . 2
P =S P e 6
I_CaseT ) ‘
: 3
o— F—o ! ,
Global Pattern Move / = -
Base point -
0 \/ ’xl 1
Local Pattern Search
* Super script ‘k’ means the number of step.
= Rule of the Local Pattern Search(F: Fail, S: Success)
< > < > < >
Case 1 S Case 2 S Case 3 F
bk+1
l l bk+1 ? Step/2 0
I
F o---0---oF S Fo--0--0o F—) o-6-0
bk bk bk | bk I
. o)
o)
=
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3.3 Direct Search Method

1. Hooke & Jeeves Method (9/16): Algorithm Summarx (1)

1) Local Pattern Search (Problem with n design variables)

1. Compute the value of the objective function at
the starting base point b'.

2. Compute the value of the objective function at
b'1+35,, where §, is input step size and a vector
with n elements(5, = [5,, 0, 0, ..., 0]7). If the value
of the objective function is decreased, b'*= 8, is
adopted as t,' and the search is continued.

3. Compute the value of the objective function at
t,1=8,, where &, is also input step size and a
vector with n elements( 5, =[O0, §,, 0, ..., 0]"). If
the value of the function is decreased, t,'*8, is
adopted as t,".

Example of the ‘Local Pattern Search’
in the problem with
two design variables(x,, X,)
(Search in x, direction)

Example of the ‘Local Pattern Search’
in the problem with
two design variables(x,, x,)
(Search in x2 direction)




3.3 Direct Search Method
1. Hooke & Jeeves Method (10/16): Algorithm Summarx (2)

1) Local Pattern Search (Problem with n design variables)

4. After the ‘Local Pattern Search’ for all design variables, new base point is
defined. (new base point b2 =t_1)

5. Perform the ‘Global Pattern Move’ from the previous base point along the line
from the previous to current base point.

e Sz SYstem
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3.3 Direct Search Method
1. Hooke & Jeeves Method (11/16): Algorithm Summary (3)

2) Global Pattern Move

1. Define the temporary base point located the same distance between the
previous and current base point(obtained from ‘Local Pattern Search’) from
the current base point (‘Global Pattern Move’), and calculate the value of the
objective function at this point. The temporary base point is calculated by

‘Global Pattern Move’ as follows. Example of the ‘Global Pattern Move’ in the /'3
problem with two design variables(x,, x,) t

0
k+1 k k+1 k k+1 k jecti '
t0+ —b* + 2(b + b ) —2%b + b when the value of the objective function at ;}<

the temporary base point is not improved.

2. If the result of the temporary base point is a better point
than the previous base point, perform the ‘Local Pattern
Search’ at the temporary base point. Otherwise, come

back to the previous base point and perform the ‘Local
Pattern Search’.

U‘;o‘ bTSYsiem
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3.3 Direct Search Method
1. Hooke & Jeeves Method (12/16): Algorithm Summary (4)

3) Closing Condition (Stopping Criterion)

1. When even this ‘Local Pattern Search’ fails(b**! = bk, there is no

improvement), reduce the step sizes §, by half, 8,/2, and resume the
‘Local Pattern Search’.

Example of the ‘Global Pattern Move’ in the /'3
problem with two design variables(x,, x,) t

0
when the value of the objective function at
the temporary base point is not improved.

2. If the step size d, is smaller than ¢g;, stop the iteration
and current base point is the optimal design point.

U‘;o‘ bTSYsiem
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3.3 Direct Search Method

1. Hooke & Jeeves Method (13/16): ExamEIe

M If the contour line of the objective function of shipbuilding cost with two
design variables, L/B and Cg, is given as shown in the Figure, find the
optimal value of the L/B and C; to minimize the shipbuilding cost by using
the ‘Hooke & Jeeves Direct Search Method’ and plot the procedures in the

graph.

B Hooke & Jeeves Direct Search Method

® Starting design point: L/B = 7.0, C; = 0.2
® Step size at the starting design point: A(L/B) = 0.5, A(Cg) = 0.1
Contour line of the objective fu/nction(f = const.)

Cg =
— N
0.9 e 1 NN\
pay e — T N
0.7
W RRV.sav.02Z0)18)
s TV T T2y
Optimization problem « ' / ( o —1 VY
with two unknown variables NN \ 4
0.3 \ ~_ 4/,‘// 7
0.2 T =
0.1 NG S
1.0 2.0 3.0 4.0 5.0 6.0 7.0 g8.oLB 63




3.3 Direct Search Method
1. Hooke & Jeeves Method (14/16): ExamEIe

=L/B, x, =Cj
o [teration 1 : Local Pattern Search 1 C,

0 — —
b’ =(7, 0.2), Ax,=0.5 Ax,=0.1, =i N
b= o8 AP ERRN
Search from t; in — x, direction — t} = (6.5, 0.2) 0'7 // ,// - /_\\\\ ) \

