Planning Procedure of Naval Architecture and Ocean Engineering

Ship Stability

September 2013

Myung-II Roh

Department of Naval Architecture and Ocean Engineering Seoul National University

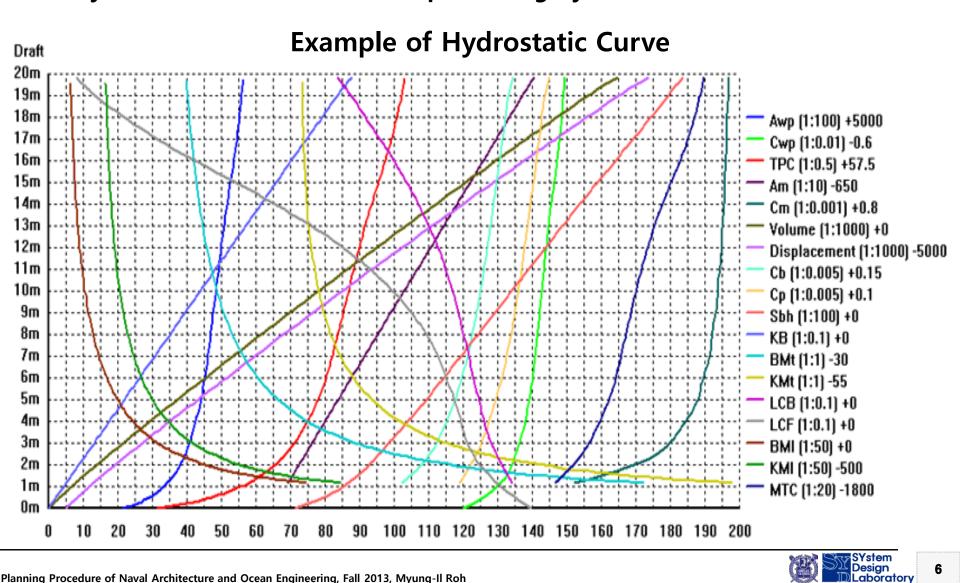
Ship Stability

- ☑ Ch. 1 Introduction to Ship Stability
- ☑ Ch. 2 Review of Fluid Mechanics
- ☑ Ch. 3 Transverse Stability
- ☑ Ch. 4 Initial Transverse Stability
- ☑ Ch. 5 Free Surface Effect
- ☑ Ch. 6 Inclining Test
- ☑ Ch. 7 Longitudinal Stability
- ☑ Ch. 8 Curves of Stability and Stability Criteria
- ☑ Ch. 9 Numerical Integration Method in Naval Architecture
- ☑ Ch. 10 Hydrostatic Values
- ☑ Ch. 11 Introduction to Damage Stability
- ☑ Ch. 12 Deterministic Damage Stability
- ☑ Ch. 13 Probabilistic Damage Stability (Subdivision and Damage Stability, SDS)

Ch. 10 Hydrostatic Values

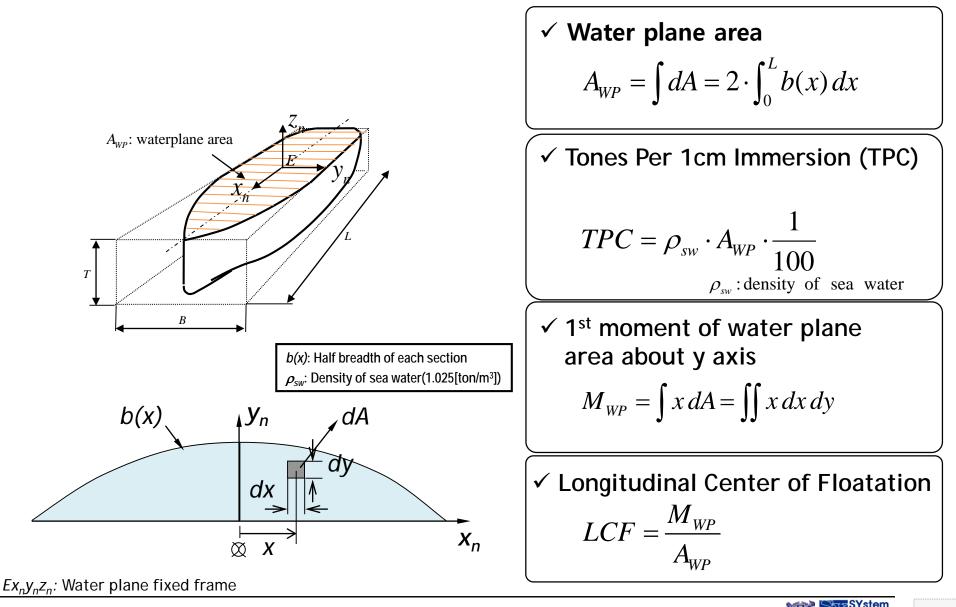
Hydrostatic Values Trim and Stability Calculation of a 3,700TEU Container Ship Including Hydrostatic Values More Examples

3


Hydrostatic Values

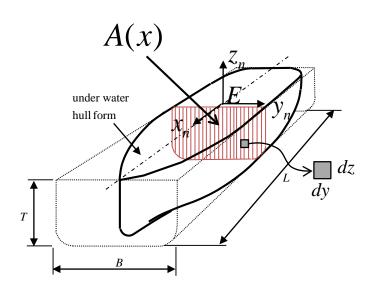
Hydrostatic Values

- ☑ Draft_{Mld}, Draft_{Scant}: Draft from base line, moulded / scantling (m)
- \square Volume_{Mld}(∇), Volume_{Ext}: Displacement volume, moulded / extreme (m³)
- **Displacement**_{Mld}(Δ), Displacement_{Ext}: Displacement, moulded / extreme (ton)
- ☑ LCB: Longitudinal center of buoyancy from midship (Sign: Aft / + Forward)
- ☑ LCF: Longitudinal center of floatation from midship (Sign: Aft / + Forward)
- ☑ VCB: <u>Vertical center of b</u>uoyancy above base line (m)
- ☑ TCB: <u>Transverse</u> <u>center</u> of <u>b</u>uoyancy from center line (m)
- ☑ KM_T: Transverse metacenter height above base line (m)
- ☑ KM_L: Longitudinal metacenter height above base line (m)
- ☑ MTC: <u>Moment to change trim one centimeter</u> (ton-m)
- ☑ TPC: Increase in Displacement_{Mld} (ton) per one centimeter immersion
- ☑ WSA: <u>Wetted</u> <u>surface</u> <u>a</u>rea (m²)
- \square C_B: <u>B</u>lock coefficient
- \square C_{WP}: <u>W</u>ater <u>p</u>lane area coefficient
- \square C_M: <u>M</u>idship section area coefficient
- \square C_P: <u>P</u>rismatic coefficient
- ☑ Trim: Trim(= after draft forward draft) (m)


Hydrostatic Curve

Hydrostatic curve: Curve for representing hydrostatic values \checkmark

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh


Water Plane Area(A_{WP}), Tones Per 1cm Immersion(*TPC*), Longitudinal Moment of Area(L_{WP}), Longitudinal Center of Floatation(*LCF*)

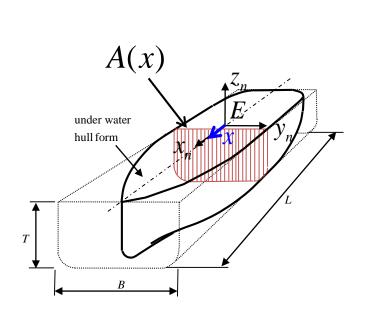
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Design

Sectional Area(A), Displacement Volume(∇)

✓ Sectional Area
$$A(x) = \int dA = \iint dy \, dz$$

✓ Displacement volume


$$\nabla = \int dV = \iiint dx \, dy \, dz$$
$$= \int \left(\iint dy \, dz \right) dx$$
$$\Rightarrow A(x)$$

 $\therefore \nabla = \int A(x) dx$

After calculating each sectional area, <u>displacement</u> <u>volume</u> can be calculated by integration of section area over the length of a ship.

Longitudinal Moment of Displacement Volume ($M_{V,L}$) and Longitudinal Center of Buoyancy (LCB)

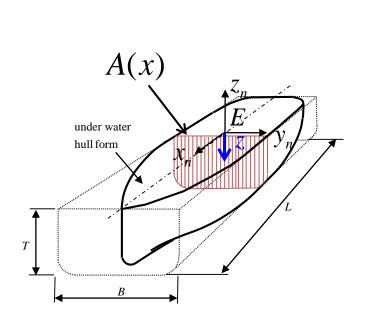
 $Ex_n y_n z_n$: Water plane fixed frame

Longitudinal moment of
displacement volume

$$M_{\nabla,L} = \int x \, dV$$

 $= \iiint x \, dx \, dy \, dz$
 $= \int \left(\iint x \, dy \, dz \right) dx$
 $\implies M_{A,L}$
 $M_{A,L}$: Longitudinal moment of
area about y axis
 $\therefore M_{\nabla,L} = \int M_{A,L} dx$

After calculating each longitudinal moment of sectional area about the y axis($M_{A,L}$), longitudinal moment of displacement volume can be calculated by integration of longitudinal moment of section area over the length of ship.


✓ Longitudinal Center of Buoyancy

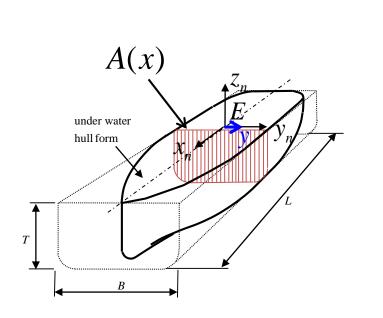
$$LCB = \frac{M_{\nabla,L}}{\nabla}$$

9

Vertical Moment of Displacement Volume ($M_{V,V}$) and Vertical Center of Buoyancy (VCB or KB)

 $Ex_ny_nz_n$: Water plane fixed frame

Vertical moment of
displacement volume
$$M_{\nabla,V} = \int z \, dV$$
$$= \iiint z \, dx \, dy \, dz$$
$$= \int \left(\iint z \, dy \, dz \right) dx$$
$$\Longrightarrow M_{A,V}$$
$$M_{A,V} \text{ Vertical moment of area about y axis}$$
$$\therefore M_{\nabla,V} = \int M_{A,V} dx$$


After calculating each vertical moment of sectional area about the y axis($M_{A,V}$), vertical moment of displacement volume can be calculated by integration of vertical moment of section area over the length of ship.

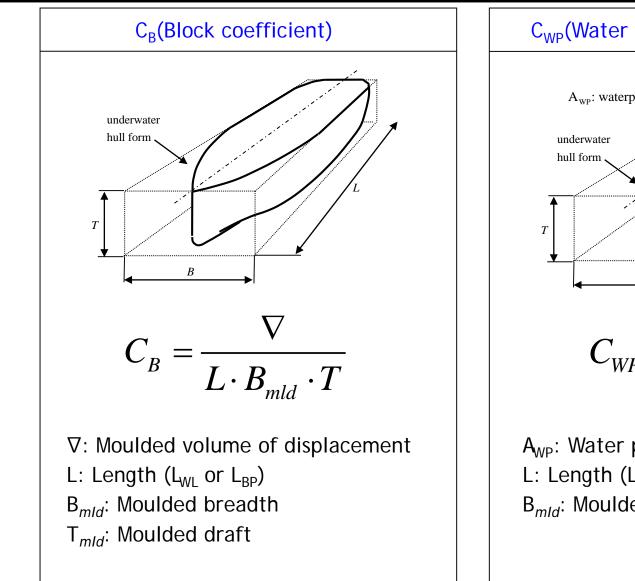
✓ Vertical Center of Buoyancy

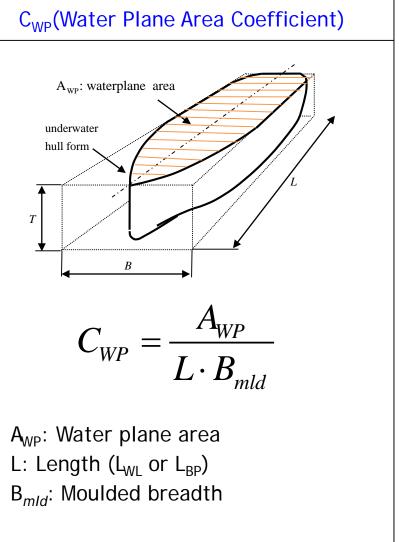
$$VCB = KB = \frac{M_{\nabla, V}}{\nabla}$$

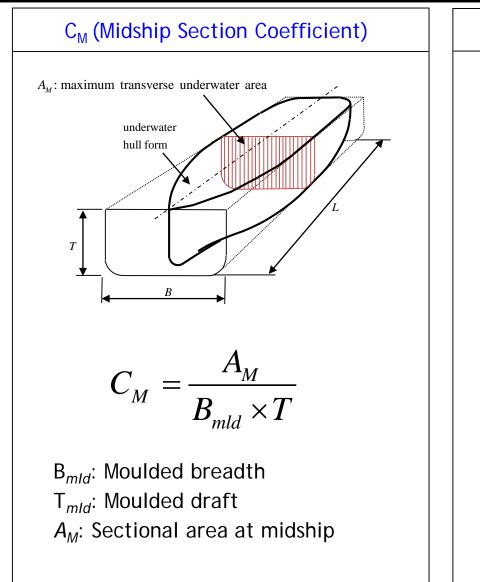
Transverse Moment of Displacement Volume ($M_{V,T}$) and Transverse Center of Buoyancy (TCB)

 $Ex_ny_nz_n$: Water plane fixed frame

Transverse moment of
displacement volume
$$M_{\nabla,T} = \int y \, dV$$
$$= \iiint y \, dx \, dy \, dz$$
$$= \int \left(\iiint y \, dy \, dz \right) dx$$
$$\implies M_{A,T}$$
$$M_{A,T} : \text{Vertical moment of area about z axis}$$
$$\therefore M_{\nabla,T} = \int M_{A,T} \, dx$$


After calculating each transverse moment of sectional area about the z axis($M_{A,T}$), transverse moment of displacement volume can be calculated by integration of transverse moment of section area over the length of a ship.


✓ Transverse Center of Buoyancy $TCB = \frac{M_{\nabla,T}}{\nabla}$


11

Block Coefficient(C_B) and Water Plane Area Coefficient(C_{WP})

Midship Section Coefficient(C_M) and Prismatic Coefficient (C_P)

C_P(Prismatic Coefficient) $C_P = \frac{\mathbf{v}}{L_{RP} \cdot A_M}$ $= \frac{\nabla}{L_{BP} \cdot B_{mld} \cdot T \cdot C_M} = \frac{C_B}{C_M}$ ∇ : Moulded volume of displacement

 ∇ : Moulded volume of displacement L: Length (L_{WL} or L_{BP}) B_{mld}: Moulded breadth T_{mld}: Moulded draft C_M: Midship section coefficient C_B: Block coefficient

Transverse Metacentric Radius(*BM*), Longitudinal Metacentric Radius(BM_I), Moment to change Trim 1 cm(MTC), and Trim

BM

Transverse righting moment = $\Delta \cdot GZ \approx \Delta \cdot GM \cdot \sin \phi$

$$GM = KB + BM - KG$$

$$BM_0 = \frac{I_T}{\nabla} \left(1 + \tan^2 \phi \right) \stackrel{\text{(q)}}{:}$$

(Unit conversion for centimeter)

GM: Transverse metacentric height

KB : Vertical center of displaced volume

BM : Transverse metacentric Radius

KG: Vertical center of gravity

 $BM = \frac{T_T}{T}$

MTC

Moment to change Trim 1 Cm

$$MTC = \Delta \cdot GM_{L} \cdot \frac{1}{L_{BP} \cdot 100}$$

$$GM_L = KB + BM_L - KG$$

If we assume that KB, KG are small than BM₁

$$GM_L \approx BM_L$$

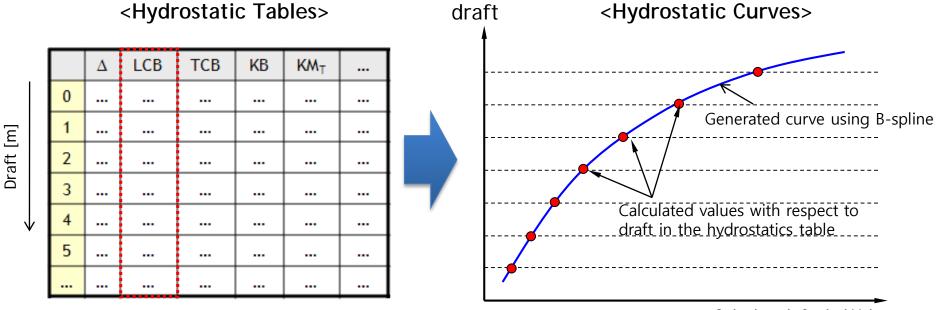
$$\therefore MTC = \Delta \cdot BM_L \cdot \frac{1}{L_{BP} \cdot 100}$$

BM

Longitudinal righting moment = $\Delta \cdot GZ_I = \Delta \cdot GM_I \cdot \sin \theta$ $GM_{I} = KB + BM_{I} - KG$ ϕ : Angle of heel) $(\theta: Angle of trim)$ $BM_{L0} = \frac{I_L}{\nabla} (1 + \tan^2 \theta)$: Considering the change of the center of buoyancy in vertical direction Considering the change of the center of buoyancy in vertical direction $BM_L = \frac{I_L}{\nabla}$: Without considering the change of the : Without considering the change of the center of buoyancy in vertical direction center of buoyancy in vertical direction GM_{I} : Longitudinal metacentric height KB : Vertical center of displaced volume BM_{I} : Longitudinal metacentric Radius KG: Vertical center of gravity Trim

$$Trim[m] = \frac{\Delta \cdot TrimLever}{MTC \cdot 100}$$
$$MTC = \frac{\Delta \cdot GM_{L}}{100 \cdot L_{BP}}$$

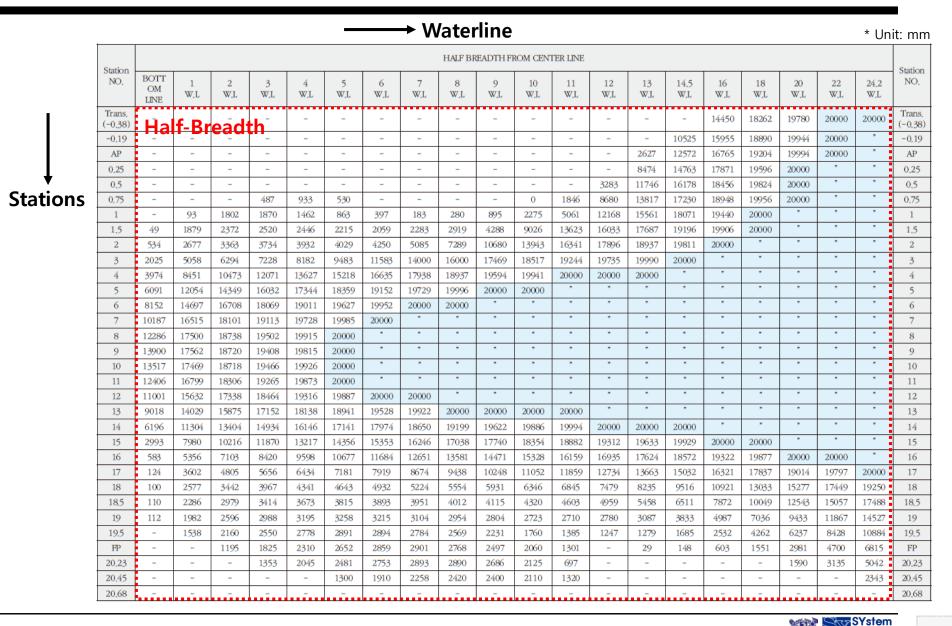
Transverse Moment Arm = LCB - LCG


Design aboratorv

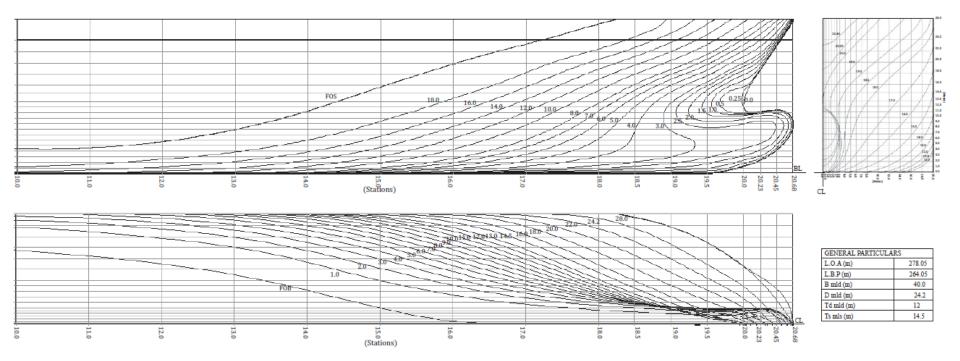
14

Generation of Hydrostatic Tables and Hydrostatic Curves

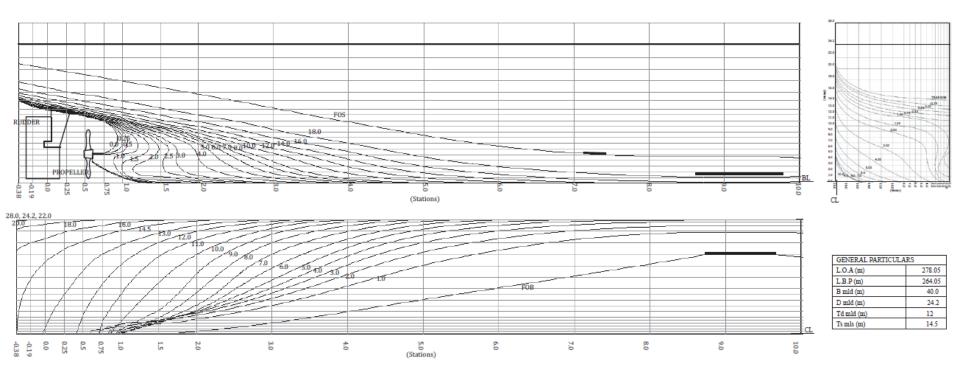
Given: Offsets table, Formulas for calculating hydrostatic values Find: Hydrostatic tables as function of draft, Hydrostatic curves


✓ Calculation of hydrostatic values as function of draft

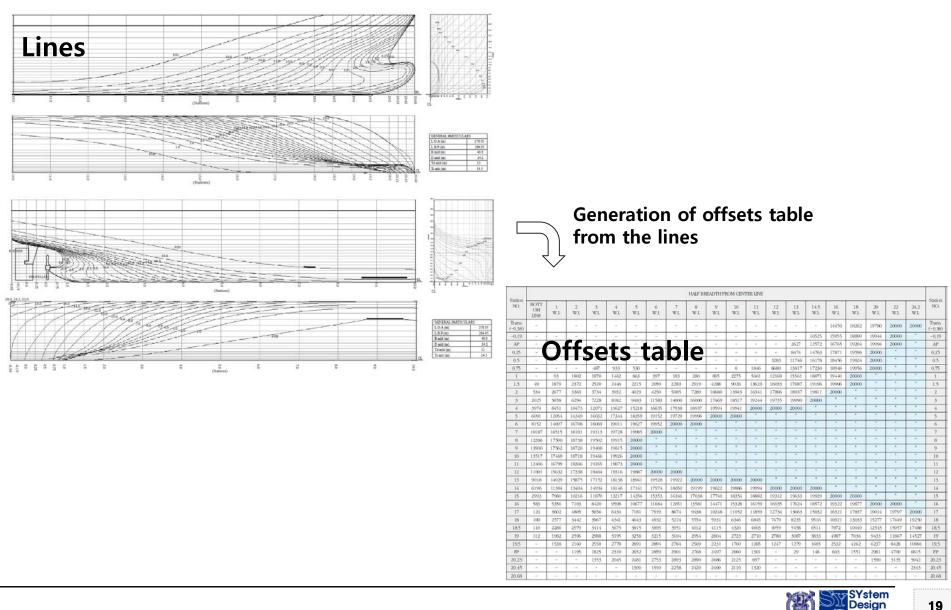
Calculated, Scaled Value


Example of Offsets Table of a 6,300TEU Container Ship

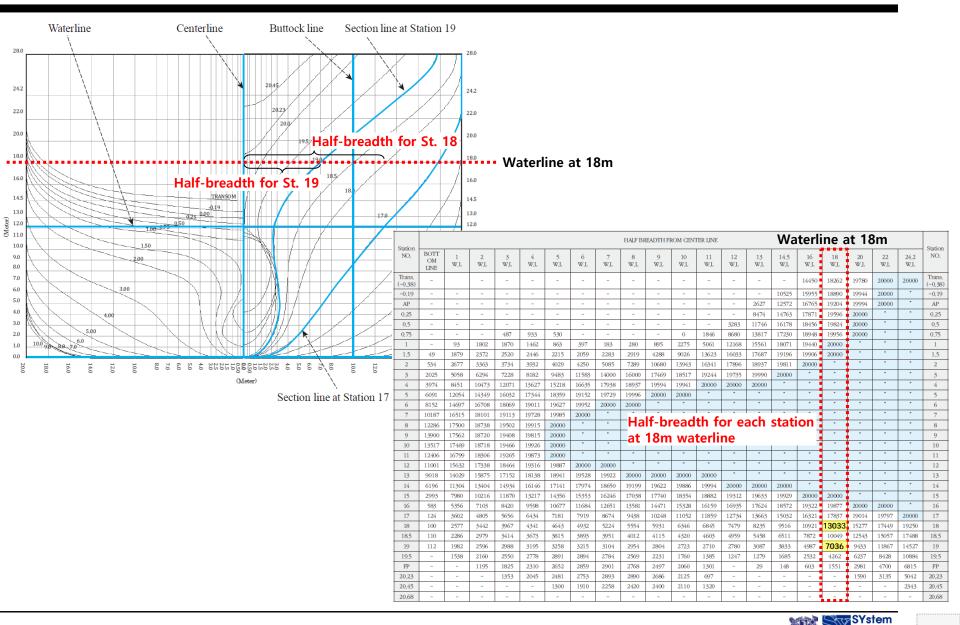
Design


Laboratorv

Example of Lines of a 6,300TEU Container Ship - Fore Body



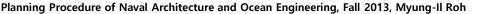
Example of Lines of a 6,300TEU Container Ship - After Body



