Enhanced Geothermal Systems (EGS) - Its concepts and the state of the art

Week 1, 2 Sept 2013 Ki-Bok Min Department of Energy Resources Engineering Seoul National University

SEOUL NATIONAL UNIVERSITY

Introduction Geothermal Energy and subsurface Engineering of environmental importance

- Introduction : Climate Change and Energy
- Enhanced Geothermal Systems
 - Definition
 - Status and History
 - Hydraulic Stimulation/Microseismicity
 - Achievement and Remaining issues
- Concluding remarks

Climate Change and Subsurface Eng Introduction

- Driving forces for Subsurface Engineering
 - Climate Change Global Demand
 - National Energy Security
 - Alternatives for Conventional Fossil Fuel Renewable Energy and Unconventional Resources (shale gas, oil sand, gas hydrates, ...)
 - Infrastructure and natural hazard (Tunnel, Slope stability...)

http://www.direct.gov.uk/en/prod_dg/groups/dg_digitalassets/@dg/documents/digitalasset/dg_187701.htm

Climate Change and Subsurface Eng Government Organization - Australia

http://www.pm.gov.au/The_Ministry/Cabinet

Climate Change and Subsurface Eng Government Organization - USA

Dr Steven Chu Secretary of Energy Department of Energy

http://www.whitehouse.gov/administration/cabinet/

Climate Change and Subsurface Eng Global Warming

Climate Change and Subsurface Eng Global Warming and CO2 concentration

• Global Warming is a function of CO2 concentration.

Climate Change and Subsurface Eng Technology needed for CO2 emission

• Subsurface Engineering plays a key role in reducing CO2 emissions – CCS, Renewables, Nuclear (waste disposal)

IEA, 2010, Energy Technology Perspective

Climate Change and Subsurface Eng Contribution from different power sector technologies

Climate Change and Subsurface Eng Growth of renewable power generation

Background and Motivation Enhanced Geothermal Systems (인공저류층 지열시스템) SEOUL NATIONAL UNIVERSITY

Enhanced Geothermal System Definition

- EGS: Enhanced (or Engineered) Geothermal System
- Broader definition: A system designed for primary energy recovery using heat-mining technology, which is designed to extract and utilize the Earth's stored thermal energy (Tester et al., 2006)
- Narrower definition (also called HDR, Hot Dry Rock, or HFR, Hot Fractured Rock): A geothermal system that requires hydraulic stimulation to improve the permeability.

프로젝트	기간	시추공	온도	주체/지원	현황
영국 Rosemanowes	1977 – 1991	RH11 (2.0 km) RH12 (2.0 km) RH15 (2.6 km)	100 °C @2.6 km	주체: Camborne School of Mines (CSM) 지원:UK DOE	1991년 중단 후 재개노력중 (Eden Project)
프랑스 Soultz	1987 - 현재	EPS1 (2.2 km) GPK1 (3.6 km) GPK2 (5.1 km) GPK3 (5.1 km) GPK4 (5.3 km)	200 °C @5.0 km	주체: GEIE 지원: EU(~2009년) /독일/프랑스	2008년6월 첫 발전*, 현재 ~500kW
호주 Cooper Basin	2003 – 현재 (Habanero 1 시추 기준)	Habanero 1 (4.4 km) Habanero 2 (4.5 km) Habanero 3 (4.2 km) Savina 1 (3.7 km) Jolokia 1 (4.9 km) Habanero 4 (4.2 km)	247 °C @4.4 km 278 °C @4.9 km	민간: Geodynamics/Origi n (7:3) 정부: 90m\$ (전체의 1/3)	2012년 Habanero 4 Open flow test 완료 (35 kg/s)

*Genter, A., X. Goerke, J.-J. Graff, N. Cuenot, G. Krall, M. Schindler, and G. Ravier. "Current Status of the Egs Soultz Geothermal Project (France)." In *Proc* World Geothermal Congress, Paper No.3124. Bali, Indonesia, 2010.