. I L~
Search from t, in + x, direction — t, = (6.5, 0.3) 0.6 // //;// // (/ <{cj 2 )/ /// R
1
Because the value of the objective 0.5 17T \\//’ 12;////
function at 3 is improved, this point is 0.4 R - P ‘/”1’4)/1/
adopted as a new base point. 0.3 - —— 50—
N — A t' b
bl — tl 0.2 \ T
2 0.1 P~ —
I~ L —
1.0 20 3.0 40 50 6.0 7.0 8.0

e[teration 2 : Global Pattern Move 1

Define the temporary base point by using b’ and b'
—t; =(6, 0.4)

L/B

Because the value of the objective function at t; is improved, perform the ‘Local Pattern

Search’ at this point.

Design
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3.3 Direct Search Method
1. Hooke & Jeeves Method (15/16): Examele

e[teration 3 : Local Pattern Search 2

Search from t; in —x, direction — t. = (5.5, 0.4)

Search from t; in +x, direction — t; =(5.5, 0.5) Cg

Because the value of the objective 1| N
function att; is improved, this point is i — L\
adopted as a new base point. gg AT FPele )
2 2 . B e 1
b’ =t A U
' VT YV
Iteration 4 : Global Pattern Move 2 | VAR uh /fzg 2V
Define the temporary base point by using b' and b” 0.3 ( \\ 1 /;/b/1
" S I B ey 1
—)tg 2(4.5, 0.7) 0.2 \ \\ — // tl bo
0.1 ——P<———————
e[teration 5 : Local Pattern Search 3 10 20 3.0 40 50 60 7.0 80 g

Search from t; in +x, direction — t; = (5, 0.7)
Search from t; in -x, direction — t; = (5, 0.6)

Because the value of the objective function at t; is improved, this point is adopted as
a new base point.
b3 . t3
— U
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3.3 Direct Search Method
1. Hooke & Jeeves Method (16/16): Examele

Iteration 6 : Global Pattern Move 3
Define the temporary base point by using b> and b’
—t:=(4.5, 0.7)

Cs
Because the value of the objective | -
function at t; is not improved, 09 1| N
t, =b’ 0.8 2 ; ol e S
: ' Tt —
[teration 7 : Local Pattern Search 4 0.7 /,/ Ve // %"ﬂ%? 7> ) )
Because there is no improvement of .6 . //// // (/ 2 ATV
the value of the objective function 0.5 S - v //
fl;om the temporary base design point ¢ 4 [ 1/ (\ N I /oz/b/l/
t; in x; direction and x, direction, 0.3 A et % 9P
1 2 . — A 0
t4 = t4 = t4 0.2 \\ I e // t b
2 T N 0 . AN ——
: 0.1 = =
[teration 8 : Global Pattern Move 4 ~—1 1
b*=b’> Ax,=0.25, Ax,=0.05, 10 20 3.0 40 50 60 7.0 80

5 4
t=b

e[teration 9 : Stopping the iteration of search
Because there is no improvement of the value of the objective function from base design
point (x,, x,)=(L/B, C;)=(5.0,0.6) in x; direction and x, direction by performing the ‘Local
Pattern Search’ and ‘Global Pattern Move’, the optimal design pointis L/B=5.0, C, =0.6.
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3.3 Direct Search Method

2. Nelder & Mead Simplex Method (1/14)

M This method is used to find optimal design point by successively
reflecting, expanding, contracting, and reducing the simplex with
(n+1) corners in the function of » design variables.

1. This method uses n+1 points in

the function of n design
variables.

Ex) If the number of the design
variables is two, this method
use three points, i.e., triangle.

. The simplex is reflected in the

direction where the value of the
objective function is improved.

. If the value of the objective

function is improved, the
simplex is expanded. Otherwise,
the simplex is reduced.

Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (2/14)

M The following figure shows various operations (Reflection,
Expansion, Contraction, Reduction) for 2-dimensional case.

Reflection Expansion Contraction Reduction
Xp X Xp
2. Original =y A
/ Simplex Fa
Xl N A
ox,(= ) X X doy,
Xp
Contraction Reduction
to x.when toward x, when
X, fEIZ1) A 2Ax)
Reflection Contraction
to x, when to x,when
> . <
fx) 2 /%) & New Simplex Jx)<f(x,)
Ax,) < f(x;) Expansion
to x, when
Ax,) <Ax) & f(x,) < fx))

x,: Simplex point having the largest objective function value
x,: Simplex point having the smallest objective function value
x,: Center point between x, and x,

CETD bTSYsiem
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3.3 Direct Search Method
2. Nelder & Mead SimEIex Method (3/14)

M Step 1 : Calculate the value of the objective function f at the n+1 corners
of the simplex.