Relationship Between Lines and Offsets Table (1/2)

Laboratory

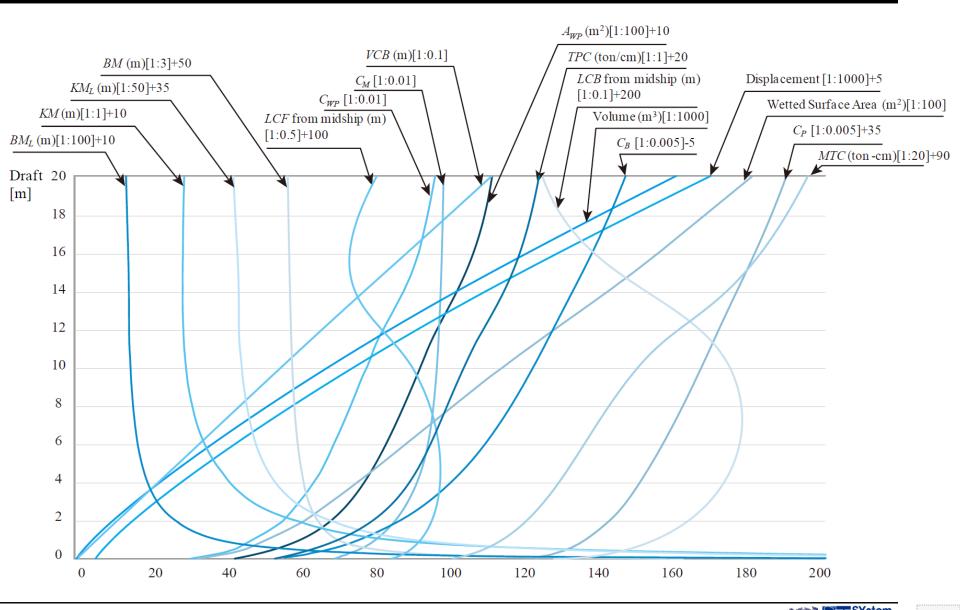
Relationship Between Lines and Offsets Table (2/2)



Design

Laboratory

Example of Hydrostatic Tables of a 6,300TEU Container Ship (1/2)


DRAFT (M)	DISP MLD(M ³)	DISP EXT(Ton)	<i>VCB</i> (M)	LCB (M)	LCF (M)	<i>KM</i> (M)	<i>KM</i> _{<i>L</i>} (M)	MTC (T-M)	TPC (Ton)	$WSA (M^2)$	C_B	C_{W}	C_P	См
4,000	22054.0	22720.3	2,171	-2.732	-1.546	31.537	926.651	795.5	68,5	7474.0	0.5248	0.6332	0.5769	0.9097
4.050	22389,1	23064,3	2,199	-2,714	-1.535	31.314	916,847	798.9	68,7	7507.8	0,5261	0.6349	0.5777	0.9107
4,100	22726,2	23410.3	2,226	-2.697	-1.523	31.098	907,266	802,4	68.9	7541.5	0.5275	0.6367	0,5786	0.9118
4,150	23053.3	23756.4	2,253	-2,680	-1,511	30,889	897.964	805.9	69.1	7575.3	0,5288	0.6384	0.5794	0.9128
4,200	23400.4	24102,4	2,281	-2.663	-1,500	30,686	888,93	809.3	69.3	7609,1	0.5302	0.6402	0,5802	0.9138
4.250	23737.5	24448.5	2,308	-2.646	-1,488	30.490	880,152	812,8	69.5	7642.9	0.5314	0,6420	0,5810	0.9147
4.300	24077.3	24797.2	2.336	-2.630	-1,476	30.300	871.537	816.3	69.7	7676.7	0.5327	0.6437	0,5818	0.9157
4.350	24419.0	25148,0	2,363	-2.614	-1,465	30.115	863,102	819,8	69.9	7710,5	0.5341	0,6454	0,5826	0.9166
4,400	24760.7	25498,8	2.391	-2.598	-1.453	29.936	854.9	823.3	70,1	7744.3	0.5354	0.6472	0,5835	0.9176
4,450	25102,4	25849,6	2,418	-2,582	-1.441	29.762	846,921	826,7	70.3	7778,1	0.5366	0,6489	0.5843	0.9185
7,500	47233.9	48564.4	4.087	-2.084	-2,217	21,918	560,803	1023.9	78,2	9736.7	0.5979	0.7224	0,6283	0.9517
7.550	47615.8	48956.4	4.115	-2,086	-2,257	21,852	558,143	1027,2	78.3	9768,7	0,5988	0.7235	0,6290	0.9520
7,600	47999.0	49349.6	4.142	-2,088	-2.302	21,785	555,428	1030.3	78,4	9800,7	0.5996	0,7246	0,6296	0.9523
7,650	48382,1	49742,8	4,170	-2.090	-2.348	21,722	552,756	1033.4	78,6	9832.7	0,6004	0,7256	0.6303	0.9527
7,700	48765.2	50136.0	4.197	-2.092	-2.393	21.659	550,126	1036.6	78.7	9864,6	0.6013	0,7267	0.6309	0.9530
7.750	49148.4	50529.3	4,224	-2.094	-2,438	21,598	547.537	1039.7	78,8	9896,6	0,6021	0,7277	0.6316	0.9533
7,800	49533.1	50924,1	4,252	-2.097	-2,483	21,538	544,992	1042.9	78.9	9928,6	0,6029	0,7288	0.6322	0.9536
7,850	49919.1	51320.2	4.279	-2,100	-2,527	21,481	542,488	1046,1	79.0	9960.7	0.6037	0,7298	0.6329	0.9539
7.900	50305.0	51716.3	4.307	-2.104	-2.571	21,424	540,023	1049.2	79.1	9992.8	0.6045	0.7309	0.6335	0.9542
7.950	50690.9	52112.3	4.334	-2,107	-2.615	21.369	537.595	1052.4	79.2	10024.8	0.6053	0.7319	0.6342	0.9544

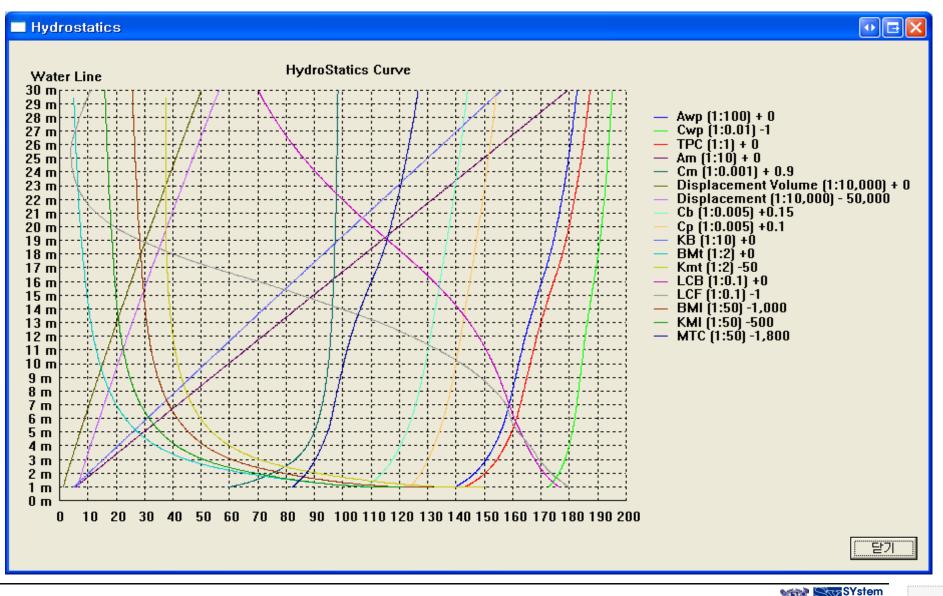
Example of Hydrostatic Tables of a 6,300TEU Container Ship (2/2)

DRAFT (M)	DISP MLD(M ³)	DISP EXT(Ton)	<i>VCB</i> (M)	LCB (M)	LCF (M)	<i>KM</i> (M)	<i>KM</i> _{<i>L</i>} (M)	MTC (T-M)	TPC (Ton)	$WSA (M^2)$	C_B	Cw	C_P	C _M
11.750	81677.2	83912.8	6,431	-3.298	-8,607	18,919	430,346	1347.2	88,1	12595.4	0.6593	0,8134	0,6803	0.9692
11,800	82107.4	84354.3	6.459	-3.326	-8,710	18,912	430,028	1353.1	88,2	12631.3	0,6600	0,8148	0,6809	0.9693
11,850	82539.1	84797.3	6,487	-3.355	-8,816	18,905	429,787	1359.4	88,4	12667,6	0,6606	0,8162	0,6815	0.9695
11.900	82970.8	85240.4	6,515	-3.384	-8.923	18,900	429.549	1365.5	88,5	12703.9	0.6613	0,8176	0,6820	0.9696
11.950	83402.4	85683.4	6.543	-3.413	-9.030	18.894	429.313	1371.9	88.7	12740.2	0.6620	0.8190	0.6826	0.9697
12,000	83634.1	86126,4	6.571	-3.442	-9.136	18,889	429.081	1378,1	88,8	12776,5	0,6626	0,8204	0.6832	0.9698
12,050	84267.9	86571.6	6.599	-3.471	-9.233	18,879	428,885	1384.5	89.0	12812,5	0.6633	0,8218	0.6838	0.9700
12,100	84703.3	87018.4	6.627	-3.501	-9.323	18,866	428,717	1391.0	89.1	12848.3	0.6639	0.8231	0.6844	0.9701
12,150	85138,6	87465,1	6,655	-3.531	-9.413	18,853	428,551	1397.5	89.3	12884.0	0,6646	0,8245	0,6850	0.9702
12,200	85573.9	87911.9	6,683	-3.561	-9.503	18,840	428,387	1404.0	89.4	12919.8	0,6652	0,8258	0,6856	0.9703
12,250	86009.2	88358.7	6,711	-3.591	-9.593	18,826	428,224	1410.5	89.5	12955.6	0.6659	0,8271	0,6862	0.9705
14.250	104062,4	106885,2	7.843	-4.937	-12,788	18,585	423.63	1683,1	95.4	14391.6	0.6924	0,8808	0.7105	0.9746
14.300	104528,0	107363.1	7,872	-4.973	-12.837	18,604	423.328	1689.2	95.5	14426,2	0.6931	0,8819	0.7111	0.9747
14.350	104995.0	107842,2	7.901	-5.008	-12,880	18,683	423.056	1695.6	95.6	14461.0	0,6938	0,8831	0,7117	0.9748
14,400	105451.9	108321.3	7.929	-5.042	-12.940	18,683	422,786	1701.9	95.7	14495.8	0.6944	0,8843	0,7123	0.9749
14.450	105928,8	108800,4	7.958	-5.077	-12.992	18,682	422.519	1708,2	95.9	14530.6	0.6951	0,8854	0,7129	0.9750
14.500	106395.7	109279.6	7.986	-5.112	-13.043	18,682	422,255	1714.5	96.0	14565.4	0.6957	0,8866	0.7135	0.9751
14.550	106864,4	109760.5	8,015	-5.147	-13.090	18,682	422,01	1720.9	96,1	14600.3	0.6964	0,8878	0,7141	0.9751
14.600	107334.5	110242,8	8,043	-5.182	-13.133	18,681	421.779	1727.4	96,2	14635.1	0.6971	0,8889	0,7148	0.9752
14.650	107804.5	110725,1	8,072	-5.217	-13,176	18,681	421.55	1733.9	96,4	14970.0	0.6977	0.8901	0.7154	0.9753
14,700	108274.5	111207,4	8,101	-5.251	-13.219	18,681	421.323	1740.3	96.5	14704.9	0,6984	0.8912	0,7160	0.9754

Example of Hydrostatic Curves of a 6,300TEU Container Ship

Example of Programming for Calculation of the Hydrostatics - Example of Hydrostatic Tables of a 320K VLCC (1/2)

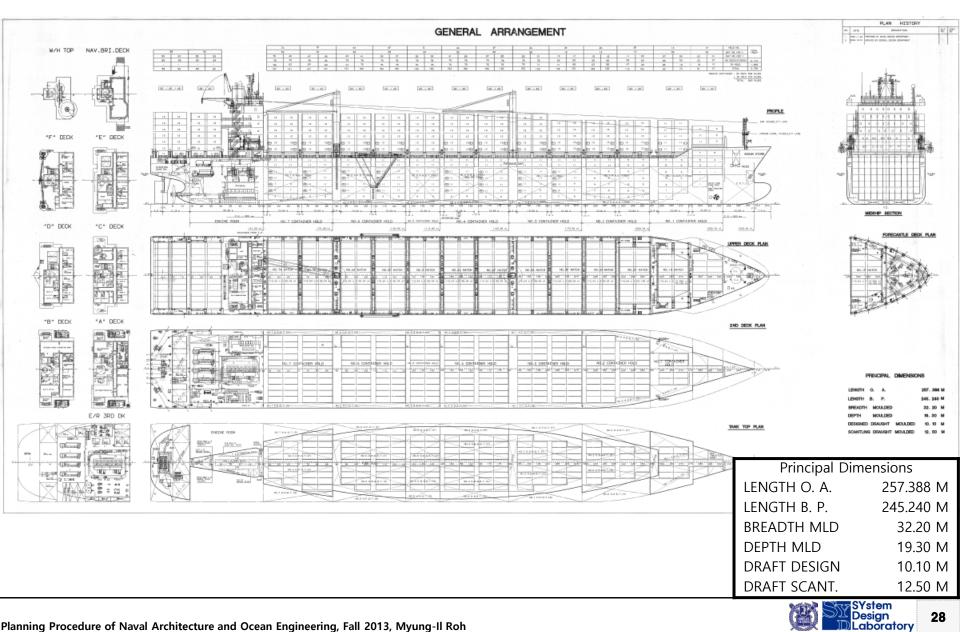
Draft	Awp	Cwp	TPC	Am	Cm	Disp. Vol.	Dispacement	Cb	Ср	
1	13969.707634	0.727589	143.189503	57.595373	0.959923	13274.704872	13606.572494	0.691391	0.720257	
2	14665.449669	0.763826	150.320859	117.023844	0.975199	27625.670041	28316.311792	0.719418	0.737715	
3	15077.051700	0.785263	154.539780	176.973600	0.983187	42515.292743	43578.175062	0.738113	0.750735	
1	15357.591332	0.799875	157.415311	236.973600	0.987390	57741.104204	59184.631810	0.751837	0.761439	
;	15581.372337	0.811530	159.709066	296.973600	0.989912	73212.579375	75042.893859	0.762631	0.770403	
	15749.689195	0.820296	161.434314	356.973600	0.991593	88884.693834	91106.811180	0.771569	0.778110	
	15875.551257	0.826852	162.724400	416.973600	0.992794	104697.883311	107315.330393	0.779002	0.784656	
	15995.591849	0.833104	163.954816	476.973600	0.993695	120634.354919	123650.213792	0.785380	0.790363	
	16108.202427	0.838969	165.109075	536.973600	0.994396	136685.843246	140102.989327	0.791006	0.795464	
0	16220.139230	0.844799	166.256427	596.973600	0.994956	152848.654175	156669.870529	0.796087	0.800123	
1	16334.646305	0.850763	167.430125	656.973600	0.995415	169122.501317	173350.563850	0.800769	0.804458	
2	16456.300612	0.857099	168.677081	716.973600	0.995797	185509.431357	190147.167141	0.805162	0.808561	
3	16586.144990	0.863862	170.007986	776.973600	0.996120	202010.815322	207061.085705	0.809338	0.812491	
4	16733.101975	0.871516	171.514295	836.973600	0.996397	218662.950551	224129.524315	0.813478	0.816420	
5	16880.258424	0.879180	173.022649	896.973600	0.996637	235526.994120	241415.168973	0.817802	0.820561	
6	17033.256489	0.887149	174.590879	956.973600	0.996848	252548.055106	258861.756483	0.822097	0.824696	
.7	17190.202935	0.895323	176.199580	1016.973600	0.997033	269669.514686	276411.252553	0.826193	0.828652	
18	17330.470220	0.902629	177.637320	1076.973600	0.997198	286937.720924	294111.163948	0.830260	0.832593	
19	17450.827341	0.908897	178.870980	1136.973600	0.997345	304340.487982	311949.000181	0.834267	0.836487	
20	17554.763112	0.914311	179.936322	1196.973600	0.997478	321853.728657	329900.071874	0.838161	0.840280	
1	17654.425395	0.919501	180.957860	1256.973600	0.997598	339467.205809	347953.885955	0.841933	0.843960	
2	17745.043330	0.924221	181.886694	1316.973600	0.997707	357175.445606	366104.831746	0.845586	0.847529	
23	17829.121813	0.928600	182.748499	1376.973600	0.997807	374971.328289	384345.611496	0.849120	0.850986	
24	17906.567070	0.932634	183.542312	1436.973600	0.997898	392848.739497	402669.957984	0.852536	0.854332	
25	17977.456424	0.936326	184.268928	1496.973600	0.997982	410799.466249	421069.452905	0.855832	0.857562	
26	18042.453063	0.939711	184.935144	1556.973600	0.998060	428815.884445	439536.281557	0.859006	0.860676	
27	18109.462826	0.943201	185.621994	1616.973600	0.998132	446896.925743	458069.348887	0.862070	0.863683	
28	18169.982624	0.946353	186.242322	1676.973600	0.998199	465040.875432	476666.897318	0.865031	0.866592	
29	18227.152414	0.949331	186.828312	1736.973600	0.998261	483242.386920	495323.446593	0.867892	0.869404	
30	18281.613265	0.952167	187.386536	1796.973600	0.998319	501498.412094	514035.872397	0.870657	0.872123	
(



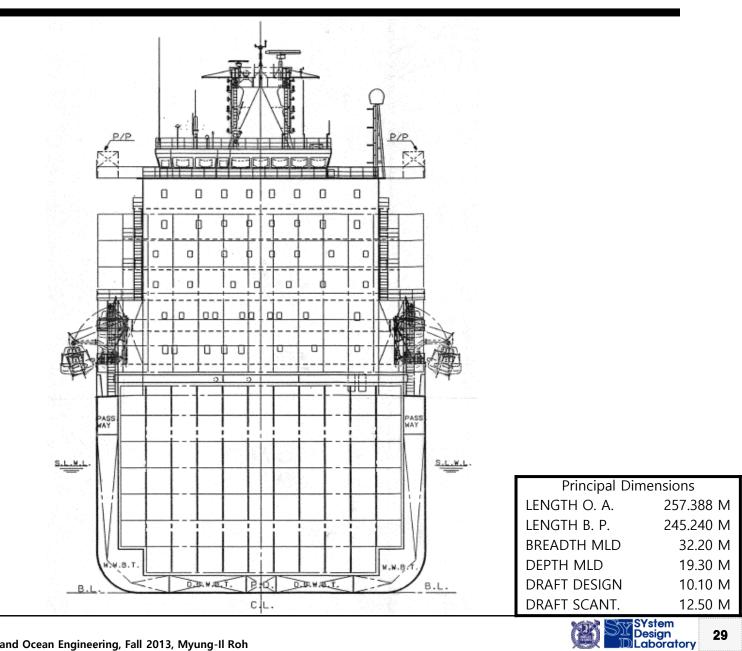
Example of Programming for Calculation of the Hydrostatics - Example of Hydrostatic Tables of a 320K VLCC (2/2)

KB	BMt	KMt	LCB	LCF	BMI	KMI	MTC	Wetted Surface
0.509932	249.279769	249.789701	17.634696	16.988722	5579.686819	5580.196750	2314.646744	14102.0
1.025653	131.559866	132.585519	17.124977	16.375976	2962.881019	2963.906672	2557.861669	15079.4
1.543595	89.894069	91.437664	16.785825	15.944990	2045.756860	2047.300456	2717.998493	15882.8
2.060474	68.385545	70.446019	16.518405	15.612685	1570.949684	1573.010157	2834.636543	16618.7
2.576277	55.320467	57.896744	16.287570	15.207640	1281.933552	1284.509829	2932.926936	17331.6
3.092244	46.498881	49.591125	16.069941	14.941734	1081.449552	1084.541796	3003.884761	18026.0
3.607174	40.131690	43.738864	15.890147	14.769625	932.964856	936.572030	3052.482676	18706.3
4.121509	35.310328	39.431836	15.716638	14.383665	824.011114	828.132622	3106.376536	19367.8
4.635703	31.535720	36.171423	15.530695	13.873811	739.817809	744.453512	3160.081909	20026.6
5.150036	28.499889	33.649925	15.320611	13.206166	673.530311	678.680346	3217.131299	20688.3
5.664717	26.007295	31.672012	15.078149	12.389904	620.434826	626.099544	3279.046555	21355.5
6.179868	23.940218	30.120085	14.798156	11.426314	577.378964	583.558831	3347.163851	22031.3
6.695516	22.197901	28.893417	14.478059	10.313393	542.171603	548.867119	3422.641486	22719.0
7.213571	20.701056	27.914627	14.108800	8.961314	514.225484	521.439055	3513.814422	23436.1
7.736683	19.395506	27.132189	13.686550	7.550015	490.042460	497.779143	3606.819609	24153.6
8.261164	18.253453	26.514617	13.221739	6.036404	469.665833	477.926997	3706.662270	24885.5
8.784388	17.250265	26.034653	12.711991	4.427362	452.305205	461.089592	3811.653906	25648.4
9.309007	16.358312	25.667320	12.168722	3.027873	435.400427	444.709435	3904.150199	26390.8
9.834664	15.558514	25.393178	11.610030	1.874104	418.610230	428.444894	3981.251301	27121.7
10.360640	14.833239	25.193879	11.052104	0.949584	402.322606	412.683246	4046.532211	27828.1
10.886729	14.168543	25.055272	10.508656	0.314228	387.475682	398.362411	4110.477717	28519.8
11.412880	13.555606	24.968487	9.990360	-0.119337	373.550750	384.963631	4169.473618	29205.2
11.939003	12.987957	24.926960	9.503047	-0.379617	360.593551	372.532554	4225.382593	29882.6
12.465035	12.463030	24.928065	9.049601	-0.523423	348.430560	360.895595	4277.515818	30554.9
12.990852	11.977942	24.968794	8.629644	-0.588068	336.938839	349.929691	4325.446727	31223.2
13.516351	11.528007	25.044358	8.242049	-0.578749	326.080741	339.597092	4369.643798	31887.8
14.041601	11.109971	25.151572	7.887679	-0.442092	316.247188	330.288788	4416.559250	32557.5
14.566638	10.721379	25.288016	7.565974	-0.286588	306.814475	321.381113	4458.789754	33226.7
15.091404	10.360160	25.451564	7.274229	-0.103187	297.903898	312.995302	4498.743464	33896.1
15.615903	10.023641	25.639544	7.010481	0.115336	289.495842	305.111745	4536.928276	52901.3

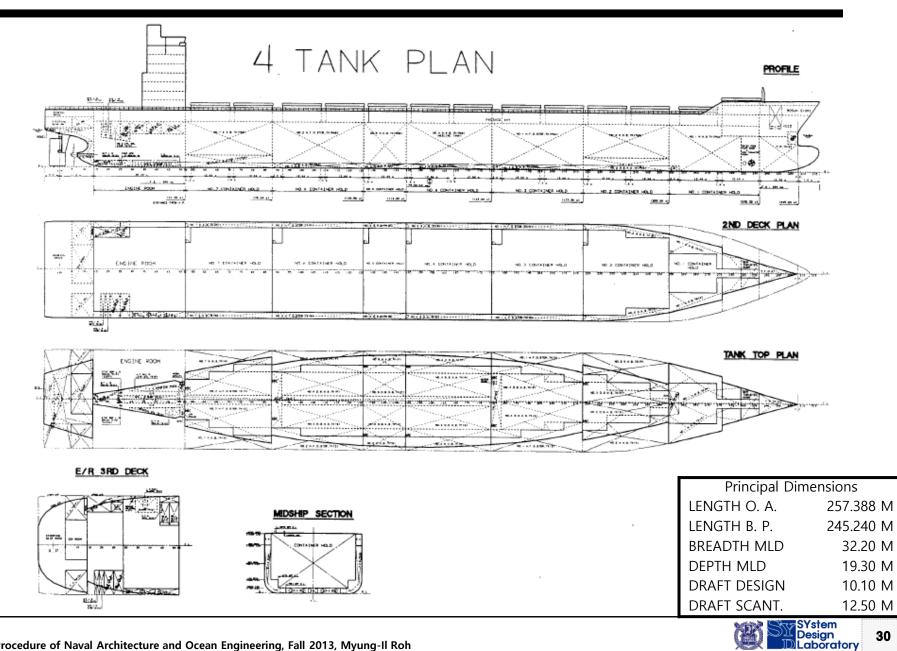
Example of Programming for Calculation of the Hydrostatics - Example of Hydrostatic Curves of a 320K VLCC

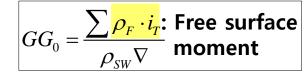

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-II Roh

Design


Laboratory

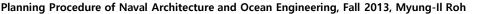
Trim and Stability Calculation of a 3,700TEU Container Ship Including Hydrostatic Values


General Arrangement(G/A) of a 3,700TEU Container Ship


Midship Section in G/A

Tank Plan

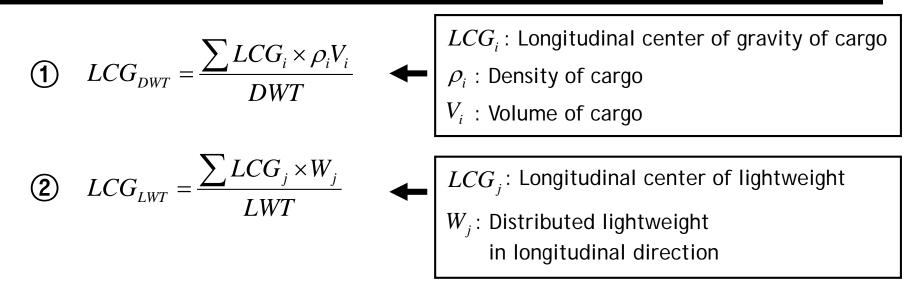
Tank Summary Table (1/2)



Name	Specific Gravi	ty Fillir	ng Ratio*	Ex) 1,	214.6×0	0.99 = 1	,202.4
Heavy Fuel Oil	0.990		98 %	1.	118.6×0	.99 = 1.	107.4
				,		•	
HEAVY FUEL OIL	TANKS						
						(S.G.=	.990)
l			CAPACITIES	s	100%		
COMPARTMENT	LOCATION (FR.NO.)	VOLUME	VOLUME	WEIGHT	L.C.G	v.c.g	MAX. MT OF
		100%FULL	98%FULL	98%FULL	FROM	ABOVE	INERTIA
 == = = = = = = = = = = = = = = = = =		(M**3)	(M**3)	(TONNES)	A.P (M)	B.L(M)	(M**4)
NO.1 H.F.O TK (1	P 1 1	1239.3	1214.6	1202.4	159.046	6.949	
NO.1 H.F.O TK (1)	/ / / /	1239.3 1141.5	1214.6 1118.6	1202.4 1107.4	159.046 85.6921	6.949 7.112	
NO.2 H.F.O TK (, ,	1141.5	1118.6	1107.4	85.6921	7.112	
NO.3 H.F.O TK (1		593.9	582.0	576.2	57.377	2.352	
NO.3 H.F.O TK (S	, , ,	593.9	582.0	576.2	57.377	2.352	
HFO SERV. TK(P) NO.1 HFO SETT. 7	- 44- 52 [K(P) 48- 52]	59.3 122.5	58.1	57.5	38.2131	13.142	
NO.2 HFO SETT. 1		117.2	114.9	118.8	40.010 36.813	10.887	
			*=======				TERRITER
TOTAL	1	6248.4	6123.4	6062.0			1

To be used for calculation of

FSM(Free Surface Moment)


* In general, heavy fuel oil is not fully loaded in the tank because of the vaporized gas, that is, oil mist.