Hydraulic stimulation Two mechanisms – hydrofracturing/hydroshearing

Hydraulic Fracturing Breakdown Pressure

 At the borehole wall (r = R), maximum and minimum hoop stresses are;

$$\sigma_{\theta,\min} = 3S_{h\min} - S_{H\max} - P_w + \frac{E}{1 - \nu}\alpha \left(T_w - T_0\right)$$

 $\sigma_{\theta,\min} = 3S_{h\min} - S_{H\max} - P_w$

 Tensile failure occur when hoop stress reach the tensile strength

 $S_{h\min}$

 $S_{h\min}$

Hydraulic stimulation Hydroshearing

• Hydraulic pressure in the fracture induces the sliding and dilation of fracture. Microseicmic event is followed

Hydraulic stimulation Hydroshearing

Hydroshearing occur at $(45 - \Phi/2)$ ° from the maximum principal stress: ~ 30° (with 30 ° friction angle)

수리전단(hydroshearing)

- 수리전단
 - 순수전단자극 (Pure Shear Stimulation, PSS)*
- 수압파쇄
 - 순수개구모드 (Pure Opening Mode, POM)
- 혼합메커니즘 (Mixed Mechanism Stimulation, MMS)
 - PPS + POM
- 순수수리전단의 조건

 - 1) 닫힌 자연균열의 저장성(storativity), 2) 자연균열의 초기 투과율(transmissivity), 3) 자연균열의 연결도 (percolation), 4) 자연균열의 최적 방향, 5) 자연균열의 팽창, 6) 적정하게 향상된 투과도

*McClure, M., and R. Horne. "Is Pure Shear Stimulation Always the Mechanisms of Stimulation in EGS?" Paper presented at the Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford, California, US, 2013.

- 수리전단과 수압파쇄 메커니즘이 경쟁, 보완하며 인공저류층이 생성될 것이며 이에 대한 상세 연구 필요 (셰일가스 수압파쇄도 마찬가지임)

성능변수 결정

- Performance Parameters (성능 변수?)
 - 열적 성능 (Thermal Performance): 온도, 온도강하
 - 수리적 임피던스 (Hydraulic Impedance)/주입율
 - 유량 (flow rates)
 - 주입수 손실율/회수율 (Water Loss/recovery)
- Fundamental Parameters (기본 변수?)

- 엔지니어링 공간격, 시추궤적
- Operational Parameters (운영변수): 주입압력, 등
- Other Empirical Parameters (기타 경험 변수)

Richards, H. G., R. H. Parker, A. S. P. Green, R. H. Jones, J. D. M. Nicholls, D. A. C. Nicol, M. M. Randall, *et al. "The Performance and Characteristics of the Experimental Hot Dry Rock Geothermal Reservoir at Rosemanowes, Cornwall (1985-1988)." Geothermics 23, no. 2 (Apr 1994): 73-109.*

수리자극 설계변수 검토

- 열적 성능 (Thermal Performance)
 - 온도강하. E.g. 1°C/year (Rosemanowes)
- 수리적 임피던스 (MPa/(kg/s))

임피던스=<mark>주입압력(MPa)</mark> 유량(kg/sec)

- Rosemanowes 목표치: 0.1 MPa/(kg/s), 달성치 0.6
- 주입수 손실율/회수율 (Water Loss/recovery)
 - 회수율 = 생산량/주입량,
 - Rosemanowes, 목표치: 90%, 달성치: 70%

실증현장 요약 온도

Fenton Hill, EE-2, (Brown and Duchane, 1999), Rosemanowes (Richards et al., 1994), Soultz (Genter et al., 2010), Cooper Basin (Wyborne, 2010)

Rosemanowes Project 초기응력

- 수압파쇄 (~2,000 m)
 - HDR 현장에서 실시. RH12
- 오버코링 (~790 m)
 - CSIRO Cell & USBM
 - ~10 km, south Crofty 광산
- 측정결과
 - Strike-slip faulting regime
 - S_H/S_h=2.4 → 큰 이방성
 - 수리전단에 유리한 조건

Pine, R. J., L. W. Tunbridge, and K. Kwakwa. "In-Situ Stress Measurement in the Carnmenellis Granite—I. Overcoring Tests at South Crofty Mine at a Depth of 790 m. *Int J Rock Mech Min Sci* 20(2) (1983): 51-62.