M Step 2 : Establish the corners which yield the highest, x,, and lowest, x, of
f(x) in the current simplex.

M Step 3 : Calculate the value of the objective function f at the centroid(x,)
of all x; except x,, i.e.,

n+l

X, = %in(with x, excluded)
i=1

Example) X,

X, 2
X)
Xp

< Q2 SYstem
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3.3 Direct Search Method
2. Nelder & Mead Simplex Method (4/14)

M Step 4 : Test stopping criterion: h

Average of the distance
between each corners and x,

1 n+1 1/2 .
o 2 )= /)T Y K o)

Xp

B If the stopping criterion is satisfied, stop and return f(x;) as minimum.
Otherwise, continue.

M Step 5 : Reflection X,
B Reflect x, through x, to give X, =2X, —X, . L Original
Calculate the value of the objective function f at x, / Simplex

and change the simplex as following conditions.

Reflection
to X,

5 g b?SYstem
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3.3 Direct Search Method
2. Nelder & Mead Simelex Method (5/14)

M Step 6 : Expansion
B Step 6-1:If fx,) < f(x), reflect x, through x, to give x, =2x —X,.

And then, calculate f(x,) and compare f(x,) and f{(x)). Xn
g Original

Simplex

® Step 6-1-1:If f(x,) < f(x,), replace x, by x_ (expansion)
and return to Step 2.

=» Step 6-1-1
f(Xe) <f(xl)

® Step 6-1-2 : If f(x,) > f(x)), replace x, by x (reflection)
and return to Step 2.

Original
Simplex

=» Step 6-1-2
f(Xe) 2]((Xl)

x, €Xx,

»
B, -
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh L IDlLaboratory



3.3 Direct Search Method
2. Nelder & Mead Simelex Method (6/14)

M Step 6 : Expansion
B Step 6-2: If f(x,) > f(x)),
® Step 6-2-1: test f(x,) < f(x,) for all x; except x,.

If true, replace x, by x (reflection) Original

and return to Step 2. Simplex
X
2, O,
» Step 6-2-1
For all x; except x, X, €X,
I,
f(xr) <f(xi)

® Step 6-2-2 : If false, continue.
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3.3 Direct Search Method
2. Nelder & Mead Simelex Method (7/14)

M Step 7 : Contraction X,
B Step 7-1:1If fx) < flx,), N
calculate the value of the objective function f S
at X_=(Xx, +Xx,)/2.
» Step 7-1
fx,) < Ax,)

B Step 7-2: If flx,) > f(x,),

calculate the value of the objective function f

X
at X, = (X, +X,)/2. » Step 7-2 o
Mx,) 2 f(x,) / C\f\\xc =(x,+x,)/2
X2 /// |

G &z SYstem
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3.3 Direct Search Method
2. Nelder & Mead Simelex Method (8/14)

M Step 8 : Reduction

m Step 8-1:If f{x) < flx,), o
replace x, by x,_(contraction) ) .
and return to Step 2. Xy Xp N\ or
» Step 8-1
Ax.) < Ax,)

B Step 8-2:If flx,) > flx,),

reduce the simplex toward x, using X, = (X, +X,)/2 X,
(reduction) and return to Step 2. » Step 8-2 A
fx)2fx) S /_\
Xy —ox(= x)
Xp
Reduction
toward x,
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3.3 Direct Search Method

2. Nelder & Mead Simelex Method (9/14): Examele

M If the contour line of the objective function of shipbuilding cost with two
design variables, L/B and Cg, is given as shown in Fig, find the value of the
L/B and C; to minimize the shipbuilding cost by using the ‘Nelder & Mead
Simplex Method’ and plot the procedures in the graph.

B Nelder & Mead Simplex Method

® Starting corners of the simplex: (L/B, CB) = (1, 0.1), (1.5, 0.1), (1.5, 0.2)

® Stopping criterion: 0.01

Contour line of the objective fu/nction(f = const.)

Cg =
— N
0.9 e 1 NN\
pay e — T N
0.7
W RRV.sav.02Z0)18)
s TV T T2y
Optimization problem « ' / ( o —1 VY
with two unknown variables NN \ 4
0.3 \ ~_ 4/,‘// 7
0.2 T =
0.1 NG S
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0LB 75




3.3 Direct Search Method
2. Nelder & Mead Simelex Method (10/14): Examele

x,=L/B, x,=Cj

Cs

Triangle 1 : x,, x,, x, L
: : ~ ~N
Iteration 1) Because x, is x,, reflect x, 0.9 //, —~~ 1 N
through the center between x, and x,. — x 0.8 A L~ 1 ™~ \
1 3 r // // //7 \\ N \
Because f(x,) < /(x,) and £(x,), R |
perform the expansion — x, 06 //// // // (/ (EF 2)// / l
Tri e - ’ 0.5 / A A / ,//
— Trangle 2 : x,, x;, x, N / ( \\ g //
: . 0.3 ! \~ = ////
Iteration 2) Because x, is x,, reflect x, ' ~Ne— - LA
0.2 = ’
through the center between x; and x,. — x, o \\ S f/
Because f(x,) < f(x,) and f(x,), - —
1.0 2.0 3.0 4.0 5.0 6.0

perform the expansion — x;,

— Triangle 3 : x;, x,, X,

Number means the index|‘i’ of xl..