Water Ballast Tank		(S.G	.= 1.025)	Diesel Oil Tar	۱k			(S.G.= .860)
LOCATION	CAPACITIES	100% FULL	MAX. MT			CAPACITIES	100% FU	
COMPARTMENT (FR.NO)	100% FULL 100% FULL (M**3) (TONNES)	L.C.G V.C.G FROM ABOVE A.P (M) B.L(M)	OF INERTIA (M**4)		(FR.NO.) VOLUME	VOLUME WEIGHT 98%FULL 98%FUL	L.C.G V L FROM A	BOVE INERTIA
F.P TK (C) 292-31 NO.1 W.W.B TK (P) 254-284 NO.1 W.W.B TK (S) 254-284 NO.2 D/B W.B TK (S) 218-254 NO.2 D/B W.B TK (S) 218-254	972.0 996.3 972.0 996.3 528.1 541.3	240.444 5.960 212.092 8.003 212.092 8.003 186.645 2.136 186.645 2.136	312 312 868	D.O SERV. TK (P) D.O STOR. TK (P)	14- 29 56.1 24- 29 358.3		16.855 1	
NO.2 W.W.B TK (P) 218-254 NO.2 W.W.B TK (S) 218-254 NO.3 D/B W.B TK (P) 184-218	965.2 989.3 965.2 989.3	187.8931 9.662 187.8931 9.662 187.8931 9.662 159.0251 .852	578 578	TOTAL	} .414.4	406.2 349.3		i
NO.3 D/B W.B TK (S) 184-218 NO.4 D/B W.B TK (P) 144-180 NO.4 D/B W.B TK (S) 144-180 NO.4 W.W.B TK (S) 144-180 NO.4 W.W.B TK (S) 144-180	354.3 363.2 362.4 371.5 362.4 371.5 362.4 371.5 1199.1 229.1 1199.1 229.1	159.025 .852 129.040 .850 129.040 .850 129.040 .850 128.858 6.435 128.858 6.435	1253 1029 1029 475 475	Lubrication C	Dil Tank		(S.G.= .900)
NO.5 D/B W.B TK (P) 126-144	181.2 185.7	107.680 .850 107.680 .850	515 (1	1	CAPACITIES	100% FU	LL
NO.5 W.W.B.TK (P) 126-144 NO.5 W.W.B.TK(S) 126-144 NO.6 D/B W.B.TK (P) 92-126 NO.6 D/B W.B TK (S) 92-126 NO.7 W.W.B TK (P) 52-88 NO.7 W.W.B TK (S) 52-88	605.8 621.0 336.9 345.3 336.9 345.3 906.6 929.2	87.2691 .861 87.2691 .861 54.7971 9.1761	250 971 971 767		(FR.NO.) VOLUME 100%FULL (M**3)	VOLUME WEIGHT 98%FULL 98%FULI (M**3) (TONNES)	L.C.G V FROM A	.C.G OF BOVE INERTIA
A.P TK (C) -2-10	455.2 466.6	6.018 11.899		<pre>M/E L.O SUMP TK(C) M/E L.O SETT. TK(S) M/E L.O STOR. TK(S) </pre>	27- 48 50.6 36- 42 41.7 42- 52 70.8	49.6 44.6 40.8 36.8 69.4 62.5	31.211 1 37.607 1	
Fresh Water Tank		(S.G.	= 1.000 }	NO.1 CYL.OIL TK(S) NO.2 CYL.OIL TK(S) G/E L.O SETT. TK(S) G/E L.O STOR. TK(S)		53.1 47.8 55.7 50.1	18.422 1 14.407 1 16.006 1	3.041 131 3.279 65 3.182 65
LOCATION COMPARTMENT (FR.NO.)	VOLUME WEIGHT 100% FULL (100% FULL	100% FULL L.C.G V.C.G FROM ABOVE A.P (M) B.L(M)	MAX. MT OF INERTIA (M**4)	TOTAL	525.4	514.9 463.5		I
F.W TK (P) 5-14 F.W TK (S) 5-14		7.326 15.113 7.634 15.111	275 295	Miscellaneou				
TOTAL	362.7 362.7				LOCATION	CAPACITIES (100% FULL	
Heavy Fuel Oil Tan	<	(S.	G990)	COMPARTMENT	FRAMES	VOLUME L.C 100% FULL FRO (M**3) A.P	.G V.C.G M ABOVE (M) B.L(M)	OF INERTIA (M**4)
COMPARTMENT (FR.NO.)	CAPACITIES VOLUME VOLUME WE 100%FULL 98%FULL 96% (M**3) (M**3) (TO)	100% FULL GHT L.C.G V.C FULL FROM ABO INES) A.P (M) B.L	(MAX. MT .G OF VE INERTIA (M) (M**4)	ISEWAGE HOLDING TK(P) IBILGE HOLDING TK(C) IS/T L.O DRAIN TK(C) IRESIDUE TK(S) (DIRTY OIL TK (S)	32- 34 14- 25 24- 25 29- 44 29- 36	8.3 26 62.9 16 3.0 19 25.0 30 46.0 26	.402 13.452 .279 1.478 .600 1.695 .577 1.754 .042 13.549	1 75 1 10 4
INO.1 H.F.O TK (S) I 180-218 INO.2 H.F.O TK (P) 68-126 INO.2 H.F.O TK (S) 88-126 INO.3 H.F.O TK (P) 52-88 INO.3 H.F.O TK (S) 52-88 INO.3 H.F.O TK (S) 52-88 INO.3 H.F.O TK (S) 44-52 INO.1 HFO SETT. TK(P) 44-52 INO.1 HFO SETT. TK(P) 44-52	1141.5 1118.6 110 1141.5 1118.6 110 593.9 582.0 57 593.9 582.0 57 593.9 582.1 5 122.5 120.0 17 117.2 114.9 11	12.4 159.046 6.9 17.4 85.692 7.3 17.4 85.692 7.3 16.2 57.377 2.3 16.2 57.377 2.3 17.5 38.213 13.3 18.8 40.010 10.8 37.7 36.813 10.8	112 395 112 395 112 395 352 1126 352 1126 352 1126 352 1126 352 1126 352 112	C.F.W DRAIN TK(S) HFO/LO LEAK O.TK(P) C.W TK (C) F.O OVERFLOW TK ISTUFF.L.O DRAIN TK(P) ISTUFF.L.O DRAIN TK(S)	37- 39 32- 43 44- 47 29- 36 7.3- 14 36- 50 25- 26 25- 26	58.8 31 9.4 36 7.4 26 35.5 9 45.9 35 4.4 20 4.4 20	.422 10.570 .176 10.148 .433 1.666 .438 1.836 .480 3.554 .974 1.525 .403 1.428 .403 1.428	2 61 1 1 6 328 2 2
TOTAL	6248.4 6123.4 606	2.0 (I TOTAL	1	315.4		i

Tank Summary Table (2/2)

 $\begin{cases} LCG_{DWT} : \text{Variable based on Loading Condition} \\ LCG_{LWT} : \text{Location of } \text{LCG}_{\text{LWT}} \text{ is fixed.} \end{cases}$

$$\therefore LCG = \frac{LCG_{DWT} \times DWT + LCG_{LWT} \times LWT}{\Delta}$$

*Lightweight(*LWT*) reflects the weight of vessel being ready to go to sea without cargo and loads. And lightweight can be composed of:

LWT = *Structural weight* + *Outfit weight* + *Machinery weight*

***Deadweight(**DWT**)** is the weight that a ship can load till the maximum allowable immersion(at the scantling draft(T_s)).

And deadweight can be composed of:

DWT= Payload+ Fuel oil + Diesel oil+ Fresh water +Ballast water + etc.

1

25

0

50

74

AP

TONNES 240.0

> 220.0 200.0 180.0

160.0 140.0

120.0 100.0 80.0 60.0 40.0 20.0 0.0 LIGHTWEIGHT DISTRIBUTION DIAGRAM

LIGHT WEIGHT SUMMARY

 W_j LCG_j 3.700 TEU CONZAINER VESSEL Hull No. 1329

	-	Hull No	.: 13	29. 3,70	0 TEU CONT	AINER VESSEL	, · ·	
		NO	AFT END	FORE END	WEIGHT	L.C.G	MOMENT	
		1	-5.000	14.350	616.00	7.000	4312.0	
) (X)	i i i i	2	14.350	43.400	1387.10	31.400	43554.9	
, w	i i i i	3	43.400	232.320	7591.50	128,620	976418.7	
		4	232.320	252.240	732.30	239,280	175224.7	
		5	27.200	41.600	476.40	35.800	17055.1	
		6	.000	245.240	30.00	122,620	3678.6	
	V	7	43.400	232.320	340.00	134.200	45628.0	
	N -	8	-3.600	232.320	119.00	114.400	13613.6	
	- (9	-3.400	2.400	151,90	.000	. 0	
		10	.000	252.240	224.00	120.000	26880.0	
		11	202.240	232.320	137.90	217.000	29924.3	
I I I	· · · · ·	12	43.400	202.240	1053.00	121.700	128150.1	
	FP	13	143.280	146.680	55.00	144.980	7973.9	
TWEIGHT DISTRIBUTION I		14	70.480	73.880	55.00	72.180	3969.9	
		15	14.350	232.320	115.90	114.360	13254.3	
		16	-3.600	232.320	128.00	114.360	14638.1	
Engine		17	232.320	245.240	118.30	238.600	28226.4	
		18	36.000	170.000	3.00	81.000	243.0	
		19	-5.000	4.000	50.00	500	-25.0	
	-+	20	29.000	41.600	15.50	37.100	575.0	
		21	-3.500	4.000	19.20	.000	.0	
		22	4.000	11.200	34.30	7.600	260.7	
		23	41.600	173.900	62.50	105.760	6610.0	
	Bow Thruster	24	226.160	232.320	20.40	229.240	4676.5	
	Emergency Pump	25	239.000	243.000	5.40	241.000	1301.4	
Crane	Line gency rump	26	11.200	232.320	39.20	121.700	4770.6	
		27	11,200	232.320	191.30	121.700	23281.2	
		28	27.200	41.600	214.50	36.000	7722.0	
		29	23.230	37.600	979.00	30.400	29761.6	
		30 31	11.200 5.000	41.600 23.230	289.50 111.30	22.000 11.200	6369.0 1246.6	
		32	12,000	41.600	150.70	28.000	4219.6	
┥┕╧╱╼╼┥╼╼╼╧		32	11.200	41.600	158.60	28.000	4440.8	
		34	11.200	41.600	95.90	28.000	2685.2	
		35	11.200	218.480	165.00	114.240	18849.6	
		36	27.200	41.600	8.50	36.000	306.0	
		37	11.200	41,600	43.00	30.000	1290.0	
		38	27.200	41.600	4.30	36.000	154.8	
99 125 150 175 200 2	226 251 276 301 326 FR.NC	39	27.200	41.600	5.70	36.000	205.2	
	$\sum LCG_j \times W_j$							
	$LUG_{IWT} = $	LIGHT	SHIP TON	PAL =	15998.10	103.228	1651446.5	
-	$= U U_{LWI}$ $U WT$							

$$LCG_{LWT} = \frac{\sum LCG_{j}}{LWT}$$

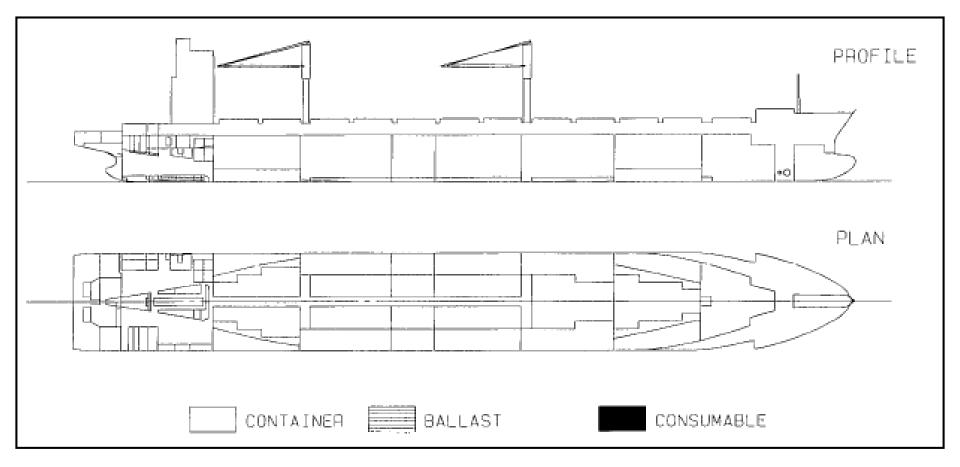
Hydrostatic Values

- ☑ Draft_{Mld}, Draft_{Scant}: Draft from base line, moulded / scantling (m)
- \square Volume_{Mld}(∇), Volume_{Ext}: Displacement volume, moulded / extreme (m³)
- **Displacement**_{Mld}(Δ), Displacement_{Ext}: Displacement, moulded / extreme (ton)
- ☑ LCB: Longitudinal center of buoyancy from midship (Sign: Aft / + Forward)
- ☑ LCF: Longitudinal center of floatation from midship (Sign: Aft / + Forward)
- ☑ VCB: <u>Vertical center of b</u>uoyancy above base line (m)
- ☑ TCB: <u>Transverse</u> <u>center</u> of <u>b</u>uoyancy from center line (m)
- **Mathebra KM**_T: Transverse metacenter height above base line (m)
- ☑ KM_L: Longitudinal metacenter height above base line (m)
- ☑ MTC: <u>Moment to change trim one centimeter</u> (ton-m)
- ☑ TPC: Increase in Displacement_{Mld} (ton) per one centimeter immersion
- ☑ WSA: <u>W</u>etted <u>s</u>urface <u>a</u>rea (m²)
- \square C_B: <u>B</u>lock coefficient
- \square C_{WP}: <u>W</u>ater <u>p</u>lane area coefficient
- \square C_M: <u>M</u>idship section area coefficient
- \square C_P: <u>Prismatic coefficient</u>
- ☑ Trim: Trim(= after draft forward draft) (m)

Hydrostatics Table

DRAF MLD [M] 3,00 3,05 3,10 3,15 3,20 3,25 3,30 3,35	MLD [M3] 11326,7 11562,7 11798,8 12034,9 12271,0 122507,1	11936,2 -3,31 12178,7 -3,30 12421,2 -3,28 12663,6 -3,26	[M] [M] -3,32 1,63 -3,32 1,66 -3,32 1,68 -3,32 1,71 -3,31 1,74 -3,31 1,77 -3,31 1,79	[T] [T-M] 46,7 479,2 1(46,9 482,1 1(47,1 484,9 9 47,2 487,7 9 47,4 490,5 9	001,8 23,57 9 187,7 23,32 9 174,1 23,08 9	5175,8 0,477 (5206,3 0,479 (5236,8 0,481 (CP CW CM 0,506 0,572 0,937 0,507 0,574 0,936 0,509 0,576 0,936 0,510 0,578 0,938 0,512 0,580 0,940	5,35 5,40	22612,4 22873,5 23134,6	DISP LCF EXT [T] [M] 23016,0 -2,85 23284,1 -2,86 23552,2 -2,86 23820,3 -2,86 24088,4 -2,86	[M] [M] [⁻ -3,17 2,87 5: -3,17 2,90 5: -3,16 2,93 5:	T] [T-M] 3,0 592,5 6 3,1 594,6 6 3,2 596,8 6 3,3 598,9 6 3,4 601,0 6 6 6	 KML KM [M] [M] 40,4 17,5 35,3 17,5 30,4 17,4 25,6 17,3 20,8 17,2 16,2 17,2 16,2 17,2 11,7 17,1 07,3 17,0 	[[M2] 9 6458,1 1 6487,0 4 6515,9 6 6544,8 9 6573,7 2 6602,6 5 6631,4	0,535 0,536 0,537 0,538 0,539 0,539 0,540	0,556 0,557 0,557 0,558 0,559 0,560	0,649 0,651 0,652 0,653 0,655 0,655	CM 0,963 0,963 0,964 0,964 0,964 0,965 0,965 0,965
3,40 3,45 3,50 3,55 3,60 3,65 3,70	13215,3 13451,4 13687,5 13923,6 14159,7 14395,7 14631,8	13633,6 -3,20 13876,1 -3,18 14118 × 1. 14361 14603,5 -3,12 14846,0 3,11 15088,5 -3,10	-3,30 1,88 025 × 3,99 1,96 -3,29 1,99	$\begin{array}{ccc} 48,2 & 50 \\ \hline C & 50 \\ 51 \\ 48,6 & 51 \\ 48,8 & 515,9 & 8 \end{array}$	Buoyai			endag	ges sh	ould b		ded. 5 4.4 620,1 5	03,0 17,0 98,8 16,9 94,6 16,9 90,6 16,8 86,6 16,7 82,7 16,7 78,9 16,6	6 6718,1 0 6747,0 4 6775,9 9 6804,7 3 6833,6	0,544 0,544 0,545 0,546 0,547	0,563 0,564 0,564 0,565	0,660 0,661 0,663 0,664 0,665	0,966 0,966 0,966 0,966 0,967 0,967 <u>0,9</u> 67
ЪГ	DRAFT (M)	DISP MLD(M3)	DISP) EXT(T		LCB (M)	LCF (M)	KMŤ (m)	KML (M)	MTC (T-N	C TPC () (TON)	WSA (M2)	СВ	С	W	СР	С	M	968 968 968 968
3,3 4,0 4,1 4,1 4,2 4,2 4,3 4,3	3.75 3.80 3.85 3.90 3.95	14919.7 15160.8 15401.8 15644.8 15891.1	15648.4 15896.1 16145.8	4 2.051 1 2.076 3 2.103	118.403 118.412 118.422	3 119.048 2 119.093 2 119.132	2 21.691 3 21.524 3 21.362 2 21.201 9 21.037	830.42 822.15 813.7	2 528. 5 531. 1 534.	6 49.9 6 50.0 3 50.1	5602.1 5631.7 5661.4 5690.8 5719.8	.5086 .5099 .5113	6.6 6.6 8.6	45 . 63 . 80 .	5421 5431 5441 5451 5462	.9(.9(.9(356 364 372 380 388	969 969 969 970 970 970 970 970 970
4,40 4,45 4,50 4,55 4,60 4,65 4,70 4,75 4,80 4,85 4,90	18047,3 18297,2 18547,1 18796,9 19046,8 19296,7 19546,6 19796,4 20046,3 20296,2 20546,1	18852,9 -2,93 19109,5 -2,91 19366,1 -2,91 19622,7 -2,91 19879,3 -2,90 20135,9 -2,89 20392,5 -2,88 20649,1 -2,87 20905,7 -2,87	-3,24 2,43 -3,23 2,46 -3,23 2,48 -3,22 2,51 -3,22 2,54 -3,21 2,57 -3,21 2,60 -3,21 2,62 -3,21 2,62 -3,20 2,65	51,1 556,5 7 51,2 558,8 7 51,3 561,1 7 51,4 563,4 7 51,6 565,7 7 51,7 568,0 7 51,8 570,3 6 51,9 572,6 6 52,1 574,9 6	33,4 19,05 9 26,6 18,94 (20,0 18,84 (13,5 18,74 (07,3 18,64 (01,1 18,54 (95,2 18,45 (89,4 18,36 (83,7 18,27 (5989,9 0,516 1 6019,3 0,517 1 6048,7 0,518 1 6078,2 0,519 1 6107,6 0,520 1 6137,1 0,522 1 6166,5 0,522 1 6195,9 0,522 1 6195,9 0,522 1	0,541 0,628 0,957 0,542 0,629 0,958 0,543 0,631 0,958	6,70 6,75 6,80 6,85 6,90 6,95 6,95	30066,2 3 30337,5 3 30608,8 3 30608,8 3 31151,4 3 31422,7 3 31694,0 3 31975,1 3 32256,2 3	30658,9 -3,28 30937,5 -3,31 31216,0 -3,34 31494,6 -3,37 31773,2 -3,40 32051,7 -3,43 32330,3 -3,46 32608,9 -3,49 32897,5 -3,54 33186,1 -3,59 33474,7 -3,64	-3,12 3,67 5 -3,12 3,70 5 -3,12 3,72 5 -3,12 3,75 5 -3,12 3,75 5 -3,12 3,78 5 -3,12 3,81 5 -3,12 3,84 5 -3,13 3,86 5 -3,13 3,89 5	6,0 655,6 5 6,1 657,8 5	25,5 15,9 22,7 15,9 19,9 15,8 17,2 15,8 14,5 15,8 11,8 15,7 09,1 15,7 06,5 15,7	 7294,7 7323,5 7352,3 7352,3 7381,1 7409,9 7438,7 7438,7 7467,5 7496,5 7525,4 	0,563 0,564 0,565 0,565 0,566 0,567 0,568 0,569 0,570	0,580 0,580 0,581 0,582 0,583 0,583 0,583 0,584 0,585 0,586	0,688 0,689 0,690 0,692 0,693 0,693 0,695	0,971 0,971 0,971 0,972 0,972 0,972 0,972 0,972 0,972 0,972 0,973 0,973
4,95 5,00 5,05 5,10 5,15 5,20	20795,9 21045,8 21306,9 21568,0 21829,1 22090,2	21418,9 -2,85 21675,5 -2,84 21943,6 -2,85 22211,7 -2,85	-3,19 2,71 -3,19 2,73 -3,18 2,76 -3,18 2,79 -3,18 2,82	52,3 579,6 6 52,4 581,9 6 52,5 584,0 6 52,7 586,1 6 52,8 588,3 6	72,8 18,11 (67,5 18,03 (61,8 17,94 (56,3 17,85 (50,8 17,76 (6284,3 0,527 (6313,7 0,528 (6342,6 0,529 (6371,5 0,530 (0,549 0,640 0,961 0,549 0,642 0,961 0,550 0,643 0,961 0,551 0,644 0,962 0,553 0,646 0,962	7,20 7,25 7,30 7,35 7,40	32818,4 3 33099,5 3 33380,6 3 33661,7 3 33942,8 3	33763,3 -3,69 34051,9 -3,75 34340,4 -3,80 34629,0 -3,85 34917,6 -3,90	-3,15 3,95 5 -3,15 3,97 5 -3,16 4,00 5 -3,17 4,03 5	7,0 678,2 5 7,1 680,5 4 7,2 682,8 4 7,3 685,1 4 7,4 687,4 4	01,3 15,6 98,8 15,6 96,4 15,5 93,9 15,5 91,6 15,5	4 7583,3 1 7612,2 8 7641,2 5 7670,1 2 7699,0	0,572 0,573 0,573 0,573 0,574 0,575	0,588 0,588 0,589 0,590 0,591	0,698 0,699 0,700 0,701 0,703	0,973 0,973 0,973 0,974 0,974 0,974

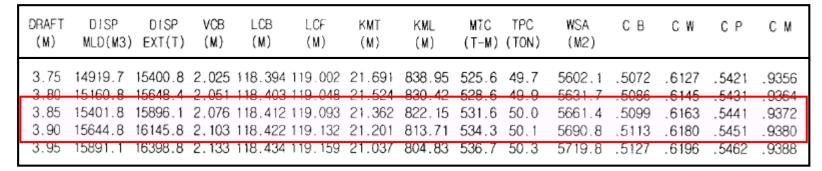
☑ A ship can be operated at various loading conditions.


