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Introduction
Geothermal Energy and subsurface
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Engineering of environmental importance
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Climate Change and Subsurface Eng
Introduction s

* Driving forces for Subsurface Engineering
— Climate Change - Global Demand
— National Energy Security

— Alternatives for Conventional Fossil Fuel — Renewable Energy and
Unconventional Resources (shale gas, oil sand, gas hydrates, ...)

— Infrastructure and natural hazard (Tunnel, Slope stability...)
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Climate Change and Subsurface Eng

Global Warming
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Difference (°C) from 1961 - 1990
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Climate Change and Subsurface Eng

GIObaI Warming and COZ concentration SEOUL NATIONAL UNIVERSITY
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Climate Change and Subsurface Eng

Technology needed for CO2 emission
~ 60 9
O Baseline emissions 57 Gt -------------------- mECS 19%
L..'_) 5 M Renewables 17%
O 50+ Nuclear 6%
45— B Power generation efficiency
40 — and fuel switching 5%
357 M End-use fuel switching 15%
os | End-use fuel and eleciricity
efficiency 38%
20 —
15 BLUE Map emissions 14 Gt —-------------------3=
10 —
5 1
0 | |

I I I I I
2010 2015 2020 2025 2030 2035 2040 2045 2050

 Subsurface Engineering plays a key role in reducing CO2
emissions — CCS, Renewables, Nuclear (waste disposal)

IEA, 2010, Energy Technology Perspective



Climate Change and Subsurface Eng
Contribution from different power sector technologies
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Climate Change and Subsurface Eng il
Growth of renewable power generation
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Background and Motivation
Enhanced Geothermal Systems (2l X F = K| G A| A El) sou wmonsionvessiy

Drill a deeper borehole (3~7
km) to reach a target
lemperature

Permeability

Artificially generate
geothermal reservoir by
hydraulic stimulation

- Provide water through injection



Enhanced Geothermal System
Definition

« EGS: Enhanced (or Engineered) Geothermal System

* Broader definition: A system designed for primary energy
recovery using heat-mining technology, which is designed to
extract and utilize the Earth’s stored thermal energy (Tester et

d
e N

., 2006)

arrower definition (also called HDR, Hot Dry Rock, or HFR,
ot Fractured Rock): A geothermal system that requires

nydraulic stimulation to Improve the permeability.
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Hydraulic stimulation
Two mechanisms - hydrofracturing/hydroshearing
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Hydrofracturing l Shmin
ST (2 E )

SH max

Hydroshearing
Ec|HE (MEIHY)




Hydraulic Fracturing B
Breakdown Pressure SEOUL NAINAUNIVERSITY

— At the borehole wall (r = R), maximum and minimum hoop stresses

are;
G min = BSnin — St max — P+ ——ar(T, ~Ty)
@,min hmin H max w 1—y W 0
O 9 min = 38h min SH max Pw
— Tensile failure occur when hoop stress reach l .
the tensile strength hrmin
Ty =3S, in =Sty ey — P
0 hmin H max W SHmaX
SH max
Pb ZBShmin _SH max +T0 —> <«

— p,: breakdown pressure

/[ Sh min



Hydraulic stimulation
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—Hydroshearing

failure criteria of a fracture failure criteria of a fracture

\ rT=ctang N \ r=octang
\_/!dmal stress \_,/ Normal stress

Increase of injection pressure

T
Shear stress
5\
T
Shear stress

>
—
—— ——

 Hydraulic pressure in the fracture induces the sliding and
dilation of fracture. Microseicmic event is followed




Hydraulic stimulation
Hyd ros h ea ri n g SEOUL NANA .. NIVERSITY

production hole production hole

S SHmax

H max
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Hydroshearing occur at (45 — ®/2) ° from the maximum principal
stress: ~ 30° (with 30 ° friction angle)



=] & S(hydroshearing)
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- ==& Y X= (Pure Shear Stimulation, PSS)*

1L
==l £ 2 & (Pure Opening Mode, POM)
« S8 HIHLIS (Mixed Mechanism Stimulation, MMS)

- PPS +POM
. Ehp|FEo X2
- 1) &el XA E 2| X & H(storativity), 2) AHAZE 2| =
& 1t = (transmissivity), 3) At&H = E 2 H A & (percolation), 4)
MARESO| =& &5k 5) AHAZE 2| HE 6) HEotH &=
ENE

*McClure, M., and R. Horne. "Is Pure Shear Stimulation Always the Mechanisms of Stimulation in EGS?" Paper presented at the Thirty-Eighth Workshop on
Geothermal Reservoir Engineering, Stanford, California, US, 2013.
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o Operational Parameters (2 & B ==): = e,

o Other Empirical Parameters (J| Ef & 2 )

Richards, H. G., R. H. Parker, A. S. P. Green, R. H. Jones, J. D. M. Nicholls, D. A. C. Nicol, M. M. Randall, et al. "The Performance and Characteristics of the
Experimental Hot Dry Rock Geothermal Reservoir at Rosemanowes, Cornwall (1985-1988)." Geothermics 23, no. 2 (Apr 1994): 73-109.
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Temperature (°C)
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Rosemanowes Project
===

o =25 Ub2H (~2,000 m)

- HDR & &0l A & Al. RH12
e QHIH (~790 m)

— CSIRO Cell & USBM

— ~10 km, south Crofty 2 &t
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Strike-slip faulting regime
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Pine, R. J., L. W. Tunbridge, and K. Kwakwa. "In-Situ Stress Measurement in the
Carnmenellis Granite—I. Overcoring Tests at South Crofty Mine at a Depth of 790 m. Int J
Rock Mech Min Sci 20(2) (1983): 51-62.