Pine, R. J., P. Ledingham, and C. M. Merrifield. "In-Situ Stress Measurement in the Carnmenellis Granite—Ii. Hydrofracture Tests at Rosemanowes Quarry to Depths of 2000 m *Int J Rock Mech Min Sci* 20, no. 2 (1983): 63-72.

Soultz 초기응력

- 수압파쇄 (~3,500 m)
 - HDR 현장에서 실시. EPS-1 (150°C @2.2 km), GPK-1(175°C @3.5 km)
 - 알루미늄 패커 이용
 - 정단층 응력장 (수직응력이 중간)
 - S_H/S_h=2.0 → 큰 이방성
 - 수리전단에 유리한 조건
- 공벽관찰
- Focal mechanism
- S_H: N170°±15° (Cornet et al., 2007)

Klee, G., and F. Rummel. "Hydrofrac Stress Data for the European Hdr Research Project Test Site Soultz-Sous-Forets. *Int J Rock Mech Min* 30(7) (1993): 973-76.

Valley, B., and K.F. Evans. "Stress Heterogeneity in Teh Granite of the Soultz Egs Reservoir Inferred from Analysis of Wellbore Failure." In *Proc World Geothermal Congress* 2010, Paper No.3144. Bali, Indonesia

Cornet, F. H., Th Bérard, and S. Bourouis. How Close to Failure Is a Granite Rock Mass at a 5 km Depth?. Int J Rock Mech Min 44(1) (2007): 47-66.

Cooper Basin Project In situ Stress

수평균열 발달

공벽 관찰 (~4,250 m)
 인근 응력자료 (석유생산공)

 S_H: East-West
 역단층 응력장 (수직응력이 최소)
 S_H:S_h:S_v=1.6:1.1:1.0 →

Observed and modeled borehole breakout (Shen, 2008)

Enhanced Geothermal System Vision

Production cost of geothermal electricity

IEA, Technology Roadmap, Geothermal Power and Heat, 2011

Enhanced Geothermal System The things that we know

- Achievements
 - High flow rates with long path lengths are needed
 - Stimulation is through shearing of pre-existing fractures
 - Monitoring of acoustic emission is our best tool for understanding the system
 - Rock-fluid interactions may have a long-term effect on reservoir operation

Enhanced Geothermal System The things that we know

- Achievements
 - Pumping the production well for high flow rates without increasing overall reservoir pressure → reduce the risk of short circuiting
 - Drilling technology being improved
 - Circulation for extended time periods without temperature drop is possible
 - Models are available for characterizing fractures and for managing the reservoir
 - Induced seismicity concerns

Enhanced Geothermal System Remaining issues

- Cost of drilling
 - > 50% of whole cost,
- Efficient hydraulic stimulation
 - No proven method, key parameters?
- Induced seismicity
 - Lack of understanding, Public acceptance
- Reservoir characterization
 - Site investigation, innovative exploration, transparent earth???
- Renewability of geothermal energy
 - Life time or power plant, thermal drawdown
- Long term behavior of reservoir
 - Geochemical reaction, corrosion

Enhanced Geothermal System Microseismicity

- Addressing induced seismicity (Huenges, 2010)
 - Estimate local potential for natural seismic hazard and induced seismicity
 - Technological innovation: controlling water injection rate, controlling fracturing depth, ...
 - Information and education
 - Monitoring Concept
 - Implement emergency action plan

Enhanced Geothermal System (EGS) EGS and Shale gas production

Shale Gas R&D spending and production*

*Future of Natural Gas (MIT Report, 2009)

**GRI: Gas Research Institute

Case Study Soultz Project, France – impact

• Scientific results from Soultz project

Summary Geothermal Energy and subsurface Engineering of environmental importance

Think Big! And

Go Deep!