- ☑ According to the loading condition, the displacement of the ship varies.
 - This means that LCG and KG varies as well.
- ☑ In accordance with IACS UR S1, the commercial ship's loading conditions which should be calculated are as follows.
 - Lightship condition
 - Ballast condition (Departure/Arrival)
 - Homogeneous loading condition (Departure/Arrival)
 - Special condition required by the Owner

37

Loading Conditions: Lightship Condition (1/6)

Lightship condition: Condition that loaded nothing (no cargo, imaginary condition)



Loading Conditions: Lightship Condition (2/6)

Calculation of *MTC* DRAUGHT F.P K.M.T 21.296 M 1.526 M = = 3.806 M KG (SOLID) MIDSHIP 13.200 M DRAUGHT = = A.P 6.086 M (SOLID) 8.096 M DRAUGHT GΜ =4.560 M .000 M TRIM BY STERN FREE SURF. CORR. (GGo) = = GoM (FLUID) 8.096 M PROPELLER I/D 74.0 % = DISPLACEMENT 15998.1 T KGo ACTUAL (FLUID) 13.200 M = DRAUGHT AT LCF 3.871 M TRIM (DIS*A) / (MTC*100) = 4.560 M LCB FROM A.P 118.416 M FREE SURF. MOM 0 T-M -LCG FROM A.P 103.228 M M.T.C. = 532.8 T-M =15.188 M LCE FROM A.P TRIM LEVER : A = 119.110 M =

1) In hydrostatics table

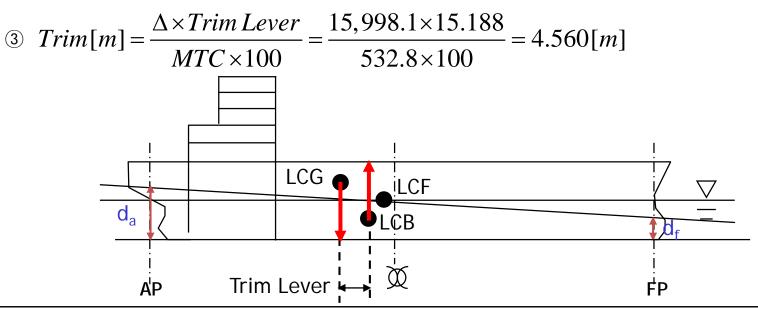
Let's calculate this!

By linear interpolation, draft at LCF= 3.871[m], VCB(=KB) = 2.087[m], $KM_L = 818.61[m]$

$$MTC = \frac{\Delta \times GM_L}{100 \times LBP} \approx \frac{\Delta \times BM_L}{100 \times LBP} = \frac{15,998.1 \times 816.52}{100 \times 245.24} = 532.7[ton \cdot m]$$

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

SYstem Design


Laboratory

Loading Conditions: Lightship Condition (3/6)

■ Calculation of <i>Trin</i>	ו				
ORAUGHT F.P	=	1.526 M	К.М.Т	=	21.296 M
DRAUGHT MIDSHIP	=	3.806 M	KG (SOLID)	=	13.200 M
DRAUGHT A.P	=	6.086 M	GM (SOLID)	=	8.096 M
TRIM BY STERN	=	4.560 M	FREE SURF. CORA. (GGo)	=	.000 M
PROPELLER I/D	=	74.0 %	GoM (FLUID)	=	8.096 M
DISPLACEMENT	=	15998.1 T	3KGo ACTUAL (FLUID)	= ulata	13.200 M
2					
ORAUGHT AT LCF	=	3.871 M	TRIM (DIS*A) / (MTC*100)	-	4.560 M
LCB FROM A,P	=	118.416 M	FREE SURF. MOM.	=	0 T-M
LCG FROM A.P	=	103.228 M	M.T.C.	=	532.8 Ĩ-M
TRIM LEVER : A	=	15.188 M	LCF FROM A.P	=	119.110 M

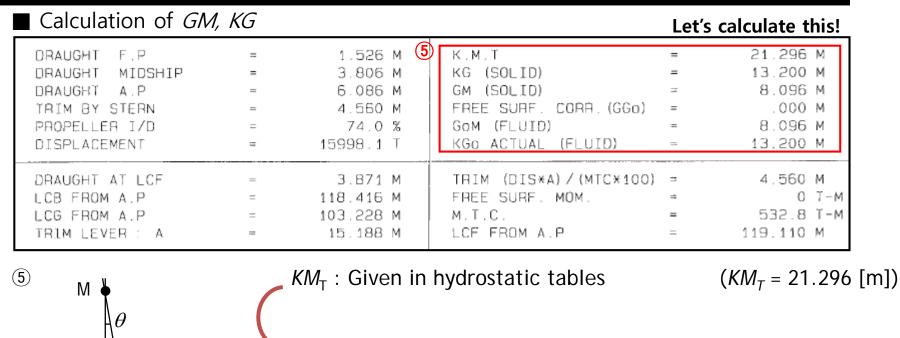
Let's calculate this!

② *Trim* Lever = LCB - LCG = 118.416 - 103.228 = 15.188[m]

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

Design

Loading Conditions: Lightship Condition (4/6)


ORAUGHT F.P	=	1.526 M	К.М.Т	=	21.296 M
DRAUGHT MIDSHIP	=	3.806 M	KG (SOLID)	=	13.200 M
DRAUGHT A.P	=	6.086 M	GM (SOLID)	-	8.096 M
TRIM BY STERN Let's (alculate	this! 4.560 M	FREE SURF. CORA. (GGo)	=	.000 M
PROPELLER I/D	=	74.0 %	GOM (FLUID)	=	8.096 M
DISPLACEMENT	=	15998.1 T	KGo ACTUAL (FLUID)	=	13.200 M
DRAUGHT AT LCF	=	3.871 M	TRIM (DIS*A)/(MTC*100)	_	4.560 M
LCB FROM A.P	=	118.416 M	FREE SURF. MOM.	=	0 T-
LCG FROM A.P	=	103.228 M	м.т.с.	=	532.8 Ĭ-
TRIM LEVER : A		15.188 M	LCF FROM A.P	=	119.110 M

(4) d_a LCF d_{eq} $f_{d_{eq}}$ d_{f} d_{f} AP LBP $\dot{\boxtimes}$ FP δ_a Trim $LBP: Trim = LCF: \delta_a$
$$\begin{split} & \delta_a = \frac{LCF}{LBP} \times Trim \\ & d_a = d_{eq} + \delta_a = d_{eq} + \frac{LCF}{LBP} \times Trim \\ & = 3.871 + \frac{119.110}{245.24} \times 4.560 \\ & = 6.086[m] \\ & d_f = d_a - Trim \\ & = 6.086 - 4.560 = 1.526[m] \end{split}$$

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-II Roh

Loading Conditions: Lightship Condition (5/6)

KG : Calculation from the distribution of LWT and DWT

(*KG* = 13.2 [m])

$$GM = KM_T - KG$$
 ($GM = 21.296 - 13.2 = 8.096$ [m])

GGo = 0 (\because No liquid cargo in lightship condition)

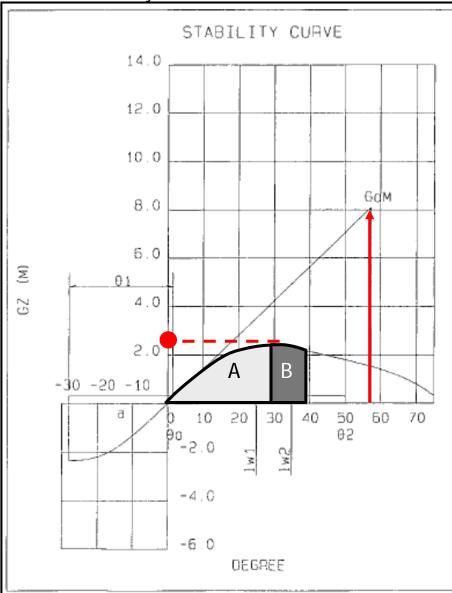
∴ *KGo* = *KG* = 13.2 [m]

7

B

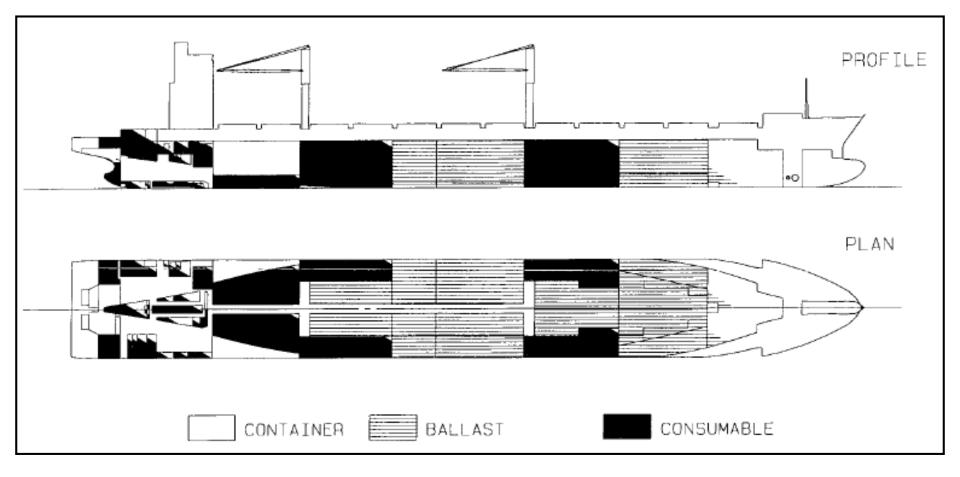
Ν

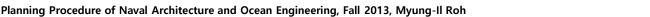
Go=G


B

Κ

Loading Conditions: Lightship Condition (6/6)


■ Stability check



∗IMO A-7	749(18) CH	HAF	0.3.1	CRI	TERION	×
MIN. GoM					. REQ. 0.150	м
AREA 0-3	30		. 8	349	0.055	M-RAD
AREA 0-4	40 (Θf)		1.2	236	0.090	M-RAD
AREA 30-4	40 (θf)		. 3	387	0.030	M-RAD
MAX. GZ			2.3	352	0.200	М
MAX. GZ C	CCURS AT		27	7.2	25.00	DEG.
FLOODING	ANGLE IS		90	0.0		DEG.
VVINO A -	749(18) CF			CDI	TEDIONN	,
**IMU A-7	49(10) UF		, , , <u>,</u> , <u>,</u>	CΠT	TENTUNA	~
WIND AREA	1				4849	м~2
Ζ =	:				13.017	м
ROLLING F	PERIOD				10.4	SEC.
AREA a =	.914		b	=	1.323	M-RAD
1 w 1 =	. 203		1w2	-	. 304	М
0 0 =	1.4		θ1	=	29.3	DEG.
θ2 =	50.0		Әс	=	75.1	DEG.

Loading Conditions: Ballast Departure Condition (1/6)

Ballast departure condition: Condition that loaded ballast water and consumable cargo

Loading Conditions: Ballast Departure Condition (2/6)

Calculation of MTC

DRAUGHT F.P	=	5.553 M	К.М.Т	=	15.728 M
DRAUGHT MIDSHIP	=	6.998 M	KG (SOLID)	-	9.584 M
DRAUGHT A.P	=	8.443 M	GM (SOLID)	=	6.144 M
TRIM BY STERN	=	2.890 M	FREE SURF. COAR. (GGo)	=	.177 M
PROPELLER I/D	=	105.1 %	GoM (FLUID)	=	5.967 M
DISPLACEMENT	=	32980.1 T	KGa ACTUAL (FLUID)	=	9.761 M
DRAUGHT AT LCF	=	7.044 M	TRIM (DIS*A) / (MTC*100)	=	2.890 M
LCB FROM A.P	=	118.910 M	UFREE SURF. MOM.		5847 I-M
LCG FROM A.P	=	113.116 M	M.T.C.	-	661.3 T-M
TRIM LEVER : A	=	5.794 M	LCF FROM A.P	=	118.707 M

1) In hydrostatics table

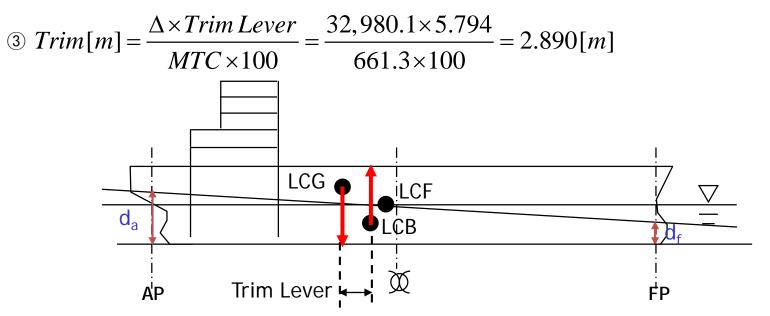
Let's calculate this!

DRAF (M)		DISP) EXT(T)	VCB (M)	LCB (M)	LCF (M)	KMT (m)	KML (M)	MTC (T-M)	TPC (TON)	WSA (M2)	СВ	CW	СР	СМ
	31782.0 32056.1									7422.2 7450.0			. 5976 . 5983	.9655 .9658
7.15	32332.2 32608.3 32884.4	33579.8	3.886	118.903	118.577	15.649	489.74	665.3	56.6	7478.0 7506.0 7534.1	.5787 .5796 .5804	. 6966 . 6977 . 6987	. 5991 . 5998 . 6005	.9660 .9662 .9665

By linear interpolation, draft at LCF= 7.044 [m], $VCB(=KB) = 3.826[m], KM_L = 495.55[m]$ $\begin{bmatrix} BM_L = KM_L - KB = 495.55 - 3.83 = 491.72 \end{bmatrix}$

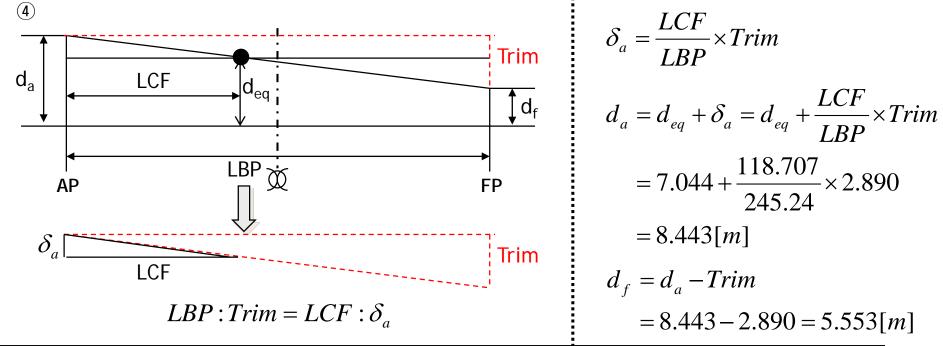
 $MTC = \frac{\Delta \times GM_{L}}{100 \times LBP} \approx \frac{\Delta \times BM_{L}}{100 \times LBP} = \frac{32,980.1 \times 491.724}{100 \times 245.24} = 661.3[ton \cdot m]$

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh


Loading Conditions: Ballast Departure Condition (3/6)

■ Calculation of *Trim*

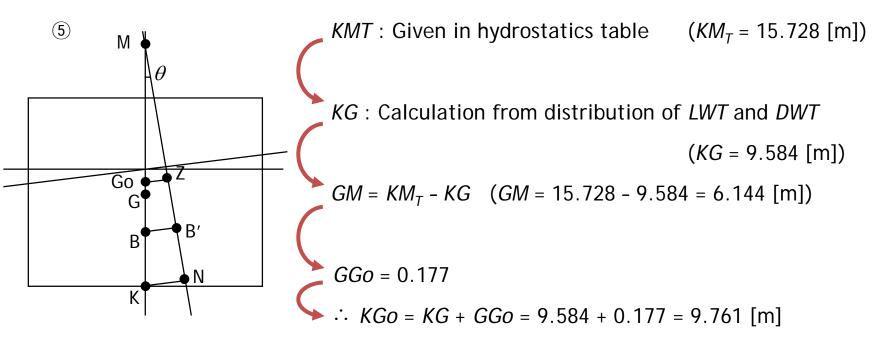
DRAUGHT F.P	=	5.553 M	К.М.Т	=	15.728 M
DRAUGHT MIDSHIP	=	6.998 M	KG (SOLID)		9.584 M
DRAUGHT A.P	=	8.443 M	GM (SOLID)	=	6.144 M
TRIM BY STERN	=	2.890 M	FREE SURF. CORR. (GGo)	=	.177 M
PROPELLER I/D	=	105.1 %	GoM (FLUID)	=	5.967 M
DISPLACEMENT	=	32980.1 T		=	
			Let's calc	ulate	-this!
2DRAUGHT AT LCF		7.044 M	TRIM (DIS*A)/(MTC*100)	=	2.890 M
LCB FROM A.P	=	118.910 M	FREE SURF. MOM.		5847 I-M
LCG FROM A.P	=	113.116 M	M.T.C.	<u></u>	661.3 T-M
TRIM LEVER : A	=	5.794 M	LCF FROM A.P	=	118.707 M


Let's calculate this!

② *Trim* Lever = LCB - LCG = 118.910 - 113.116 = 5.794[m]

Loading Conditions: Ballast Departure Condition (4/6)

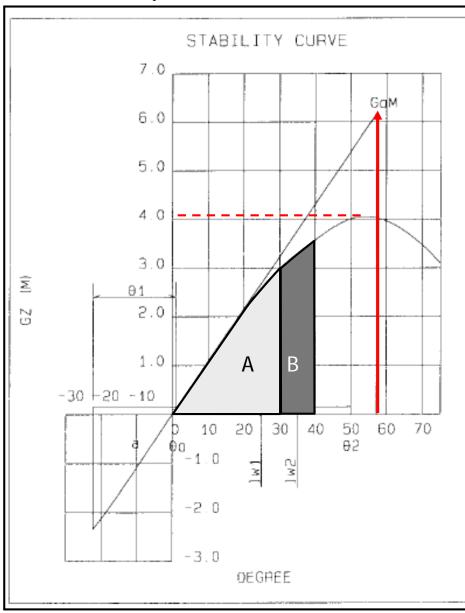
DRAUGHT F.P DRAUGHT MIDSHIP DRAUGHT A.P TRIM BY STEPN LOOK	= = =	5.553 M 6.998 M 8.443 M	K.M.T KG (SOLID) GM (SOLID) FREE SURF. COAR.(GGo)	=	15.728 M 9.584 M 6.144 M .177 M
TRIM BY STERN Let's (PROPELLER I/D DISPLACEMENT	= = =	105.1 % 32980.1 T	GaM (FLUID) KGa ACTUAL (FLUID)	=	5.967 M 9.761 M
DRAUGHT AT LCF LCB FROM A.P LCG FROM A.P TRIM LEVER : A		7.044 M 118.910 M 113.115 M 5.794 M	TRIM (DIS*A)/(MTC*100) FREE SURF. MOM. M.T.C. LCF FROM A.P		2.890 M 5847 T- 661.3 T- 118.707 M



47

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

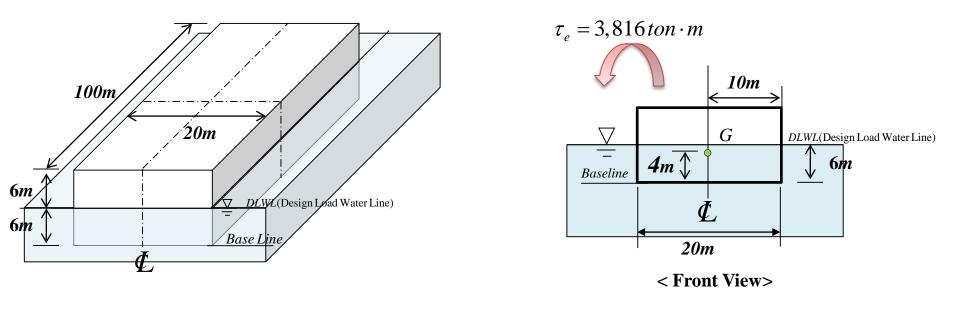
Loading Conditions: Ballast Departure Condition (5/6)


■ Calculation of <i>GN</i>	1, KG			Let's	calculate this!
DRAUGHT F.P DRAUGHT MIDSHIP	=	5.553 м <mark>(5</mark> 6.998 м	K.M.T KG (SOLID)		15.728 М 9.584 М
DRAUGHT A.P TRIM BY STERN PROPELLER I/D DISPLACEMENT	= = =	8.443 M 2.890 M 105.1 % 32980.1 T	GM (SOLID) FREE SURF. COAR.(GGo) GoM (FLUID) KGo ACTUAL (FLUID)	= = =	6.144 M .177 M 5.967 M 9.761 M
DRAUGHT AT LCF LCB FROM A.P LCG FROM A.P TRIM LEVER : A		7.044 M 118.910 M 113.116 M 5.794 M	TRIM (DIS*A)/(MTC*100) FREE SURF. MOM. M.T.C. LCF FROM A.P	= = =	2.890 M 5847 T-M 661.3 T-M 118.707 M

48

Loading Conditions: Ballast Departure Condition (6/6)

■ Stability check


IMO A-749(18) CH	AP.3.1 CR1	ITERION	
MIN. GoM		. REQ. 0.150 M	
AREA 0-30	. 827	0.055 M-R/	٩D
AREA 0-40(0f)	1.404	0.090 M-R/	٩D
AREA 30-40(0f)	.577	0.030 M-RA	٩D
MAX. GZ	4.056	0.200 M	
MAX. GZ OCCURS AT	54.1	25.00 DEG	
FLOODING ANGLE IS	77.0	DEG	
IMO A-749(18) CH	AP.3.2 CR1	TERION	
WIND AREA		4283 M^2	
Ζ =		13.173 M	
ROLLING PERIOD		10.1 SEC	
AREA a = .525	, b =	1.935 M-RA	٩D
lw1 = .103	, 1w2 =	.155 M	
θο = 1.0	, 0 1 =	23.2 DEG	
θ2 = 50.0	. θc =	90.0 DEG.	

More Examples

50

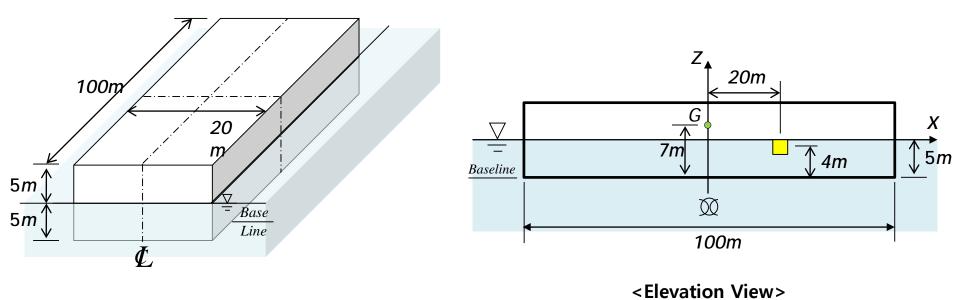
[Example] Calculation of an Angle of Heel (1/2)

A box-shaped barge (L x B x D: 100m x 20m x 12m) is floating in freshwater on an even keel at draft of 6m. Vertical center of mass of the barge is 4m from baseline. When an external moment about x axis of 3,816ton-m is applied on the ship, **calculate an angle of heel**.