Pine, R. J., P. Ledingham, and C. M. Merrifield. "In-Situ Stress Measurement in the
Carnmenellis Granite—li. Hydrofracture Tests at Rosemanowes Quarry to Depths of 2000 m
Int J Rock Mech Min Sci 20, no. 2 (1983): 63-72.
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~ HDR & ZH0l Al &! Al. EPS-1 (150°C
@2.2 km), GPK-1(175°C @3.5 km)
- 2=0ls WA 0l=
- HOE ST (SXNSH0 )
—~ S HIS h=20> 2 0l&tA
- SelAE f2lEt =A
o LLBH D} XRb
O M1 =

Focal mechanism

« S H:N170°£15° (Cornet et al., 2007)

Klee, G., and F. Rummel. "Hydrofrac Stress Data for the European Hdr Research Project Test Site
Soultz-Sous-Forets. Int J Rock Mech Min 30(7) (1993): 973-76.
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Valley, B., and K.F. Evans. "Stress Heterogeneity in Teh Granite of the Soultz Egs Reservoir Inferred from Analysis of Wellbore Failure." In Proc World Geothermal Congress
2010, Paper No.3144. Bali, Indonesia

Cornet, F. H., Th Bérard, and S. Bourouis. How Close to Failure Is a Granite Rock Mass at a 5 km Depth?. Int J Rock Mech Min 44(1) (2007): 47-66.



Cooper Basin Project
In situ Stress
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borehole breakout (Shen, 2008)

Chen, D. "Concepts of a Basic Egs Model for the Cooper Basin, Australia." In Proc World Geothermal Congress 2010, Paper No.3141. Bali, Indonesia, 2010.
Shen, B. "Borehole Breakouts and in Situ Stresses."” In SHIRMS 2008, edited by Y. Potvin, J. Carter, A. Dyskin and R. Jeffrey, 407-18, 2008.



Enhanced Geothermal System
Vision
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Production cost of geothermal electricity

Low temperature (hydrothermal) binary plants -

High temperature (hydrothermal) flash plants -
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IEA, Technology Roadmap, Geothermal Power and Heat, 2011



Enhanced Geothermal System
The things that we know o v

* Achievements
— High flow rates with long path lengths are needed
— Stimulation is through shearing of pre-existing fractures

— Monitoring of acoustic emission is our best tool for understanding
the system

— Rock-fluid interactions may have a long-term effect on reservoir
operation



Enhanced Geothermal System
The things that we know o o

o Achievements

— Pumping the production well for high flow rates without increasing
overall reservoir pressure => reduce the risk of short circuiting

— Dirilling technology being improved

— Circulation for extended time periods without temperature drop is
possible

— Models are available for characterizing fractures and for managing
the reservoir

— Induced seismicity concerns



Enhanced Geothermal System
Remaining issues

« Cost of drilling

— > 50% of whole cost,

« Efficient hydraulic stimulation

— No proven method, key parameters?

* Induced seismicity

— Lack of understanding, Public acceptance

o Reservoir characterization

— Site investigation, innovative exploration, transparent earth???

 Renewability of geothermal energy

— Life time or power plant, thermal drawdown

 Long term behavior of reservoir

— Geochemical reaction, corrosion



Enhanced Geothermal System
Microseismicity o v

* Addressing induced seismicity (Huenges, 2010)

— Estimate local potential for natural seismic hazard and induced
seismicity

— Technological innovation: controlling water injection rate,
controlling fracturing depth, ...

— Information and education
— Monitoring Concept

— Implement emergency action plan



Enhanced Geothermal System (EGS)
EGS and Shale gas production

 Shale Gas R&D spending and production*

EGS is arguably in the same techno-commercial space that
shale gas was prior to validation. Challenges include the rate
of advancement and innovation, and ability of the sector to
run with game-changing technical advances. (D Hollett, US DOE -
Geothermal Program Manager, 2012).
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*Future of Natural Gas (MIT Report, 2009) *GRI: Gas Research Institute



Case Study
Soultz Project, France — impact
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« Scientific results from Soultz project

235 peer review papers
712 presentations in conferences
122 diploma students (41 PhD)

European Journal of

M | WRR | Water Rexouscos miteth

3 Bulletin

Genter, 2012



Summary
Geothermal Energy and subsurface
Engineering of environmental importance
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CO2 geosequestration
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Geothermal Explorer, 2010
N SBK, 2010
Petroleum and mineral resources Underground repository of nuclear waste
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Think Big!

And

Go Deep!