Alphabet means the kind of X, .
h: maximum point of the
corner in the simplex(triangle)
r: reflection

e: expansion

c: contraction




3.3 Direct Search Method
2. Nelder & Mead Simelex Method (11/14): Examele

x,=L/B, x,=Cj

Cs

Iteration 3) Because x, 1s x,, reflect x, - ~
// — 7,r \
through the center between x, and x,. — x, 0.9 — \
Because /(x,) < f(x,) and f(x;) 08 ] f/’;’ \
perform the expansion — x,, 0.7 yd /’ A ‘,\
— Triangle 4 : x,, x;, x 06 l/// g // A C:’ /7 l V4
4> 50 A 05 / / // / ( /’é -
. . el ,e
Iteration 4) Because x, is x,, reflect x, 0.4 / { \\ 4 //
through the center between x; and x,. — x; 0.3 ! \; ] ///
N ~__ — // 7
Because f(x, ) > f(x,),go to the next iteration. 0.2 N — i
’ 3
— Triangle 5 : x,, x,, X, 0.1 S /’/
1.0 2.0 3.0 4.0 5.0 6.0 7.0 80 g

77
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3.3 Direct Search Method

2. Nelder & Mead Simelex Method (12/14): Examele

Iteration 5) Because x; 1s x,, reflect x;

through the center between x, and x,. — x,

Cs

®
Because /(x,) > f(xy), f(x,) and f(x,), L _
perform the constraction. — x,, 0.9 //, gl N
— Triangle 6 : x,, x,, X, 0.8 2 — ; ,/; e \\
. . 0.7 / // P // 7 J
Iteration 6) Because x, 1s x,, reflect x, 0.6 y //// // A C:) » /
through the center between x, and x,. = x, 0.5 // {/ < ( — ,/é 7 -
Because () > f (x,). £ (5) and f () <f (e o4—f—HH-{ ‘j/ﬁ i
contract the simplex toward x, — x, 0.3 N~ = /// v
. . /
— Triangle 7 : x,, xg, X, *2 N — |
0.1 S ——
1.0 2.0 3.0 4.0 5.0 6.0 7.0 80 g
e ESS82 SYstem |
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3.3 Direct Search Method
2. Nelder & Mead Simelex Method (13/14): Examele

Iteration 7) Because x; 1s x,, reflect x, Ce
through the center between x, and x,. — x, - =
1 . \\
Because f(x,) < (%), £(%,), 0s AL ~
preforme the expansion — x,, . 0.8 e H e ~\
: : AN AT ¥ e= \ \
— Triangle 8 : x,, x,, X 0.7 7 v
0.6 ,/// / // /) < 7 ’J /
s/l / 4N Al 1 i cn. /
Iteration 8) Because x, . is x,, reflect x, 04 N PraiV Ay
T\ 7
through the center between x, and x,,. — x, 0.3 N ,4/ < //
Because f(x,) > f(x,), f(x,0)and f(x,) < f(x,)02 N | /;
contract the simplex toward x, — x;, 01 NS —
— Triangle 9 : x,, x,,, X 1.0 2.0 3.0 4.0 5.0 6.0 7.0 80 s

K SYstem :
Design 79
Computer Aided Ship Design, I-3 Unconstrained Optimization Method, Fall 2013, Myung-Il Roh e Dl Laboratory |



3.3 Direct Search Method

2. Nelder & Mead Simelex Method (14/14): Examele

Iteration 9) Because x, 1s x;,, reflect x,

through the center between x,, and x,,. = x,

Because /(x,) > f(x,). /(5 )and f(x) < f(x)

contract the simplex toward x. - x,,.

— Triangle 10 : x,,, x,,, X,

x,(7, 0.1) x,(7.5, 0.1)

x,(7.5, 0.2) x,(6.75, 0.25)
x5(7.375, 0.475) x,(6.1875, 0.6875)
x,(6.8125, 0.9125)  x,(6.9375, 0.6375)
X,(6.4375, 0.5375)  x,,(5.0625, 0.5625)

x,,(5.21875, 0.66875) x,,(4.6171875, 0.5796875)
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Performing 10 times iterations, we can recognize that the simplex(triangle) has the
tendency to approach the result obtained by the ‘Hooke & Jeeves direct search

method’.
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