예제6.1

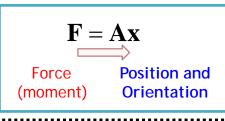
51

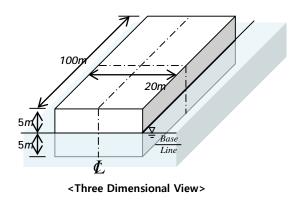
Design

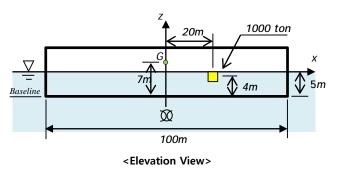

[Example] Calculation of an Angle of Heel (2/2)

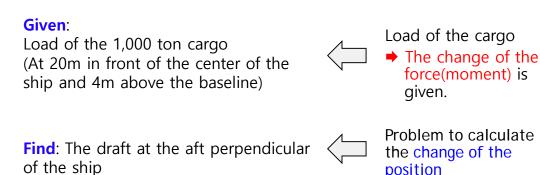
 $BM = \frac{I_T}{\nabla}$ In case of box shaped barge Given: $\tau_e = F_B \cdot GM \cdot \sin \phi$ $\rightarrow \sin \phi = \frac{\tau_e}{F_B \cdot GM}$ L: 100m, B: 20 m, D: 12m, T: 6m, KG: 4m $=\frac{(L\cdot B^3)/12}{L\cdot B\cdot T}$ Find: Angle of heel $=\frac{(100\cdot 20^3)/12}{100\cdot 20\cdot 6}=5.6[m]$ $\rightarrow \phi = \sin^{-1} \left(\frac{\tau_e}{F_{\scriptscriptstyle B} \cdot GM} \right)$ 100m KB = T / 2 = 3[m] $F_{B} = \rho \cdot L \cdot B \cdot T$ GM = KB + BM - KG20m $\rho = 1[ton/m^3]$ DLWL (Design Load Water Line) Base Line $\phi = \sin^{-1} \left(\frac{\tau_e}{(\rho \cdot L \cdot B \cdot T) \cdot (KB + BM - KG)} \right)$ $\tau_{e} = 3,816 ton \cdot m$ 10m $=\sin^{-1}\left(\frac{3,816}{(1\cdot100\cdot20\cdot6)\cdot(3+5.6-4)}\right)$ G DLWL(Design Load Water Line) **4**m[↑] 6m Baseline $=4^{\circ}$ 20m <Front View>

52


A barge with 100m length, 20m breadth and 10m depth is floating having a draft of 5m. The center of mass, G, is located 7m above base line. A 1,000ton cargo will be loaded as in the figure below. The load will be on center line, 20m in front of the center of the ship and 4m above baseline. **Calculate the draft at the aft perpendicular of the ship when the cargo is loaded**.


Given:


L: 100m, B: 20m, D: 10m, T: 5m, KG: 7m Cargo Load: 1,000ton (At 20m in front of the center of the ship and 4m above the baseline)

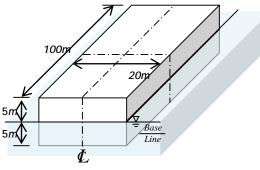

Find: The draft at the aft perpendicular of the ship

A problem that force(moment) acting on the ship is given, and the change in position and orientation is calculated.

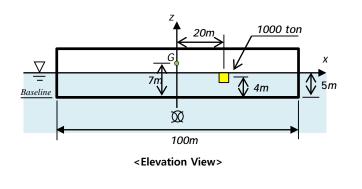
<Notation>

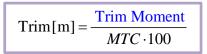
 \square_0 : Sub Index 0 - State before the change of position

 \Box_1 : Sub Index 1 - State after the change of position


Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

- Calculation of the Approximate Solution by Using Linearization (1/7)


Given:


L: 100m, B: 20m, D: 10m, T: 5m, KG: 7m Cargo Load: 1,000ton (At 20m in front of the center of the ship and 4m above the baseline)

Find: The draft at the aft perpendicular of the ship

<Three Dimensional View>

Calculation of the approximate solution by linearizing the problem

1 Calculation for change of draft

 $\delta \Delta = TPC \cdot \delta T$ $T_1 = T_0 + \delta T$ (δT : change of draft)

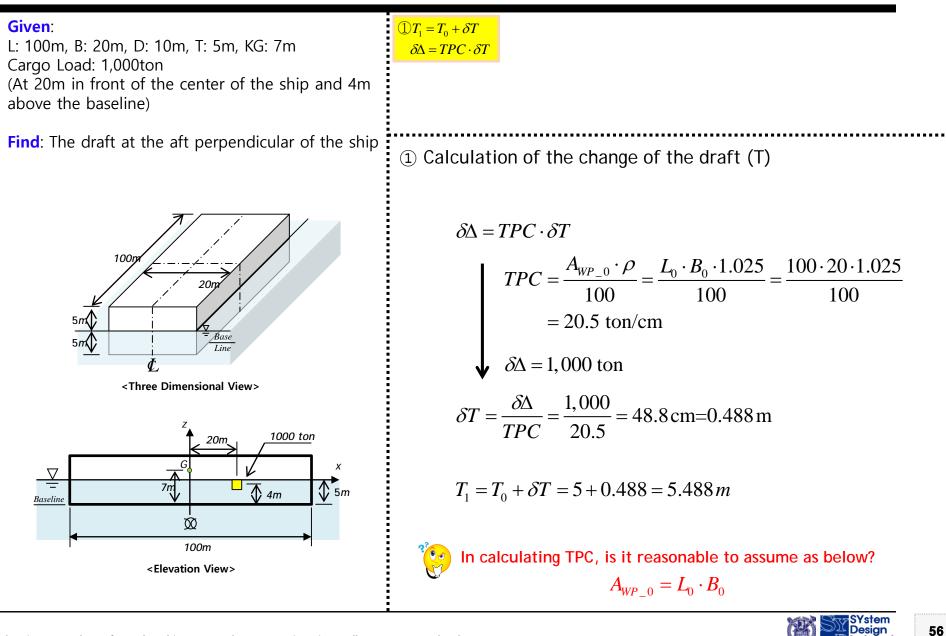
2 Calculation of trim

 $\operatorname{Trim}[m] = \frac{\operatorname{Trim} \operatorname{Moment}}{MTC \cdot 100}$

(2)-1) Trim Moment: w (weight of the cargo) $\times l$ (distance) (Linearized trim moment. How can we calculate the actual trim moment?)

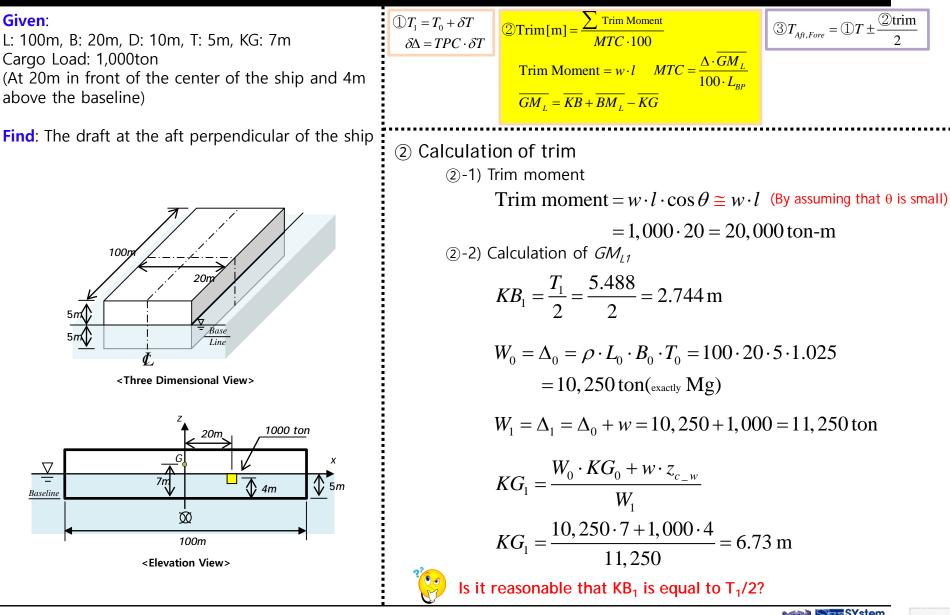
(2)-2)
$$\overline{GM_L} = \overline{KB} + \overline{BM_L} - \overline{KG}$$

(2)-3) $MTC - \frac{\Delta \cdot \overline{GM_L}}{\overline{GM_L}}$


 $100 \cdot L_{pp}$

③ Calculation of draft at the aft perpendicular of the ship

 $T_{Aft,Fore} = T_1 \pm \frac{\text{trim}}{2}$ (when LCF is located at the middle point of L_{BP})

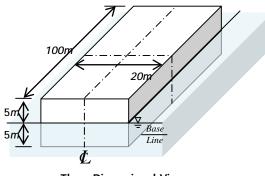


- Calculation of the Approximate Solution by Using Linearization (2/7)

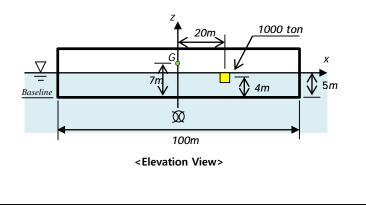
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

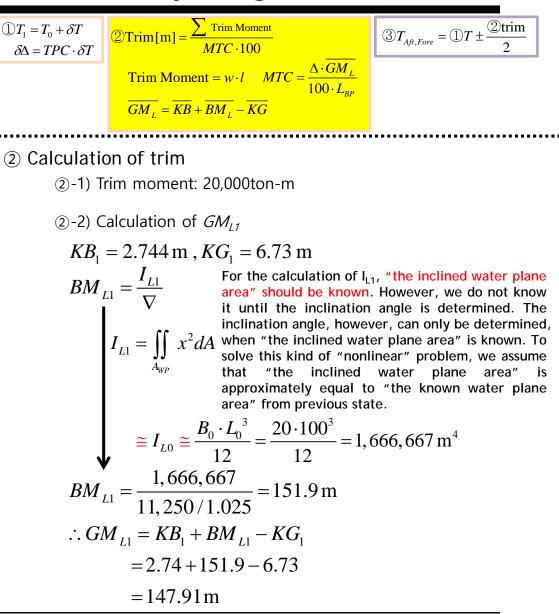
- Calculation of the Approximate Solution by Using Linearization (3/7)

Design


aboratory

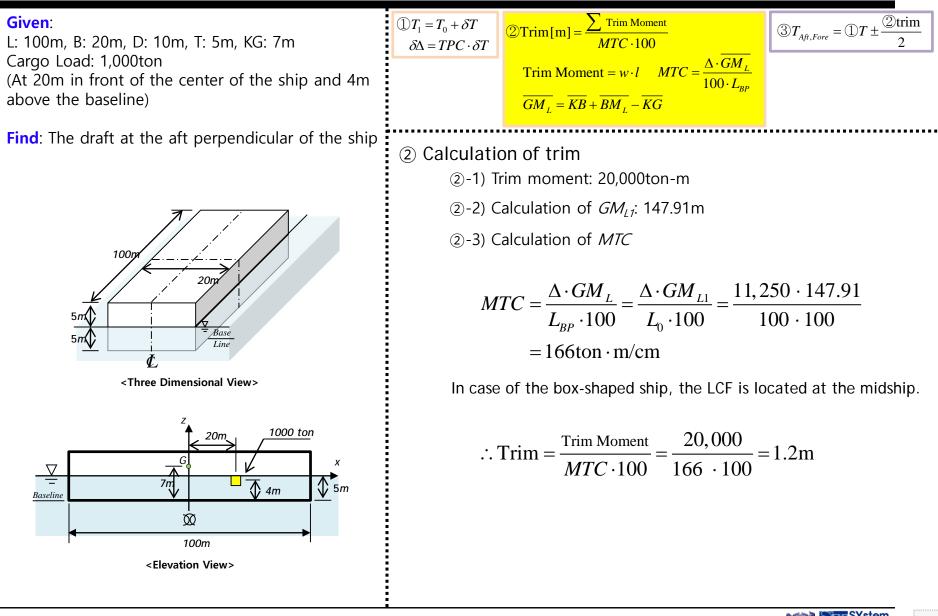
- Calculation of the Approximate Solution by Using Linearization (4/7)




L: 100m, B: 20m, D: 10m, T: 5m, KG: 7m Cargo Load: 1,000ton (At 20m in front of the center of the ship and 4m above the baseline)

Find: The draft at the aft perpendicular of the ship

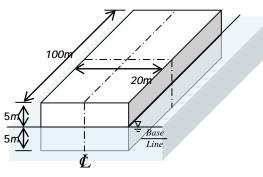
<Three Dimensional View>



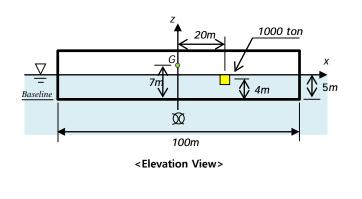
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-II Roh

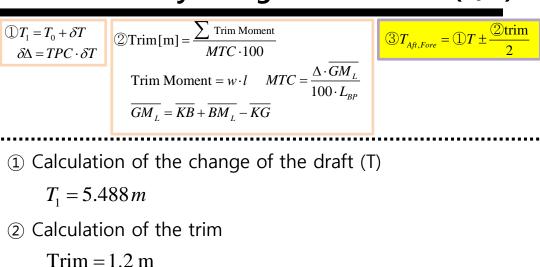
Design

- Calculation of the Approximate Solution by Using Linearization (5/7)


Design

- Calculation of the Approximate Solution by Using Linearization (6/7)


Given:


L: 100m, B: 20m, D: 10m, T: 5m, KG: 7m Cargo Load: 1,000ton (At 20m in front of the center of the ship and 4m above the baseline)

Find: The draft at the aft perpendicular of the ship

<Three Dimensional View>

③ Calculation of the draft at the aft perpendicular of the ship

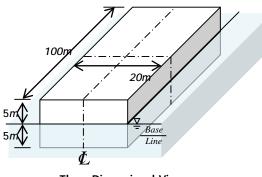
$$T_{Aft,Fore} = T_1 \pm \frac{\text{trim}}{2}$$

Draft at the aft perpendicular

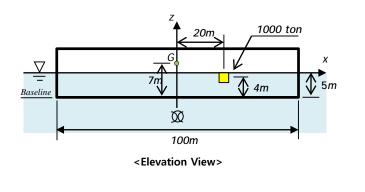
$$=T_1 - \frac{\text{trim}}{2} = 5.488 - \frac{1.2}{2} = 4.888\text{m}$$

Draft at the forward perpendicular

$$= T_1 + \frac{\text{trim}}{2} = 5.488 + \frac{1.2}{2} = 6.088 \,\text{m}$$


60

- Calculation of the Approximate Solution by Using Linearization (7/7)


Given:

L: 100m, B: 20m, D: 10m, T: 5m, KG: 7m Cargo Load: 1,000ton (At 20m in front of the center of the ship and 4m above the baseline)

Find: The draft at the aft perpendicular of the ship

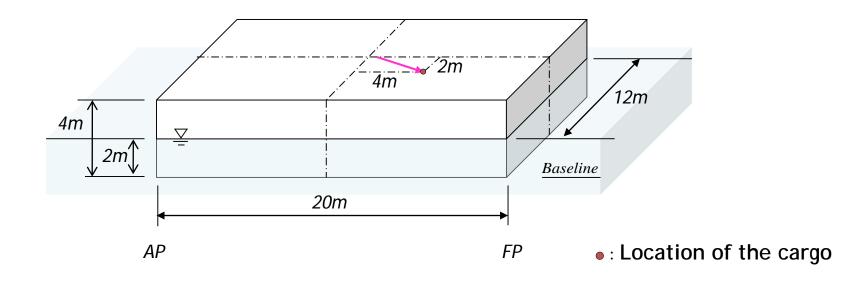
<Three Dimensional View>

$$\begin{array}{c}
\textcircled{1}T_{1} = T_{0} + \delta T \\
\delta \Delta = TPC \cdot \delta T
\end{array}$$

$$\begin{array}{c}
\textcircled{2}Trim [m] = \frac{\sum \text{Trim Moment}}{MTC \cdot 100} \\
\text{Trim Moment} = w \cdot l \quad MTC = \frac{\Delta \cdot \overline{GM_{L}}}{100 \cdot L_{BP}} \\
\overline{GM_{L}} = \overline{KB} + \overline{BM_{L}} - \overline{KG}
\end{array}$$

$$\begin{array}{c}
\textcircled{3}T_{Aft,Fore} = \textcircled{1}T \pm \frac{2}{2} \\
\textcircled{3}T_{Aft,Fore} = 1 \\
\hline{C}T \pm \frac{2}{2} \\$$

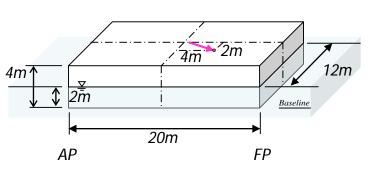
There will be some difference between the approximate solution and exact solution, because of the following approximate terms.


- Trim moment	$w \cdot l \cdot \cos \theta \cong w \cdot l$
- I _L	$I_{L1} \cong I_{L0}$
- A _{WP}	$\iint dx dy \cong A_{WP0} = L_0 \cdot B_0$
- TPC	Linearized A _{WP0}
- KB ₁	Vertical center of buoyancy at the previous state
- LCB ₁	Longitudinal center of buoyancy at the previous state

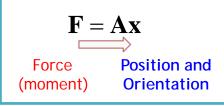
This calculation has to be "repeated" using "the inclined current water plane" until the difference between the approximate solution and exact solution becomes to zero.

61

A barge ship is 20m length, 12m breadth, 4m depth, and is floating at 2m draft in the fresh water. When a 10ton cargo which is loaded on the center of the deck is moved to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard, **determine the draft at the forward perpendicular(FP)**, after perpendicular(AP), portside, and starboard of the ship. KG of the ship is given as 2m.


Design

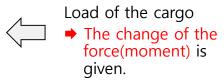
aboratory


Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

• : Location of the cargo


A problem that force(moment) acting on the ship is given, and the change in position and orientation is calculated.

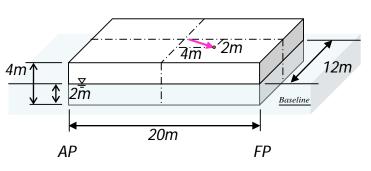
Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4 m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find:

Draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

Problem to calculate the change of the position



[Example] Calculation of Trim for a Barge Ship When the Cargo is Moved - Calculation of the Approximate Solution by Using Linearization (1/7)

Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

• : Location of the cargo

Calculation of the approximate solution by linearizing the problem

1. Change of draft caused by trim

① Calculation of the trim

$$Trim[m] = \frac{\sum Trim Moment}{MTC \cdot 100}$$

(1)-1) Trim Moment : w(weight of the cargo) \times *I*(distance)

(1)-2)
$$\overline{GM_L} = \overline{KB} + \overline{BM_L} - \overline{KG}$$

(1)-3) $MTC = \frac{\Delta \cdot \overline{GM_L}}{100 \cdot L_{BP}}$

2. Change of draft caused by heel

② Calculation of the change of the draft caused by the heel

Heel[m] =
$$B \cdot \tan \phi$$
 $\left(\delta y'_G \cos \phi + \delta z'_G \sin \phi = \overline{GM} \sin \phi \right)$

(2)-1) Calculation of the change of the center of $\delta y'_G = \frac{w \cdot l_T}{\Delta}$ the gravity in the transverse direction

(2)-2) $\overline{GM} = \overline{KB} + \overline{BM} - \overline{KG}$

2-3) Calculating of the heeling angle

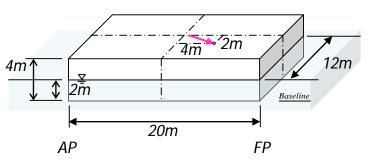
 $\delta y'_G \cos \phi + \delta z'_G \sin \phi = \overline{GM} \sin \phi$

3. Calculation of draft at each port and starboard of the FP and AP

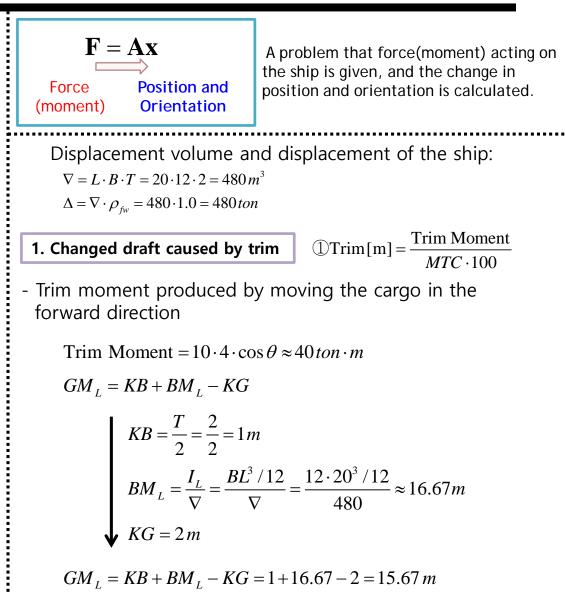
3 Calculation of the draft at the each port and starboard of the FP and AP, respectively

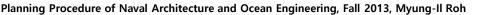
$$T_{Fwd,Aft,Port,Stb'd} = T \pm \frac{\text{Trim}}{2} \pm \frac{\text{Heel}}{2}$$

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh



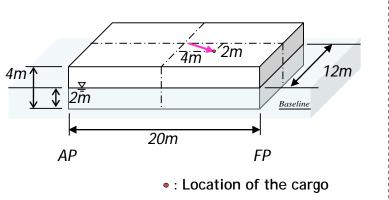
[Example] Calculation of Trim for a Barge Ship When the Cargo is Moved - Calculation of the Approximate Solution by Using Linearization (2/7)

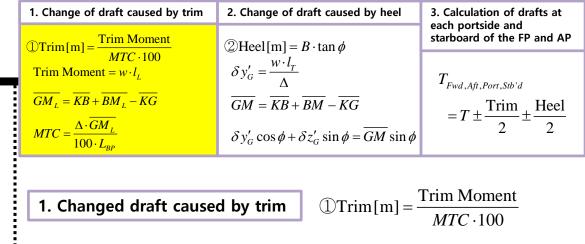

Given:


L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

• : Location of the cargo


Design


- Calculation of the Approximate Solution by Using Linearization (3/7)

Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

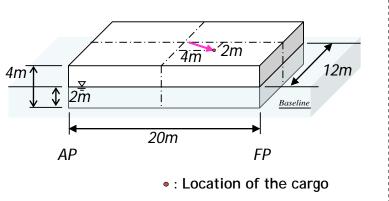
- Trim moment caused by moving the cargo in the direction of the forward perpendicular

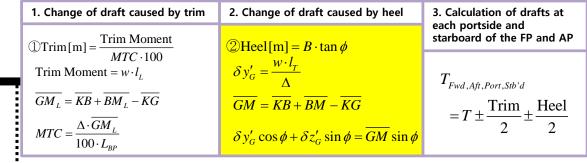
Trim Moment = $10 \cdot 4 \cdot \cos \theta \approx 40 \operatorname{ton} \cdot m$

$$GM_{L} = KB + BM_{L} - KG = 1 + 16.67 - 2 = 15.67 m$$

$$MTC = \frac{\Delta \cdot GM_L}{100L} = \frac{480 \cdot 15.67}{100 \cdot 20} = 3.7608 \, ton \times m \, / \, cm$$

$$\therefore t = \frac{Trim \ Moment}{100 \cdot MTC} = \frac{40}{3.7608} = 10.64 \ cm = 0.1064 \ m$$




- Calculation of the Approximate Solution by Using Linearization (4/7)

Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

2. Changed draft caused by the heel

- Change of the center of gravity

$$\delta y'_G = \frac{w \cdot l_T}{\Delta} = \frac{10 \cdot 2}{480} = 0.04 \, m$$

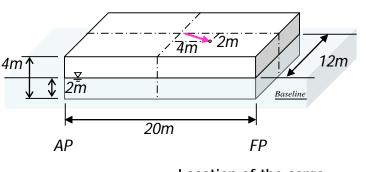
$$GM = KB + BM - KG$$

$$KB = \frac{T}{2} = \frac{2}{2} = 1m$$

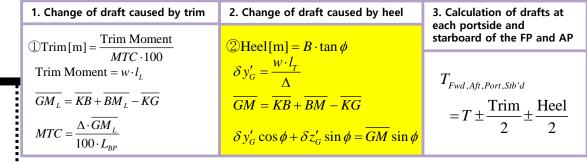
$$BM = \frac{I_T}{\nabla} = \frac{LB^3 / 12}{\nabla} = \frac{20 \cdot 12^3 / 12}{480} = 6m$$

$$KG = 2m$$

$$GM = KB + BM - KG = 1 + 6 - 2 = 5 m$$



- Calculation of the Approximate Solution by Using Linearization (5/7)


Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

• : Location of the cargo

2. Changed draft caused by the heel

- Change of the center of gravity $\delta y'_G = \frac{w \cdot l_T}{\Delta} = 0.04 \, m$
- Transverse metacentric height

GM = KB + BM - KG = 1 + 6 - 2 = 5 m

- Heeling angle

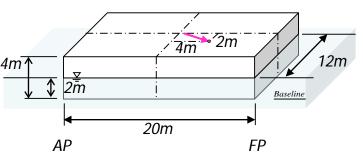
$$\delta y'_G \cos \phi + \delta z'_G \sin \phi = GZ \approx GM \sin \theta$$
$$\tan \phi = \frac{\delta y'_G}{GM} = \frac{0.04}{5} = 0.008$$

$$\phi = \tan^{-1} \left(\frac{\delta y'_G}{GM} \right) = \tan^{-1} \left(\frac{0.04}{5} \right) \approx 0.46^\circ$$

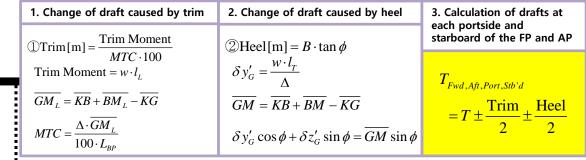
- Changed draft caused by heel
Starboard =
$$+\frac{B}{2} \cdot \tan \phi = 6 \cdot \tan 0.46^\circ \approx 0.0482 m$$

Port = $-\frac{B}{2} \cdot \tan \phi = -6 \cdot \tan 0.46^\circ \approx -0.0482 m$

SY SYstem Design DLaboratory


Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

- Calculation of the Approximate Solution by Using Linearization (6/7)


Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

• : Location of the cargo

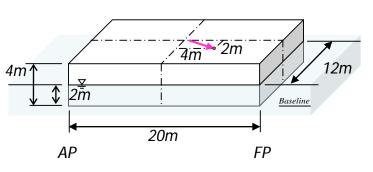
3. Calculation of the drafts at the each portside and starboard of the FP and AP

- The drafts at the each portside and starboard of the FP and AP are calculated considering the direction of forward perpendicular and starboard as follows:

$$T_{\text{Fore-Starboard}} = T + \frac{Trim}{2} + \frac{B}{2}\tan\phi = T + \frac{0.1064}{2} + 0.0482 = 2.1014 \, m$$

$$T_{\text{Fore-Portside}} = T + \frac{Trim}{2} - \frac{B}{2}\tan\phi = T + \frac{0.1064}{2} - 0.0482 = 2.0050 \, m$$

$$T_{\text{Aft-Portside}} = T - \frac{Trim}{2} - \frac{B}{2} \tan \phi = T - \frac{0.1064}{2} - 0.0482 = 1.8986 m$$


$$T_{\text{Aft-Starboard}} = T - \frac{Trim}{2} + \frac{B}{2} \tan \phi = T - \frac{0.1064}{2} + 0.0482 = 1.9950 \, m$$

- Calculation of the Approximate Solution by Using Linearization (7/7)

Given:

L: 20m, B: 12m, D: 4m, T: 2m, KG: 2m Movement of the 10ton cargo (From the center of the deck to 4m in the direction of the forward perpendicular and 2m in the direction of the starboard)

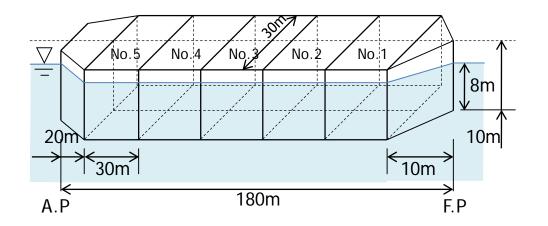
Find: The draft at the forward perpendicular(FP), after perpendicular(AP), portside, and starboard of the ship

• : Location of the cargo

1. Change of draft caused by trim	2. Change of draft caused by heel	3. Calculation of drafts at
$ (]Trim[m] = \frac{Trim Moment}{MTC \cdot 100} $	$\textcircled{W} Heel[m] = B \cdot \tan \phi$	each portside and starboard of the FP and AP
$\frac{WTC \cdot 100}{\text{Trim Moment} = W \cdot l_L}$	$\delta y'_G = \frac{w \cdot l_T}{\Delta}$	$T_{{\scriptscriptstyle Fwd},{\scriptscriptstyle Aft},{\scriptscriptstyle Port},{\scriptscriptstyle Stb'd}}$
$\overline{GM_{L}} = \overline{KB} + \overline{BM_{L}} - \overline{KG}$	$\overline{GM} = \overline{KB} + \overline{BM} - \overline{KG}$	$=T\pm\frac{\text{Trim}}{\pm}\pm\frac{\text{Heel}}{\pm}$
$MTC = \frac{\Delta \cdot \overline{GM_L}}{100 \cdot L_{BP}}$	$\delta y'_G \cos \phi + \delta z'_G \sin \phi = \overline{GM} \sin \phi$	$\gamma \gamma$

3. Calculation of the drafts at the each portside and starboard of the FP and AP

If the inclination angles are small, the difference of the approximate solution and exact solution will be small.

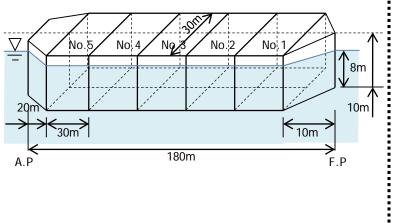

The linearized terms in the solving procedure

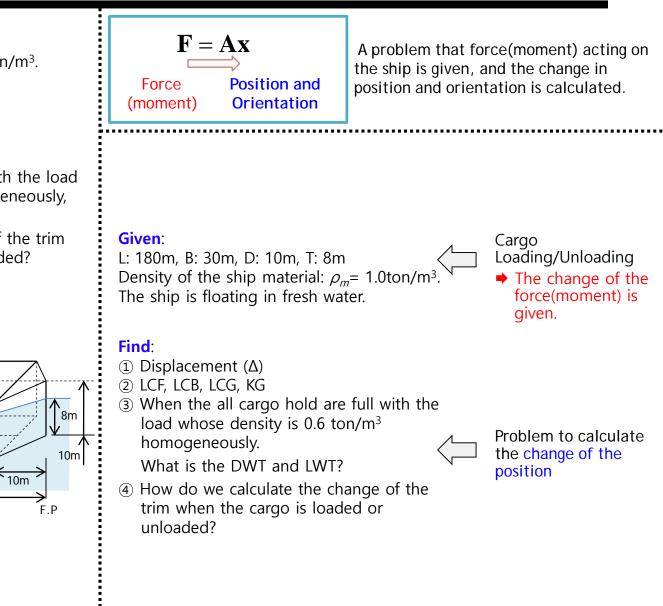
- Trim moment $w \cdot l \cdot \cos \theta \cong w \cdot l$

- I _L , I _T	$I_{L1} \cong I_{L0}$, $I_{T1} \cong I_{T0}$
- AWP	$\iint dx dy \cong A_{WP0} = L_0 \cdot B_0$
- TPC, MTC	Linearized A_{WP0} , Linearized I,
- KB ₁	Vertical center of buoyancy at the previous state
- LCB ₁	Longitudinal center of buoyancy at the previous state

- Because of linearization, there is a difference between the obtained solution and exact solution. If the inclination angles are small, an acceptable solution can be obtained. If the inclination angles are large, however, this calculation has to be repeated using the inclined current water plane until the difference between the approximate solution and exact solution becomes to zero.

- A ship is floating in fresh water as seen in the figure below. Answer the following questions. The density of the after part, cargo hold part, and forward part is ρ_m =1.0ton/m³.
- (1) Calculate the displacement (Δ) of the ship.
- 2 Calculate the LCF, LCB, LCG, and KG of the ship.
- ③ If all compartments (No.1~No.5 for port and starboard, total 10 cargo holds) are fully loaded, with a load whose density is 0.6ton/m³, calculate the deadweight(DWT) and lightweight(LWT).
- ④ When the cargo is loaded and unloaded, the shape of the water plane changes. Explain how to calculate the change of the trim in this case.




Given:

L: 180m, B:30m, D:10m, T:8m Density of the ship material ρ_m = 1.0ton/m³. The ship is floating in fresh water.

Find:

- ① Displacement(Δ)
- 2 LCF, LCB, LCG, KG
- ③ When the all cargo hold are full with the load whose density is 0.6ton/m³ homogeneously, DWT and LWT?
- ④ How do we calculate the change of the trim when the cargo is loaded or unloaded?

Design

aboratorv

[Example] Calculation of Trim of a Ship (3/7)

Given:

L: 180m, B:30m, D:10m, T:8m Density of the ship material ρ_m = 1.0ton/m³. The ship is floating in fresh water.

Find:

(1) Displacement(Δ)

2 LCF, LCB, LCG, KG

- ③ When the all cargo hold are full with the load whose density is 0.6ton/m³ homogeneously, DWT and LWT?
- ④ How do we calculate the change of the trim when the cargo is loaded or unloaded?

Calculation of the approximate solution by linearizing the problem

① Displacement(Δ)

 $\Delta = \nabla \cdot \rho$

 $\nabla = A_{WP} \cdot T$ (Since the water plane area does not change)

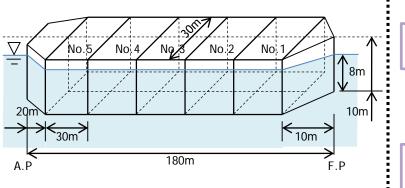
② LCF, LCB, LCG, KG

$$LCF = \frac{M_{Awp,y'}}{A_{WP}} = \frac{\iint x' \, dx' \, dy'}{\iint dx' \, dy'}$$
$$LCB = \frac{M_{\nabla,y'}}{\nabla} = \frac{\iiint x' \, dx' \, dy' \, dz'}{\iint dx' \, dy' \, dz'}$$

(1st moment of the water plane area about y axis though the center of the ship)

(1st moment of the displacement about y axis though the center of the ship)

Because the water plane area is not changed in the vertical direction LCF = LCB

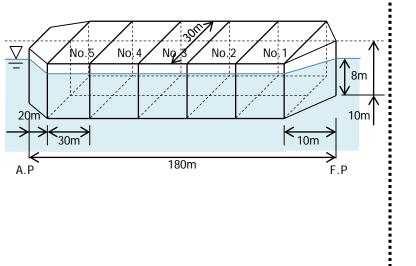

Because the ship is in the even keel state LCB = LCG

③ When the cargo hold is fully loaded, with a load having a density of 0.6 ton/m³ homogeneously. What is the DWT and LWT?

 $DWT = A_h \cdot D \cdot \rho_{\text{cargo}}$

 $LWT = \Delta - DWT$

(4) How do we calculate the change of the trim when the cargo is loaded or unloaded?


[Example] Calculation of Trim of a Ship (4/7)

Given:

L: 180m, B:30m, D:10m, T:8m Density of the ship material ρ_m = 1.0ton/m³. The ship is floating in fresh water.

Find:

- (1) Displacement(Δ)
- 2 LCF, LCB, LCG, KG
- ③ When the all cargo hold are full with the load whose density is 0.6ton/m³ homogeneously, DWT and LWT?
- ④ How do we calculate the change of the trim when the cargo is loaded or unloaded?

(1) Displacement(Δ) $\Delta = \nabla \cdot \rho$, $\nabla = A_{WP} \cdot T$

If the water plane areas for after part, cargo hold part, and fore part are $A_{a'}$ $A_{h'}$ A_f respectively,

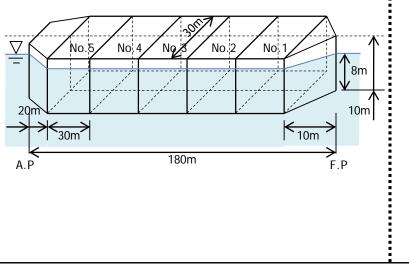
$$A_a = (30+10) \cdot 20 \cdot 0.5 = 400 \, m^2$$

$$A_h = 150 \cdot 30 = 4,500 \, m^2$$

 $A_f = 0.5 \cdot 30 \cdot 10 = 150 \, m^2$

$$\nabla = (A_a + A_h + A_f) \cdot T = 40,400 \, m^3$$

$$\therefore \Delta = \nabla \cdot \rho_{fw} = 40,400 \cdot 1.0 = 40,400 \text{ ton}$$


[Example] Calculation of Trim of a Ship (5/7)

Given:

L: 180m, B:30m, D:10m, T:8m Density of the ship material ρ_m = 1.0ton/m³. The ship is floating in fresh water.

Find:

- (1) Displacement(Δ)
- 2 LCF, LCB, LCG, KG
- ③ When the all cargo hold are full with the load whose density is 0.6ton/m³ homogeneously, DWT and LWT?
- ④ How do we calculate the change of the trim when the cargo is loaded or unloaded?

(2) LCF, LCB, LCG, KG

$$LCF = \frac{M_{Awp,y'}}{A_{WP}} = \frac{\iint x' dx' dy'}{\iint dx' dy'}$$

$$LCB = \frac{M_{\nabla,y'}}{\nabla} = \frac{\iiint x' dx' dy' dz'}{\iint dx' dy' dz'}$$

1st moment of the water plane area about y axis though the center of the $ship(M_l)$

$$M_{L} = -A_{a} \cdot (8.3333 + 70) + A_{f} \cdot (\frac{10}{3} + 80) + A_{h} \cdot (5)$$

$$\approx 3,666.68 \, m^{3}$$

$$LCF = \frac{M_{L}}{A_{a} + A_{h} + A_{f}} = \frac{3,666.68}{5,050}$$

$$\approx 0.73 \, m$$

Because the ship is in the "even keel" state and the water plane area is not changed in the vertical direction

$$LCF = LCB = LCG = 0.73 m$$

Because the water plane area is not changed in the z axis direction

$$KG = \frac{D}{2} = \frac{10}{2} = 5m$$
, $KB = \frac{T}{2} = \frac{8}{2} = 4m$

[Example] Calculation of Trim of a Ship (6/7)

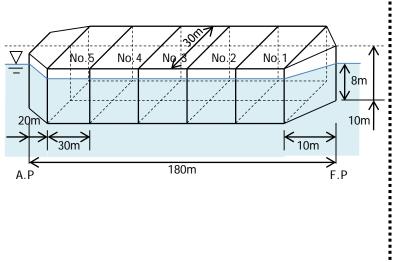
Given:

L: 180m, B:30m, D:10m, T:8m Density of the ship material ρ_m = 1.0ton/m³. The ship is floating in fresh water.

Find:

- ① Displacement(Δ)
- 2 LCF, LCB, LCG, KG
- ③ When the all cargo hold are full with the load whose density is 0.6ton/m³ homogeneously, DWT and LWT?
- ④ How do we calculate the change of the trim when the cargo is loaded or unloaded?

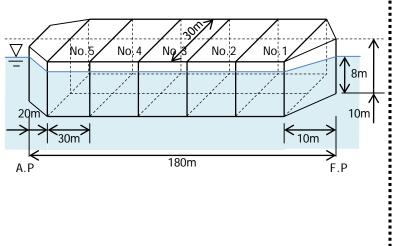
③ When the all cargo hold are full with the load whose density is 0.6ton/m³ homogeneously. What is the DWT and LWT?


$$DWT = A_{WP_Hold} \cdot D \cdot \rho_{cargo}$$
$$LWT = \Delta - DWT$$

The deadweight(DWT) and lightweight(LWT) of the ship

 $DWT = A_h \cdot D \cdot \rho_{cargo}$ $= 4,500 \cdot 10 \cdot 0.6$ = 27,000 ton

 $LWT = \Delta - DWT$ = 40,400 - 27,000 = 13,400 ton


[Example] Calculation of Trim of a Ship (7/7)

Given:

L: 180m, B:30m, D:10m, T:8m Density of the ship material ρ_m = 1.0ton/m³. The ship is floating in fresh water.

Find:

- (1) Displacement(Δ)
- 2 LCF, LCB, LCG, KG
- ③ When the all cargo hold are full with the load whose density is 0.6ton/m³ homogeneously, DWT and LWT?
- (4) How do we calculate the change of the trim when the cargo is loaded or unloaded?

(4) How do we calculate the change of trim when the cargo is loaded or unloaded?


The trim at the first stage is calculated by the moment caused by loading/unloading the cargo and MTC in the even keel state. However, the water plane area, center of gravity and buoyancy of the ship can change by loading/unloading the cargo. Therefore, to calculate the trim of the ship, the MTC has to be obtained after trimming and we have to iterate the following calculation until a constant value is obtained.

At first, we calculate the MTC in the current state by using the trim obtained in first stage. And then, we calculate the trim at the second stage by using this MTC. And then, we iterate this calculation procedure until the error of the displacement and trim is smaller than the allowable value.

[Example] Calculation of Barge Ship's Trim and Heel Angles (1/18)

A barge ship of 28m length, 18m breadth, 9m height, 1m shell plate thickness, density of shell plate ρ_m =1.0ton/m³ is shown below.

 Calculate ship's lightweight and draft in fresh water under the condition of "light ship" loading condition. And if the barge ship is floating in sea water, what is the draft?

(2) The barge ship floats in fresh water and it carries the loads as shown in the table.

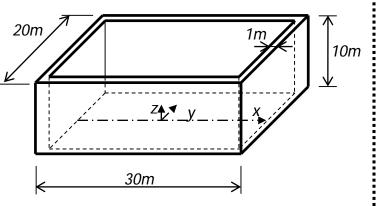
ltem	Unit Mass	# of Caraoas	Loadi	ng positi	on(m)
nem	UTIL WIDSS	# of Cargoes	х	у	z
Freight 1	100ton	3	0	0	1
Freight 2	150ton	2	-5	0	1

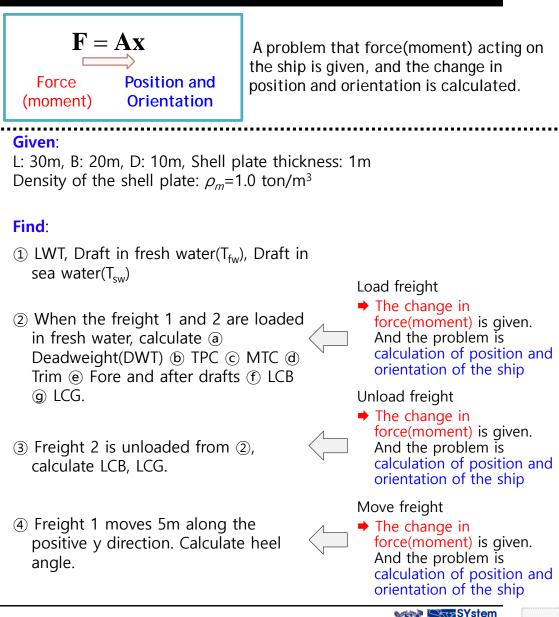
Calculate the ship's (a) deadweight(DWT) (b) TPC (c) MTC (d) Trim (e) Fore and after drafts (f) LCB (g) LCG.

3 From the result of the question 2, if the freight 2 is unloaded from the barge ship, calculate LCB and LCG.

④ From the result of the question ③, if the freight 1 moves 5m along the positive y direction. calculate the barge ship's heel angle.

[Example] Calculation of Barge Ship's Trim and Heel Angles (2/18)


Given:


L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

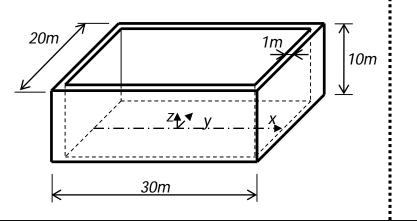
- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

Design

aboratorv

[Example] Calculation of Barge Ship's Trim and Heel Angles (3/18)

Given:


L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate

 Deadweight(DWT)
 TPC
 MTC
 Trim
 Fore and after drafts
 LCB
 LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

Calculation of the approximate solution by linearizing the problem

$$\Delta_{LWT} = A_{WP} \cdot T_{fw} \cdot \rho_{fw} \longrightarrow T_{fw} = \frac{\Delta_{LWT}}{A_{WP} \cdot \rho_{fw}}$$
$$\Delta_{LWT} = A_{WP} \cdot T_{sw} \cdot \rho_{sw} \longrightarrow T_{sw} = \frac{\Delta_{LWT}}{A_{WP} \cdot \rho_{sw}}$$

② When the freight 1 and 2 are loaded in fresh water,
 ③ Deadweight(DWT) ⑤ TPC ⓒ MTC ④ Trim ⑥ Fore and after drafts ⑦ LCB ⑨ LCG

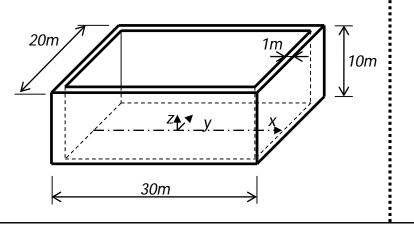
(a)
$$\Delta = LWT + DWT$$

(b) $TPC = \frac{A_{WP} \cdot \rho_{f.W}}{100}$
(c) $MTC = \frac{\Delta \cdot \overline{GM_L}}{L_{BP} \cdot 100}$
 $\overline{GM_L} = \overline{KB} + \overline{BM_L} - \overline{KG}$
(d) $Trim[m] = \frac{Trim Moment}{MTC \cdot 100}$
(e) $T_{Aft,Fore} = T \pm \frac{trim}{2}$

(f)
$$LCB = \frac{M_{\nabla, y'}}{\nabla} = \frac{\iiint x' \, dx' \, dy' \, dz'}{\iiint dx' \, dy' \, dz'}$$

(g) $LCG = \frac{w}{W} l_L$

[Example] Calculation of Barge Ship's Trim and Heel Angles (4/18)


Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate

 Deadweight(DWT)
 TPC
 MTC
 Trim
 Fore and after drafts
 LCB
 LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

Calculation of the approximate solution by linearizing the problem

③ Freight 2 is unloaded from ②, calculate LCB, LCG.

$$LCB = \frac{M_{\nabla, y'}}{\nabla} = \frac{\iiint x' \, dx' \, dy' \, dz'}{\iiint dx' \, dy' \, dz'}$$
$$LCG = \frac{W}{W} l_L$$

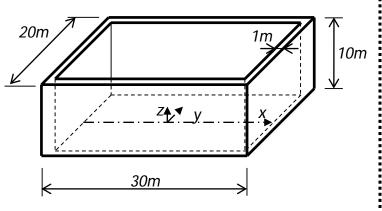
④ From the condition ③, freight 1 moves 5m along the positive y direction. Calculate heel angle.

$$\delta y'_G \cos \phi + \delta z'_G \sin \phi = \overline{GM} \sin \phi$$

$$\delta y'_G = \frac{w \cdot l_T}{\Delta}$$

$$\overline{GM} = \overline{KB} + \overline{BM} - \overline{KG}$$

[Example] Calculation of Barge Ship's Trim and Heel Angles (5/18)


Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- 2 When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 c MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

 $\Delta_{LWT} = (30 \cdot 20 \cdot 10 - 28 \cdot 18 \cdot 9) \cdot 1.0 = 1,464 \text{ ton}$

① LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})

$$\Delta_{LWT} = A_{WP} \cdot T_{fw} \cdot \rho_{fw} \longrightarrow T_{fw} = \frac{\Delta_{LWT}}{A_{WP} \cdot \rho_{fw}}$$
$$\Delta_{LWT} = A_{WP} \cdot T_{sw} \cdot \rho_{sw} \longrightarrow T_{sw} = \frac{\Delta_{LWT}}{A_{WP} \cdot \rho_{sw}}$$

In fresh water, the draft for light ship condition is given by:

$$\Delta_{LWT} = A_{WP} \cdot T_{fw} \cdot \rho_{fw}$$

Thus, the draft is

$$T_{fw} = \frac{1,464}{20 \cdot 30 \cdot 1.0} = 2.44 \, m$$

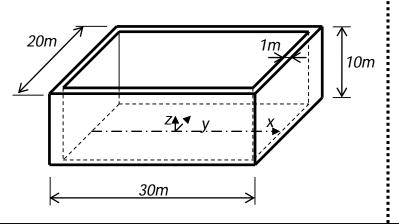
In sea water, the draft for light ship condition is given by :

$$\Delta_{LWT} = A_{WP} \cdot T_{SW} \cdot \rho_{SW}$$

Thus, the draft is

$$T_{sw} = \frac{1,464}{20 \cdot 30 \cdot 1.025} = 2.39 \, m$$

[Example] Calculation of Barge Ship's Trim and Heel Angles (6/18)


Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

② When the freight 1 and 2 are loaded in fresh water, **a** Deadweight(DWT) **b** TPC **c** MTC **d** Trim **e** Fore and after drafts **f** LCB **g** LCG

(a) $\Delta = LWT + DWT$

Before loading the freight, the ship's displacement is equal to lightweight(LWT).

 $\Delta_0 = LWT = 1,464 ton$

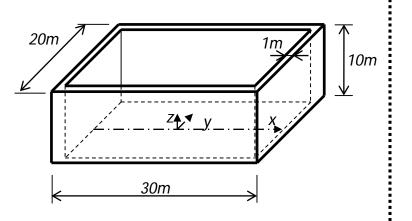
Thus the ship's deadweight(DWT) is

 $DWT = 3 \cdot 100 + 2 \cdot 150 = 600 ton$

After loading the freights, the ship's displacement becomes

 $\Delta = LWT + DWT = 2,064 ton$

[Example] Calculation of Barge Ship's Trim and Heel Angles (7/18)


Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

- ② When the freight 1 and 2 are loaded in fresh water,
 ③ Deadweight(DWT) (b) TPC (c) MTC (d) Trim
- Fore and after drafts ① LCB ③ LCG

(b) TPC is calculated as follows:

$$TPC = \frac{A_{WP} \cdot \rho_{fW}}{100} = \frac{20 \cdot 30 \cdot 1.0}{100} = 6 ton / cm$$

 $\textcircled{\mbox{\scriptsize C}}$ MTC is calculated as follows:

$$\delta T = \frac{DWT}{TPC} = \frac{600}{6} = 100 \, cm = 1m$$

After loading the freights, the ship's displacement in fresh water is

$$T = T_{fw} + \delta T = 2.44 + 1 = 3.44 \, m$$

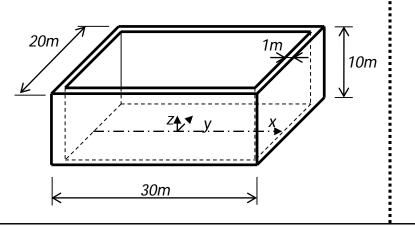
$$MTC = \frac{\Delta \cdot GM_{L}}{L_{BP} \cdot 100}$$

$$CM = KR + RM = KC$$

$$GM_L = KB + BM_L - KG$$

[Example] Calculation of Barge Ship's Trim and Heel Angles (8/18)

Given:

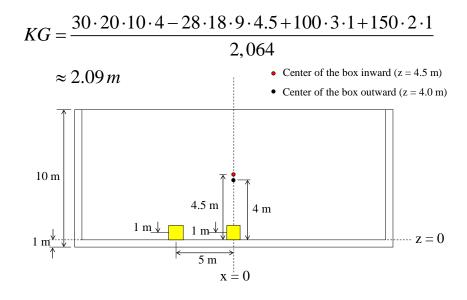

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate

 Deadweight(DWT)
 TPC
 MTC
 Trim
 Fore and after drafts
 LCB
 LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.


- ② When the freight 1 and 2 are loaded in fresh water,
 ③ Deadweight(DWT) ⑤ TPC ⓒ MTC ④ Trim
- Fore and after drafts (F) LCB (G) LCG

© MTC:
$$MTC = \frac{\Delta \cdot GM_L}{L_{BP} \cdot 100}$$
, $GM_L = KB + BM_L - KG$

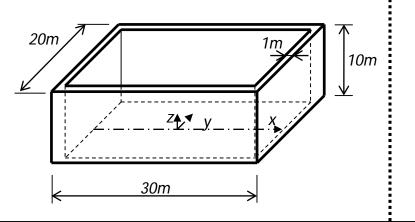
After loading the freight, the changed center of buoyancy becomes: $KB = \frac{T}{2} = \frac{3.44}{-1.72m}$

$$KB = \frac{1}{2} = \frac{3.44}{2} = 1.72m$$

And the changed center of gravity about the base line, that is z=0, is expressed as follows:

[Example] Calculation of Barge Ship's Trim and Heel Angles (9/18)

Given:


L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate

 Deadweight(DWT)
 TPC
 MTC
 Trim
 Fore and after drafts
 LCB
 LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

- ② When the freight 1 and 2 are loaded in fresh water,
 ③ Deadweight(DWT) ⑤ TPC ⓒ MTC ④ Trim
- Fore and after drafts ① LCB ④ LCG

© MTC:
$$MTC = \frac{\Delta \cdot GM_L}{L_{BP} \cdot 100}$$
, $GM_L = KB + BM_L - KG$

After loading the freight, the changed center of buoyancy becomes: $KB = \frac{T}{3.44} = 1.72m$

$$KB = \frac{1}{2} = \frac{3.44}{2} = 1.72m$$

And the changed center of gravity about the base line, that is z=0, is expressed as follows:

$$KG = \frac{30 \cdot 20 \cdot 10 \cdot 4 - 28 \cdot 18 \cdot 9 \cdot 4.5 + 100 \cdot 3 \cdot 1 + 150 \cdot 2 \cdot 1}{2,064}$$

$$\approx 2.09 m$$

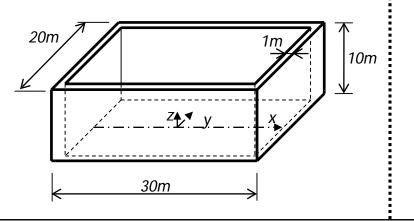
$$R_{1}I^{3} = 20,30^{3}$$

$$I_{L} = \frac{B}{12} = \frac{20.30}{12} = 45,000 \, m^{4}$$
$$BM_{L} = \frac{I_{T}}{\nabla} = \frac{45,000}{2,064/1.0} \approx 21.8 \, m$$

$$GM_L = KB + BM_L - KG$$

= 1.72 + 21.8 - 2.09 = 21.43 m

[Example] Calculation of Barge Ship's Trim and Heel Angles (10/18)


Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

- ② When the freight 1 and 2 are loaded in fresh water,
 ⓐ Deadweight(DWT) ⓑ TPC ⓒ MTC ⓓ Trim
- (e) Fore and after drafts (f) LCB (g) LCG

© MTC:
$$MTC = \frac{\Delta \cdot GM_L}{L_{BP} \cdot 100}$$
, $GM_L = KB + BM_L - KG$

$$KB = 1.72m$$

 $KG \approx 2.09 \, m$

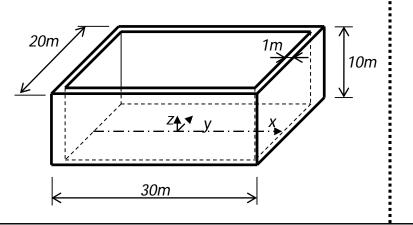
$$BM_{L} = 21.8 m$$

$$GM_L = KB + BM_L - KG$$

= 1.72 + 21.8 - 2.09 = 21.43 m

Therefore, MTC(moment to trim 1 cm) is

$$MTC = \frac{\Delta \cdot GM_L}{100} = \frac{2,064 \cdot 21.43}{100}$$
$$\approx 442.32 \ ton \cdot m / cm$$


[Example] Calculation of Barge Ship's Trim and Heel Angles (11/18)

Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

- ② When the freight 1 and 2 are loaded in fresh water,
 ③ Deadweight(DWT) ⑤ TPC ⓒ MTC ⓓ Trim
- e Fore and after drafts (F) LCB (g) LCG
- d Loading of the freight 2 leads to

Trim Moment =
$$-5 \cdot (150 \cdot 2) = -1,500 \ ton \cdot m$$

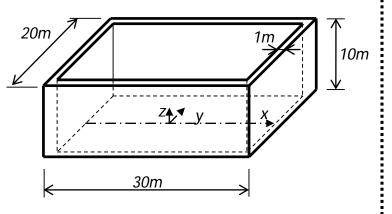
$$Trim = \frac{Trim Moment}{MTC} = -3.39 \ cm = -0.0339 \ m$$

(e) Using the trim, the fore and after drafts are expressed as follow:

Draft at fore part=
$$T - \frac{1}{2} \cdot 0.0339 \approx 3.42 \ m$$

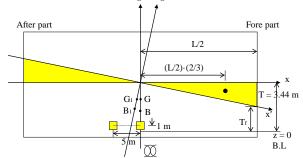
Draft at after part= $T + \frac{1}{2} \cdot 0.0339 \approx 3.46 \ m$

[Example] Calculation of Barge Ship's Trim and Heel Angles (12/18)


Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³


Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

② When the freight 1 and 2 are loaded in fresh water,
③ Deadweight(DWT) ⑤ TPC ⓒ MTC ④ Trim
④ Fore and after drafts ⑦ LCB ⑨ LCG

(f) Let us calculate the ship's LCB.

About the midship section, longitudinal moment of the volume of emerged wedge leads to

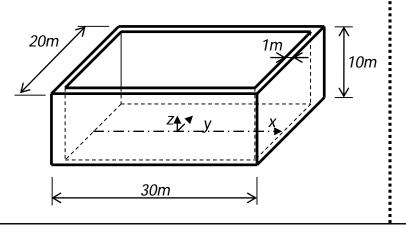
$$-\frac{1}{2} \cdot \frac{L}{2} \cdot (T - T_f) \cdot (\frac{L}{2} \cdot \frac{2}{3}) \cdot B$$

About the midship section, longitudinal moment of the volume of submerged wedge leads to

$$\begin{aligned} &-\frac{1}{2} \cdot \frac{L}{2} \cdot (T_a - T) \cdot (\frac{L}{2} \cdot \frac{2}{3}) \cdot B \\ &= -\frac{1}{2} \cdot \frac{L}{2} \cdot (T - T_f) \cdot (\frac{L}{2} \cdot \frac{2}{3}) \cdot B \end{aligned}$$

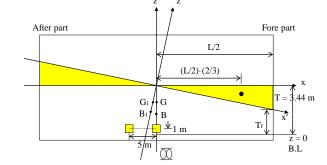
Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

[Example] Calculation of Barge Ship's Trim and Heel Angles (13/18)


Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³


Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

② When the freight 1 and 2 are loaded in fresh water,
③ Deadweight(DWT) ⑤ TPC ⓒ MTC ④ Trim
④ Fore and after drafts ① LCB ⑨ LCG

① Let us calculate the ship's LCB.

$$-\frac{1}{2} \cdot \frac{L}{2} \cdot (T - T_f) \cdot (\frac{L}{2} \cdot \frac{2}{3}) \cdot B, \quad -\frac{1}{2} \cdot \frac{L}{2} \cdot (T - T_f) \cdot (\frac{L}{2} \cdot \frac{2}{3}) \cdot B$$

Therefore, total longitudinal moment of displaced volume, $M_{l_{l}}$ is calculated as follows

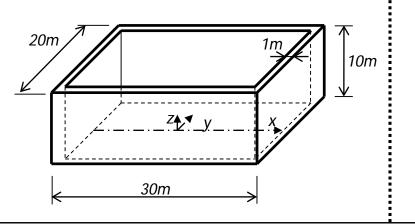
$$M_{L} = -2 \cdot \left(\frac{1}{2} \cdot \frac{L}{2} \cdot (T - T_{f})\right) \cdot \left(\frac{L}{2} \cdot \frac{2}{3}\right)$$

= -3,750 ton \cdot m
$$LCB = \frac{M_{L}}{\nabla} = \frac{-3,750}{2,064/1.0} = -1.82 m$$

Where, the change in center of buoyancy in vertical direction is disregarded.

[Example] Calculation of Barge Ship's Trim and Heel Angles (14/18)

Given:

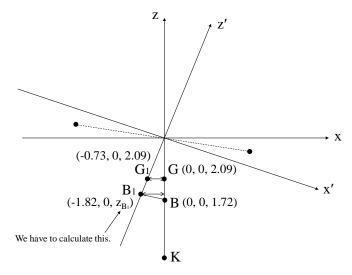

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate

 Deadweight(DWT)
 TPC
 MTC
 Trim
 Fore and after drafts
 LCB
 LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.


- ② When the freight 1 and 2 are loaded in fresh water,
 ③ Deadweight(DWT) ⑤ TPC ⓒ MTC ④ Trim
- Fore and after drafts
 CB
 G
 LCB

(g) LCG is obtained as follows:

$$LCG = \frac{w}{W}l_L = \frac{(150 \cdot 2)}{2,064} \cdot (-5) = -0.73 \ m$$

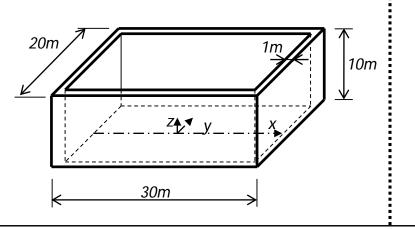
Consequently, trim moment due to loading freights is expressed as follows:

Trim moment = $2,064 \cdot 0.73 = 5 \cdot (150 \cdot 2)$

[Example] Calculation of Barge Ship's Trim and Heel Angles (15/18)

Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m


Density of the shell plate: ρ_m =1.0ton/m³

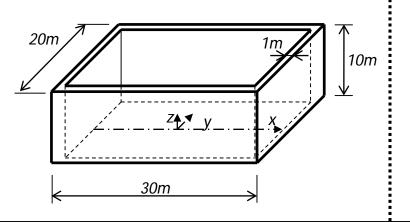
Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

③ Freight 2 is unloaded from ②, calculate LCB, LCG.

If the freight 2 is unloaded from the condition (2), the ship's trim becomes zero. Hence LCB=LCG=0. At this time, the displacement Δ is 1,764ton, draft is 1,764/(30·20)=2.94m.

[Example] Calculation of Barge Ship's Trim and Heel Angles (16/18)

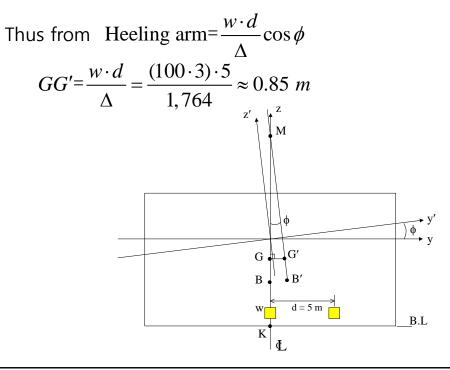

Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- Freight 1 moves 5m along the positive y direction. Calculate the heel angle.



 Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

Heeling moment = $w \cdot d \cdot \cos \phi$

Restoring moment = $\Delta \cdot GZ \approx \Delta \cdot GM \cdot \sin \phi$

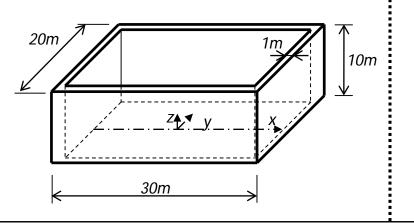
The freight 1 moves 5m along the positive y direction from centerline, total center of gravity G moves perpendicularly to G'.

93

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

[Example] Calculation of Barge Ship's Trim and Heel Angles (17/18)

Given:


L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate

 Deadweight(DWT)
 TPC
 MTC
 Trim
 Fore and after drafts
 LCB
 LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.

Restoring moment is obtained using the following equation.

$$GZ = GM \cdot \sin \phi = (KB + BM - KG) \cdot \sin \phi$$

Because the barge ship's shape is box-shape,

$$KB = \frac{T}{2} = \frac{2.94}{2} = 1.47 m$$

$$BM = \frac{I_T}{\nabla} = \frac{LB^3 / 12}{\nabla} \approx 11.34 m$$

$$KG = \frac{30 \cdot 20 \cdot 10 \cdot 4 - 28 \cdot 18 \cdot 9 \cdot 4.5 + 100 \cdot 3 \cdot 1}{1,764}$$

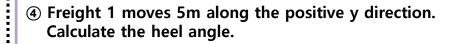
$$= 2.20 m$$

$$GM = KB + BM - KG = 1.47 + 11.34 - 2.20$$

= 10.61 m

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-II Roh

[Example] Calculation of Barge Ship's Trim and Heel Angles (18/18)

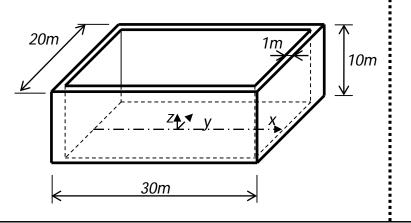

Given:

L: 30m, B: 20m, D: 10m, Shell plate thickness: 1m

Density of the shell plate: ρ_m =1.0ton/m³

Find:

- (1) LWT, Draft in fresh water(T_{fw}), Draft in sea water(T_{sw})
- When the freight 1 and 2 are loaded in fresh water, calculate a Deadweight(DWT) b TPC
 C MTC d Trim e Fore and after drafts f LCB g LCG.
- (3) Freight 2 is unloaded from (2), calculate LCB, LCG.
- ④ Freight 1 moves 5m along the positive y direction. Calculate the heel angle.


Heel angle is calculated as

Righting arm = Heeling arm

$$GM \cdot \sin \phi = \frac{w \cdot d}{\Lambda} \cos \phi$$

$$\tan\phi = \frac{w \cdot d}{\Delta} \frac{1}{GM} = \frac{GG'}{GM}$$

$$\phi = \tan^{-1} \left(\frac{GG'}{GM} \right) = \tan^{-1} \left(\frac{0.85}{10.61} \right) \approx 4.58^{\circ}$$

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (1/9)

A bulk carrier of which the length between perpendiculars(L_{BP}) is 264m and deadweight is 150,000ton(DWT 150K) floats in sea water. The ship is fully loaded and the fore and after drafts are 16.9m(even keel condition).

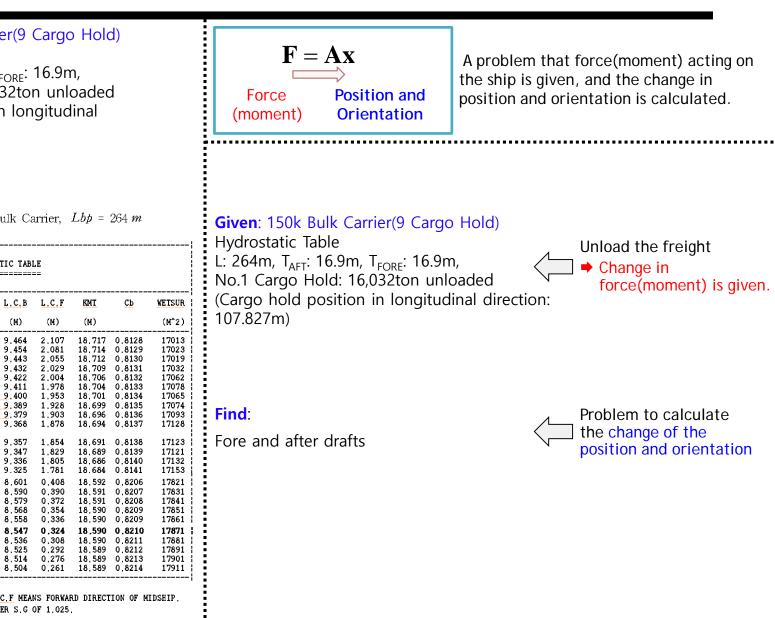
After unloading the load 16,032ton from No. 1 Cargo Hold, **calculate the fore and after drafts** using the ship's hydrostatic table. For reference, the freight's center of gravity is located in centerline in transverse direction, and 107.827m from midship in longitudinal direction.

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

			HYDROSTA ======	TIC TAB	LE ==				DRAFT (EXT.) (M)	DISPL EXT. (MT)	TPC (MT/CM)	NTC (MT*M/CN)	L.C.B (M)	L.C.F (M)	KMT (M)	Сь	WETSUR (M^2)
DRAFT (EXT.) (M)	DISPL EXT. (MT)	TPC (MT/CM)	MTC (MT*M/CM)	L.C.B (M)	L.C.F (M)	<u>кмт</u> (м)	<u>Cb</u>	WETSUR (M^2)	16.600 16.620 16.640 16.660 16.680	165679 165898 166116 166335 166554	106.7 106.7 106.7 106.7 106.7 106.7	1968.5 1969.3 1970.1 1970.9 1971.6	8.709 8.698 8.687 8.676 8.676 8.665	0.589 0.570 0.552 0.534 0.516	18.598 18.597 18.597 18.596 18.595	0.8196 0.8197 0.8198 0.8198 0.8199 0.8200	17711 17722 17733 17744 17756
15.200 15.220 15.240 15.260	150450 150667 150883 151100	105,4 105,5 105,5 105,5	1906.1 1907.1 1908.1 1909.0	9.464 9.454 9.443 9.432	2,107 2,081 2,055 2,029	18,717 18,714 18,712 18,709		17013 17023 17019 17032	16.700 16.720 16.740 16.760	166534 166773 166991 167210 167429	106.7 106.7 106.8 106.8	1971.8 1972.4 1973.2 1974.0 1974.7	8.655 8.644 8.633 8.622	0,318 0,498 0,480 0,462 0,444	18,595 18,595 18,594 18,594 18,593	0,8200 0,8201 0,8202 0,8203 0,8204	17756 17767 17777 17788 17799
15.280 15.300 15.320 15.340	151316 151532 151749 151965	105,5 105,5 105,6 105,6	1910.0 1911.0 1911.9 1912.9	9,422 9,411 9,400 9,389	2,004 1,978 1,953 1,928	18,706 18,704 18,701 18,699	0,8132 0,8133 0,8134 0,8135	17062 17078 17065 17074	16.780 16.800 16.820	167648 167867 168086	106.8 106.8 106.8	1975.5 1976.2 1977.0	8,611 8,601 8,590	0,426 0,408 0,390	18,592 18,592 18,591	0,8205 0,8206 0,8207	17810 17821 17831
15.360 15.380 15.400	152182 152399 152615	105.6 105.6 105.6	1913.9 1914.8 1915.8	9.379 9.368 9.357	1,903 1,878 1,854	18,691	0,8137 0,8138	17093 17128 17123	16.840 16.860 16.880 16.880	168305 168524 168743 168962	106.8 106.8 106.9 106.9	1977,7 1978,4 1979,1 1980,1	8,579 8,568 8,558 8,547	0.372 0.354 0.336 0.324	18,591 18,590 18,590 18,590	0.8208 0.8209 0.8209 0.8210	17841 17851 17861 17871
15.420 15.440 15.460 15.480 15.500	152832 153049 153265 153482 153699	105.6 105.7 105.7 105.7 105.7	1916,7 1917,7 1918,6 1919,6 1920,5	9.347 9.336 9.325 9.314 9.304	1,829 1,805 1,781 1,757	18,689 18,686 18,684 18,682 18,679	0.8139 0.8140 0.8141 0.8142 0.8143	17121 17132 17153 17180 17180	16.920 16.940 16.960 16.980	169181 169400 169619 169839	106.9 106.9 106.9 106.9	1980.9 1981.7 1982.6 1983.4	8.536 8.525 8.514 8.504	0.308 0.292 0.276 0.261	18,590 18,589 18,589 18,589	0.8211 0.8212 0.8213 0.8214	17881 17891 17901 17911
15.500 15.520 15.540 15.560 15.580	153699 153916 154133 154350 154567	105.7 105.8 105.8 105.8	1920,5 1921,5 1922,4 1923,3 1924,3	9.304 9.293 9.282 9.271 9.261	1.733 1.709 1.685 1.662 1.638		0.8143 0.8144 0.8145 0.8146 0.8147	17190 17217 17234 17210 17192	NOTE : POS DISPLACEME							ION OF M	IDSHIP.

Planning Procedure of Naval Architecture and Ocean Engineering, Fall 2013, Myung-Il Roh

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (2/9)


Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORF}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

			HYDROSTA ======					
DRAFT (EXT.);	DISPL EXT.	TPC	MTC	L.C.B	L.C.F	KMT	Сь	WETSUR
(M)	(MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
15,200	150450	105,4	1906.1	9,464	2,107	18,717	0.8128	17013
15,220	150667	105.5	1907.1	9,454	2,081	18,714	0.8129	17023
15,240	150883	105.5	1908.1	9,443	2,055	18,712	0,8130	17019
15,260	151100	105.5	1909.0	9,432	2,029	18,709	0,8131	17032
15.280	151316	105.5	1910.0	9.422	2.004	18,706	0.8132	17062
15.300	151532	105.5	1911.0	9,411	1,978	18.704	0.8133	17078
15,320	151749	105.6	1911. <u>9</u>		1,953	18,701	0.8134	17065
15.340 ¦	151965	105.6	1912. <u>9</u>	9.389	1,928	18,699	0.8135	17074
15.360 ¦	152182	105.6	1913, <u>9</u>	9.379	1,903	18.696	0.8136	17093
15,380	152399	105,6	1914.8	9,368	1.878	18,694	0.8137	17128
15,400	152615	105.6	1915.8	9,357	1.854	18,691	0.8138	17123
15,420	152832	105.6	1916,7	9,347	1,829	18,689	0.8139	17121
15,440	153049	105,7	1917,7	9,336	1,805	18,686	0.8140	17132
15.460	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	17153
16.800	167867	106.8	1976,2	8,601	0,408	18,592	0.8206	17821
16.820	168086	106,8	1977.0	8,590	0,390	18,591	0,8207	17831
16.840	168305	106,8	1977,7	8,579	0,372	18,591	0,8208	17841
16.860	168524	106.8	1978.4	8,568	0.354	18,590	0,8209	17851
16,880	168743	106,9	1979.1	8,558	0,336	18,590	0,8209	17861
16,900	168962	106,9	1980.1	8.547	0.324	18,590	0.8210	17871
16,920	169181	106.9	1980,9	8,536	0,308	18,590	0.8211	17881
16.940 ¦	169400	106,9	1981.7	8,525	0,292	18,589	0.8212	17891
16,960	169619	106,9	1982,6	8,514	0,276	18,589	0,8213	17901
16,980	169839	106.9	1983.4	8,504	0.261	18,589	0.8214	17911

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (3/9)

Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORE}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

DRAFT	DISPL	TPC	мтс	L.C.B	L.C.F	KMT	<u>Сь</u>	WETSUF
(EXT_) (M)	EXT. (MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
15,200	150450	105,4	1906,1	9,464	2,107	18,717	0.8128	17013
15.220	150667	105.5	1907.1	9.454	2,081	18,714	0.8129	17023
15,240	150883	105,5	1908.1	9,443	2,055	18,712	0.8130	17019
15,260	151100	105,5	1909.0	9,432	2,029	18,709	0,8131	17032
15.280	151316	105.5	1910.0	9.422	2.004	18,706	0.8132	17062
15,300	151532	105.5	1911.0	9.411	1.978	18,704	0.8133	17078
15,320	151749	105.6	1911, <u>9</u>	9.400	1,953	18,701	0.8134	1706
15.340	151965	105.6	1912. <u>9</u>	9.389	1,928	18,699	0.8135	17074
15.360	152182	105.6	1913,9	9.379	1,903	18,696	0.8136	1709:
15,380	152399	105,6	1914,8	9,368	1.878	18,694	0.8137	17128
15,400	152615	105.6	1915,8	9,357	1.854	18,691	0.8138	1712:
15,420	152832	105,6	1916,7	9,347	1,829	18,689	0.8139	1712:
15.440	153049	105.7	1917,7	9,336	1,805	18,686	0.8140	17132
15.460	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	1715:
16.800	167867	106.8	1976.2	8.601	0.408	18.592	0.8206	1782
16.820	168086	106.8	1977.0	8.590	0.390	18.591	0.8207	1783
16.840	168305	106.8	1977.7	8.579	0.372	18.591	0.8208	1784
16.860	168524	106.8	1978.4	8.568	0.354	18,590	0.8209	17853
16.880	168743	106,9	1979.1	8,558	0,336	18,590	0,8209	1786
16.900 ¦	168962	106,9	1980.1	8.547	0.324	18,590	0.8210	1787:
16.920	169181	106,9	1980,9	8,536	0,308	18,590	0.8211	1788
16.940 ¦	169400	106,9	1981.7	8,525	0,292	18,589	0.8212	1789
16,960	169619	106,9	1982 6	8,514	0,276	18,589	0,8213	1790:
16.980	169839	106,9	1983,4	8,504	0.261	18,589	0.8214	17913

Calculation of the approximate solution by linearizing the problem1. Calculation of trim $Trim[m] = \frac{\sum Trim Moment}{MTC \cdot 100}$ (1)-1) Trim Moment: (LCG-LCB)· Δ At the initial state, the ship is on an even keel.

Thus, LGG = LCB.

After unloading, LCG becomes

$$LCG = \frac{W \cdot x_W - w \cdot x_w}{W'},$$

LCB after unloading: At first, calculate the changed displacement. And then, the changed LCB is calculated by interpolating the values in the table.

(1)-2)
$$MTC = \frac{\Delta \cdot \overline{GM_L}}{100 \cdot L_{BP}}$$
, LCP

2. Calculation of the changed draft

$$T_{Aft} = d - \frac{\frac{L}{2} + LCF}{L} \times \text{trim}$$
 $T_{Foreward} = d + \frac{\frac{L}{2} - LCF}{L} \times \text{trim}$

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (4/9)

Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORE}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

DRAFT	DISPL	TPC	MTC	<u>L,C,B</u>	L.C.F	KMT	СЬ	VETSUR
(EXT.) (M)	EXT. (MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
15,200	150450	105.4	1906,1	9,464	2,107	18,717	0.8128	17013
L5.220 ¦	150667	105.5	1907.1	9.454	2.081	18,714	0.8129	17023
L5.240 ¦	150883	105.5	1908.1	9,443	2,055	18,712	0.8130	17019
15,260	151100	105,5	1909.0	9,432	2,029	18,709	0.8131	17032
15,280	151316	105.5	1910.0	9,422	2.004	18,706	0.8132	17062
15,300	151532	105.5	1911.0	9,411	1.978	18.704	0.8133	17078
15,320	151749	105.6	1911. <u>9</u>	9.400	1,953	18,701	0.8134	17065
15,340	151965	105.6	1912.9	9.389	1.928	18,699	0.8135	17074
15,360	152182	105.6	1913.9	9.379	1 903	18,696	0.8136	17093
15,380	152399	105,6	1914.8	9,368	1,878	18,694	0.8137	17128
15.400	152615	105.6	1915.8	9,357	1.854	18,691	0.8138	17123
15.420	152832	105.6	1916.7	9,347	1,829	18,689	0.8139	17121
l5.440	153049	105.7	1917.7	9,336	1,805	18,686	0.8140	17132
l5.460 ¦	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	17153
16.800	167867	106.8	1976.2	8,601	0,408	18,592	0.8206	17821
16,820	168086	106.8	1977.0	8,590	0,390	18,591	0.8207	17831
16,840	168305	106,8	1977,7	8,579	0,372	18,591	0,8208	17841
16,860	168524	106.8	1978.4	8,568	0.354	18,590	0.8209	17851
16,880	168743	106,9	1979,1	8,558	0,336	18,590	0,8209	17861
16,900	168962	106,9	1980,1	8.547	0.324	18,590	0,8210	17871
16.920	169181	106.9	1980,9	8,536	0,308	18,590	0.8211	17881
16,940	169400	106,9	1981.7	8,525	0,292	18,589	0.8212	17891
16,960	169619	106,9	1982,6	8.514	0,276	18,589	0,8213	17901
16,980	169839	106,9	1983.4	8,504	0,261	18,589	0.8214	17911

1. Calculation of trim

$$Trim[m] = \frac{\sum Trim Moment}{MTC \cdot 100}$$

(1)-1) Trim Moment: (LCG-LCB) \cdot Δ

Since the ship is on an even keel at initial state, initial LCG and initial LCB are the same. The value of LCB at draft d=16.9m is listed in the hydrostatic table.

LCB = +8.547 m	(From midship: +fore, -after)
LCG = LCB = +8.547 m	(From midship: +fore, -after)

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (5/9)

Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORE}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

DRAFT	DISPL	TPC	MTC	<u>L,C,B</u>	L,C,F	KMT	Cb	WETSUR
(EXT_) (M)	EXT. (MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
15,200	150450	105.4	1906.1	9,464	2,107	18,717	0.8128	17013
15,220	150667	105.5	1907.1	9,454	2.081	18,714	0,8129	17023
15.240	150883	105,5	1908.1	9,443	2,055	18,712	0.8130	17019
15,260	151100	105,5	1909.0	9,432	2,029	18,709	0.8131	17032
15,280	151316	105.5	1910.0	9.422	2.004	18,706	0.8132	17062
15,300	151532	105.5	1911.0	9.411	1.978	18,704	0.8133	17078
15,320	151749	105,6	1911. <u>9</u>	9.400	1.953	18,701	0.8134	17065
15.340	151965	105.6	1912.9	9.389	1.928	18,699	0.8135	17074
15,360	152182	105.6	1913.9	9.379	1 903	18,696	0.8136	17093
15,380	152399	105,6	1914.8	9,368	1,878	18,694	0.8137	17128
15,400	152615	105.6	1915,8	9,357	1.854	18,691	0.8138	17123
15.420	152832	105,6	1916,7	9,347	1,829	18,689	0.8139	17121
15.440	153049	105.7	1917.7	9,336	1,805	18,686	0.8140	17132
15.460 ¦	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	17153
16,800	167867	106.8	1976.2	8,601	0,408	18,592	0,8206	17821
16.820	168086	106.8	1977.0	8,590	0,390	18,591	0,8207	17831
16.840 ¦	168305	106,8	1977,7	8,579	0,372	18,591	0,8208	17841
16.860	168524	106.8	1978.4	8,568	0.354	18,590	0.8209	17851
16,880	168743	106,9	1979.1	8,558	0,336	18,590	0,8209	17861
16,900	168962	106,9	1980,1	8,547	0,324	18,590	0,8210	17871
16,920	169181	106,9	1980,9	8,536	0,308	18,590	0,8211	17881
16,940	169400	106,9	1981.7	8,525	0,292	18,589	0.8212	17891
16,960	169619	106,9	1982,6	8,514	0,276	18,589	0.8213	17901
16,980	169839	106.9	1983.4	8,504	0,261	18,589	0.8214	17911

1. Calculation of trim

$$Trim[m] = \frac{\sum Trim Moment}{MTC \cdot 100}$$

(1)-1) Trim Moment: (LCG-LCB) \cdot Δ

Calculate the changed displacement and LCG after unloading. The value of LCB at draft d=16.9m is listed in the hydrostatic table.

i) Full loading condition

Ship's total weight at full loading condition: $\Delta = 168,962$ ton

Moment in longitudinal direction $= \Delta \times LCG = 168,962 \times (+8.547)$

 $=1,444,118 ton \cdot m$

ii) Unloading of freight

Weight of the unloaded freight: w = -16,032 ton

LCG(l) = +107.827 m

Moment in longitudinal direction = $w \times l = -16,032 \times (+107.827)$

 $= -1,728,770 \ ton \cdot m$

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (6/9)

Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORE}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

DRAFT (EXT_)	DISPL EXT	TPC	MTC	<u>L,C,B</u>	L.C.F	KMT	Cb	WETSUR
(M)	(MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
15,200	150450	105.4	1906,1	9,464	2,107	18,717		17013
5.220	150667	105.5	1907.1	9.454	2.081	18 714	0.8129	17023
5,240	150883	105.5	1908.1	9.443	2,055	18,712	0.8130	17019
.5,260	151100	105.5	1909.0	9,432	2,029	18,709	0.8131	17032
.5.280	151316	105.5 105.5	1910.0 1911.0	9.422 9.411	2 004 1 978	18,706 18,704	0.8132 0.8133	17062 17078
5.320	151532 151749	105.5	1911.0	9,411	1.978	18,704	0.8133	17065
5.340	151965	105.6	1912.9	9.389	1.928	18,699	0.8135	17074
5.360	152182	105.6	1913.9	9.379	1 903	18.696	0.8136	17093
5,380	152399	105.6	1914.8	9,368	1.878	18,694	0.8137	17128
15,400	152615	105.6	1915,8	9,357	1.854	18,691	0.8138	17123
5,420	152832	105.6	1916.7	9,347	1,829	18,689	0,8139	17121
5.440	153049	105.7	1917.7	9,336	1,805	18,686	0.8140	17132
l5.460 ¦	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	17153
16.800	167867	106.8	1976.2	8,601	0,408	18,592	0.8206	17821
16.820	168086	106.8	1977.0	8.590	0,390	18,591	0.8207	17831
16.840	168305	106.8	1977.7	8.579	0,372	18,591	0,8208	17841
16.860	168524	106.8	1978.4	8,568	0.354	18,590	0.8209	17851
16.880	168743	106.9	1979.1	8,558	0.336	18,590	0.8209	17861
6.900	168962	106.9	1980.1	8.547	0.324	18.590	0.8210	17871
16.920	169181	106.9	1980.9	8,536	0,308	18,590	0.8211	17881
16.940	169400	106.9	1981.7	8.525	0.292	18,589		17891
16.960 16.980	169619 169839	106,9 106,9	1982.6 1983.4	8.514 8.504	0,276 0,261	18,589 18,589		17901 17911

1. Calculation of trim

$$Trim[m] = \frac{\sum Trim Moment}{MTC \cdot 100}$$

(1)-1) Trim Moment: (LCG-LCB) $\cdot \Delta$

Calculate changed displacement and LCG after unloading. The value of LCB at draft d=16.9m is listed in the hydrostatics table.

iii) Longitudinal moment about midship due to the ship's total weight after unloading

 $=1,444,118-1,728,770 = -284,652 \ ton \cdot m$

- iv) Ship's total weight and center of gravity in longitudinal direction after unloading
 - Weight = Weight at full loading condition – Weight of the unloaded freight

=168,962-16,032=152,929 ton

Longitudinal center of gravity = LCG

$$=\frac{-284,652}{152,929}=-1.861m$$

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (7/9)

Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORE}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

DRAFT (EXT_)	DISPL EXT.	TPC	MTC	<u>L.C.B</u>	L.C.F	KMT	Сь	WETSUR
(EXI); (M)	(MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
15,200	150450	105.4	1906.1	9,464	2,107	18,717	0.8128	17013
15,220	150667	105.5	1907.1	9.454	2,081	18,714	0.8129	17023
15.240	150883	105.5	1908.1	9,443	2,055	18,712	0.8130	17019
15,260	151100	105,5	1909.0	9,432	2,029	18,709	0,8131	17032
15.280	151316	105.5	1910.0	9.422	2.004	18,706	0.8132	17062
15,300	151532	105,5	1911.0	9.411	1,978	18,704	0.8133	17078
15,320	151749	105.6	1911. <u>9</u>	9.400	1,953	18,701	0.8134	17065
15,340	151965	105.6	1912.9	9.389	1,928	18,699	0.8135	17074
15,360	152182	105.6	1913.9	9.379	1 903	18,696	0.8136	17093
15,380	152399	105,6	1914,8	9,368	1,878	18,694	0.8137	17128
15.400	152615	105.6	1915.8	9,357	1.854	18,691		17123
15,420	152832	105.6	1916.7	9.347	1,829	18,689	0.8139	17121
15 440 1	153049	105 7	1917 7	9 336	1 805	18 686	0 8140	17132
15.460 ¦	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	17153
16.800	167867	106.8	1976.2	8.601	0.408	18,592	0.8206	17821
16,820	168086	106.8	1977.0	8.590	0,390	18,591	0,8207	17831
16.840	168305	106.8	1977,7	8,579	0,372	18,591	0.8208	17841
16.860	168524	106.8	1978.4	8,568	0.354	18,590	0.8209	17851
16.880	168743	106,9	1979,1	8,558	0,336	18,590	0,8209	17861
16,900 ¦	168962	106,9	1980.1	8.547	0.324	18,590	0,8210	17871
16,920	169181	106.9	1980,9	8,536	0,308	18,590	0.8211	17881
16.940	169400	106,9	1981.7	8,525	0,292	18,589	0.8212	17891
16,960	169619	106,9	1982,6	8,514	0,276	18,589	0,8213	17901
16,980	169839	106.9	1983.4	8.504	0.261	18.589	0.8214	17911

1. Calculation of trim

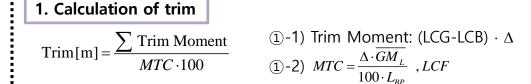
$$Trim[m] = \frac{\sum Trim Moment}{MTC \cdot 100}$$

(1)-1) Trim Moment: (LCG-LCB) $\cdot \Delta$ (1)-2) $MTC = \frac{\Delta \cdot \overline{GM_L}}{100 \cdot L_{BP}}$, LCF

To obtain LCB and average draft corresponding to the changed total weight, **152,929 ton**, the hydrostatics table is used. Thus using the values of the two drafts, the draft, LCB, MTC, and LCF corresponding to the weight, 152,929ton, can be calculated by interpolation.

 $Displacement (\Delta) = 152,929 \ ton$ $Draft(d) = \frac{15.440 - 15.420}{153,049 - 152,832} \times (152,929 - 152,832) + 15.420$ $= 15.429 \ m$ $LCB = \frac{9.336 - 9.347}{153,049 - 152,832} \times (152,929 - 152,832) + 9.347$ $= +9.342 \ m \text{(Forward from midship)}$ $MTC = \frac{1,917.7 - 1,916.7}{153,049 - 152,832} \times (152,929 - 152,832) + 1,916.7$ $= 1,917.147 \ ton \cdot m / \ cm$ $LCF = \frac{1.805 - 1.829}{153,049 - 152,832} \times (152,929 - 152,832) + 1.829$ $= +1.818 \ m \text{(Forward from midship)}$

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (8/9)


Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORE}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

DRAFT (EXT.)	DISPL EXT.	TPC	MTC	<u>L.C.B</u>	L,C,F	KMT	Сь	WETSUR
(M)	(MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
5,200	150450	105.4	1906.1	9,464	2,107	18,717	0.8128	17013
5,220	150667	105.5	1907.1	9.454	2,081	18 714	0.8129	17023
5,240	150883	105.5	1908.1	9.443	2,055	18,712	0,8130	17019
5,260	151100	105.5	1909.0	9,432	2,029	18,709	0,8131	17032
5.280	151316	105.5	1910.0	9,422	2.004	18,706	0.8132	17062
5,300	151532	105.5	1911.0	9.411	1,978	18,704	0.8133	17078
5,320	151749	105.6	1911. <u>9</u>	9.400	1,953	18,701	0.8134	17065
5.340	151965	105.6	1912. <u>9</u>		1,928	18,699	0.8135	17074
5,360	152182	105.6	1913. <u>9</u>	9.379	1,903	18,696	0.8136	17093
5,380	152399	105,6	1914.8	9,368	1.878	18,694	0.8137	17128
5.400	152615	105.6	1915,8	9.357	1.854	18,691	0.8138	17123
5,420	152832	105,6	1916.7	9,347	1,829	18,689	0,8139	17121
5.440	153049	105 7	1917.7	9,336	1,805	18,686	0,8140	17132
5.460	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	17153
6,800	167867	106.8	1976.2	8,601	0,408	18,592	0.8206	17821
6,820	168086	106,8	1977.0	8,590	0,390	18,591	0,8207	17831
6,840	168305	106.8	1977,7	8,579	0,372	18,591	0,8208	17841
6,860	168524	106.8	1978.4	8,568	0.354	18,590	0.8209	17851
6,880	168743	106,9	1979.1	8,558	0,336	18,590	0,8209	17861
6,900	168962	106,9	1980.1	8.547	0.324	18,590	0,8210	17871
6,920	169181	106,9	1980,9	8,536	0,308	18,590	0,8211	17881
6,940	169400	106,9	1981.7	8,525	0,292	18,589	0.8212	17891
6,960	169619	106,9	1982,6	8,514	0,276	18,589	0,8213	17901
6.980	169839	106,9	1983,4	8,504	0,261	18,589	0.8214	17911

Distance between LCB and LCG = 9.342 - (-1.861) = 11.203 m

Trim Moment = 152,929×11.203 = 1,713,276 *ton* · *m*

 $Trim = \frac{Trim Moment}{100 \cdot MTC} = \frac{1,713,276}{100 \cdot 1,917.147} = 8.937 m$

[Example] Practical Calculation of a Ship's Fore and Aft Drafts (9/9)

Given: 150k Bulk Carrier(9 Cargo Hold) Hydrostatic Table L: 264m, T_{AFT}: 16.9m, T_{FORE}: 16.9m, No.1 Cargo Hold: 16,032ton unloaded (Cargo hold position in longitudinal direction: 107.827m)

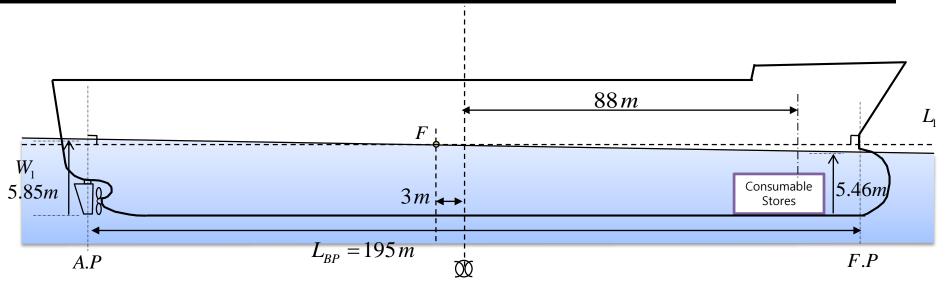
Find:

Fore and after drafts

DWT 150,000 ton Bulk Carrier, Lbp = 264 m

DRAFT	DISPL	TPC	MTC	L.C.B	<u>L,C,F</u>	KMT	СЬ	WETSUR
(EXT.) (M)	EXT. (MT)	(MT/CM)	(MT*M/CM)	(M)	(M)	(M)		(M^2)
.5,200	150450	105,4	1906.1	9,464	2.107	18,717	0.8128	17013
5,220	150667	105.5	1907.1	9,454	2.081	18,714	0.8129	17023
5,240	150883	105.5	1908.1	9.443	2,055	18,712	0,8130	17019
.5,260	151100	105,5	1909,0	9,432	2,029	18,709	0,8131	17032
5.280	151316	105.5	1910.0	9,422	2 004	18,706	0.8132	17062
5,300	151532	105.5	1911.0	9,411	1,978	18,704	0.8133	17078
.5,320	151749	105.6	1911. <u>9</u>	9.400	1,953	18,701	0.8134	17065
5.340	151965	105.6	1912. <u>9</u>	9.389	1,928	18,699	0.8135	17074
.5.360	152182	105.6	1913. <u>9</u>		1,903	18,696	0.8136	17093
.5,380	152399	105,6	1914.8	9,368	1.878	18,694	0.8137	17128
.5,400	152615	105.6	1915.8	9,357	1.854	18,691	0.8138	17123
5,420	152832	105,6	1916,7	9,347	1,829	18,689	0,8139	17121
.5.440 ¦	153049	105.7	1917,7	9,336	1,805	18,686	0.8140	17132
.5.460	153265	105.7	1918.6	9.325	1.781	18.684	0.8141	17153
16.800	167867	106.8	1976.2	8.601	0.408	18.592	0.8206	17821
16.820	168086	106.8	1977.0	8.590	0.390	18.591	0.8207	17831
16.840	168305	106.8	1977,7	8,579	0.372	18,591	0.8208	17841
16,860	168524	106.8	1978 4	8,568	0,354	18,590	0.8209	17851
16,880	168743	106,9	1979,1	8,558	0,336	18,590	0.8209	17861
6,900	168962	106,9	1980.1	8.547	0.324	18,590	0.8210	17871
6,920	169181	106,9	1980,9	8,536	0,308	18,590	0.8211	17881
l6,940 ¦	169400	106,9	1981.7	8,525	0,292	18,589	0.8212	17891
l6,960 ¦	169619	106,9	1982,6	8,514	0,276	18,589	0,8213	17901
L6.980 ¦	169839	106.9	1983,4	8,504	0.261	18,589	0.8214	17911

2. Calculation of the changed draft


Change in trim: $\delta t = 8.937 m$

Fore draft:
$$da = d - \frac{\frac{L}{2} + LCF}{L} \times \delta t$$

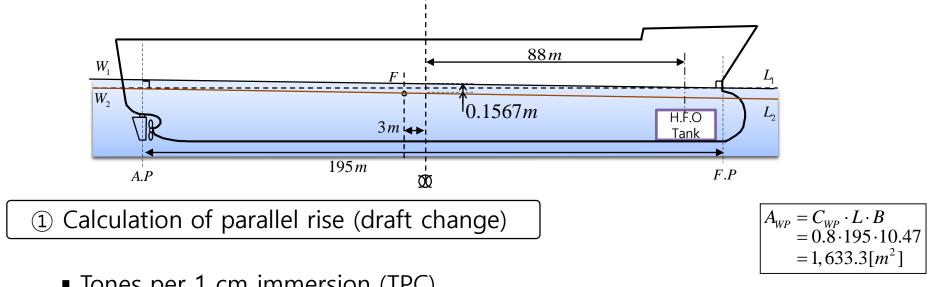
= $15.429 - \frac{\frac{264}{2} + 1.818}{264} \times (-8.937)$
= $19.959 \ m$

After draft:
$$df = d + \frac{\frac{L}{2} - LCF}{L} \times \delta t$$

= $15.429 + \frac{\frac{264}{2} - 1.818}{264} \times (-8.937)$
= $11.022 \ m$

[Example] Calculation of Draft Change Due to Fuel Consumption (1/4)

During a voyage, a cargo ship uses up 320ton of consumable stores (H.F.O: Heavy Fuel Oil), located 88m forward of the midships.

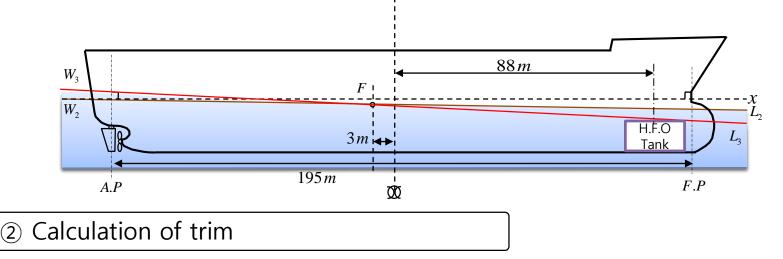

Before the voyage, the forward draft marks at forward perpendicular recorded 5.46m, and the after marks at the after perpendicular, recorded 5.85m.

At the mean draft between forward and after perpendicular, the hydrostatic data show the ship to have LCF after of midship = 3m, Breadth = 10.47m, moment of inertia of the water plane area about transverse axis through point F = $6,469,478m^4$, Cwp = 0.8.

Calculate the draft mark the readings at the end of the voyage, assuming that there is no change in water density(ρ =1.0ton/m³).

[Example] Calculation of Draft Change Due to Fuel Consumption (2/4)

Tones per 1 cm immersion (TPC)

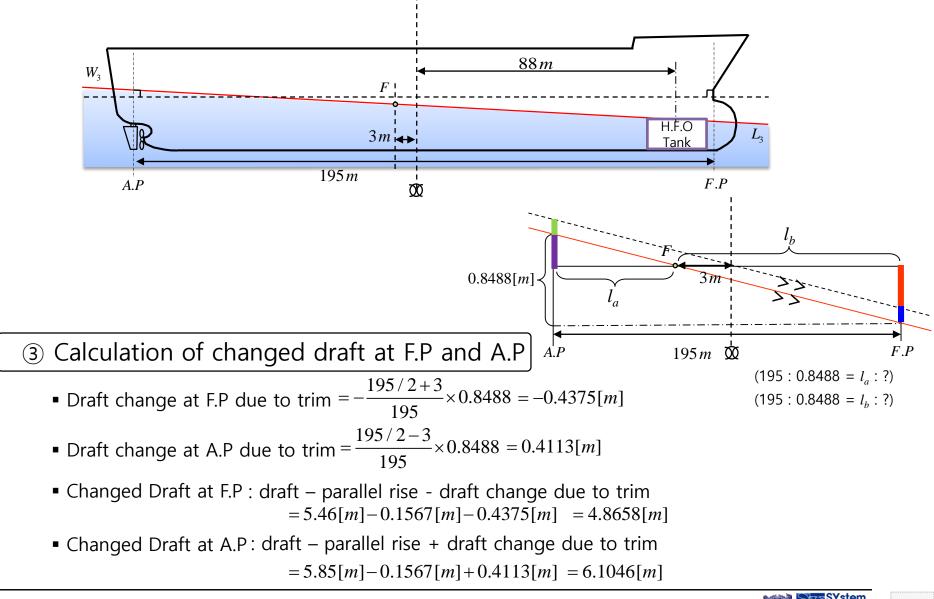

$$:TPC = \rho \cdot A_{WP} \cdot \frac{1}{100} = 1[ton / m^{3}] \cdot 1,633.3[m^{2}] \cdot \frac{1}{100[cm / m]}$$
$$= 20.4165[ton / cm]$$

Parallel rise

$$:\delta d = \frac{weight}{TPC} = \frac{320[ton]}{20.4165[ton/cm]} = 15.6736[cm] = 0.1567[m]$$

[Example] Calculation of Draft Change Due to Fuel Consumption (3/4)

- Trim moment $: \tau_{trim} = 320[ton] \cdot 88[m] = 28,160[ton \cdot m]$
- Moment to trim 1 cm (MTC)


$$:MTC = \frac{\rho \cdot I_L}{100 \cdot L_{BP}} = \frac{1[ton / m^3]}{100[cm / m] \cdot 195[m]} \cdot 6,469,478[m^4] = 331.7949[ton \cdot m / cm]$$

Trim

$$:Trim = \frac{\tau_{trim}}{MTC} = \frac{28,160[ton \cdot m]}{331.7949[ton \cdot m/cm]} = 84.8785[cm] = 0.8488[m]$$

[Example] Calculation of Draft Change Due to Fuel Consumption (4/4)

