
Chap 2. Statistical Properties and Spectra of Sea Waves 
 

2.1 Random Wave Profiles and Definitions of Representative waves 
 
2.1.1 Spatial Surface Forms of Sea Waves 
• Long-crested waves: Wave crests have a long extent 
                   (swell, especially in shallow water) 
• Short-crested waves: Wave crests do not have a long extent, but instead consists of 
                   short segments (wind waves in deep water) 

 

 

 
2.1.2 Definition of Representative Wave Parameters 
 
In nature, no sinusoidal wave exists 
→ Wave forms are irregular (or random) 
→ Difficult to define individual waves 
→ Zero-crossing method is used. 



Assume that we measured )(tη  at a point. 
 
Zero-upcrossing: 
 

 
 
Zero-downcrossing: 
 

 
 
Statistically, zero-upcrossing and zero-downcrossing are equivalent if the wave record 
is long enough. But zero-upcrossing is more commonly used. 



Arrange the wave heights in descending order. 
 

 
(a) Highest wave: ,  maxH maxT

Note:  is not the maximum wave period in the record, but the wave period maxT
corresponding to . maxH

 
(b) Highest one-tenth wave: ,  10/1H 10/1T

Average of the highest  waves 10/N
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10/1T  = average of the wave periods corresponding to the highest  waves 10/N
 
(c) Significant wave, or highest one-third wave: ,  (or , ) 3/1H 3/1T sH sT
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(d) Mean wave: H  (or ), 1H T  
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2.2 Distribution of Individual Wave Heights and Periods 
 
2.2.1 Wave Height Distribution 
 
Gaussian stochastic (linear) theory for narrow-band spectra (range of periods is small) 
suggests Rayleigh distribution of  (discrete) = iH H  (continuous) for large ∞→N . 
 
Probability density function: 
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Field data indicate that Rayleigh distribution based on restricted assumptions (linear + 
narrow-band) yields good agreement with data. 



 
2.2.2 Relations between Representative Wave Heights 
 
Exceedance probability based on Rayleigh distribution 
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By definition 
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using complementary error function, , ∫
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See Table 9.1 (p 263) for HH N //1  vs L,10,20,50,100=N  

 

HHH s 6.13/1 == ,  ,  sHH 27.110/1 = sHH 67.1100/1 =  

 
2.2.3 Distribution of Wave Periods 
 
Not well established. 
Local wind waves (~10 s) + Swell (~15 s) → two peaks (bi-modal)  

or two main direction 

Typically, TTTT )3.1~1.1(3/110/1max ≅≅≅  

 
2.3 Spectra of Sea Waves 
 
2.3.1 Frequency Spectra 
 
Free surface oscillation at a point: 
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where 
 

na  = amplitude of wave with frequency 
n
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Real sea waves → infinite number of frequency components 
             → (continuous) frequency spectrum 
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Standard spectra 
↑ 
ensemble average of large number of wave records 

 
(1) Bretschneider-Mitsuyasu spectrum 

 
Fully developed wind waves in deep water 
(energy input from wind = energy dissipation due to breaking) 

 

])(03.1exp[257.0)( 4542 −−− −= fTfTHfS sss                           (2.10) 

 
for given  and . sH sT
 
Modified by Goda (1988): 0.257→0.205, 1.03→0.75 as in Eq. (2.11). 
 
(2) JONSWAP (JOint North Sea WAve Project) spectrum 
 
Growing wind seas in deep water 
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where 
 

)(γββ JJ =                                                      (2.13) 

),( γspp TTT =                                                    (2.14) 
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peak enhancement factor 7~1=γ  (typically 3.3) 
 

Need to specify , , sH sT aσ , bσ , and γ  (sharper spectral peak as γ ↑). 

 



 
 
(3) TMA spectrum (Bouws et al., 1985, J. Geophys. Res., 90, C1) 
    ↓ 

Includes effects of finite water depth 
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        Kitaigordskii shape function (depth effect) 
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2.3.2 Directional Wave Spectra 
 
(1) General 
 
frequency spectrum → assumes waves with many different frequencies 
                    but single direction. 
However, real sea waves consist of many component waves with different frequencies 
and direction. Therefore, we need directional wave spectrum: 
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            directional distribution of wave energy 
                ↓ 
            varies with frequency . f
 

1);( =∫−
↑

π

π
θθ dfG

43421
 

    represents relative magnitude of directional spreading of wave energy 
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(2) Mitsutasu-type directional spreading function 
 
Based on field measurements, 
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                       θ  = wave angle from principal direction ( 0=θ ) 
 
See Fig. 2.11 for the variation of  versus G θ . 
 

 

 
Intuitively,  for 0=G °−≤≤°− 90180 θ  and °≤≤° 18090 θ . 
 
But,  is very small as long as  is large. G s
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where Gamma function )!1()( −=Γ nn  for integer . n
 
 



s  depends on frequency : f
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where 
p

p T
f 1

=  = peak frequency, and roughly sp TT 05.1≈ . 

 

maxss =  at , and  decreases as pff = s pff −  increases. 

 

Hence, directional spreading is the narrowest near pff = . See Fig. 2.12 for  

where  (=1 at peak frequency). 
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(3) Estimation of the spreading parameter  maxs
 
As  increases, more long-crested. maxs
 

Tentatively,  in deep water. 
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maxs  increases as  decreases (see Fig. 2.13). 00 / LH

 
As waves propagate to shallow water, they become long-crested due to refraction. In 
other words,  increases as h  decreases. On the other hand,  increases more 
rapidly with decreasing  for a larger incident angle because of more refraction (see 
Fig. 2.14). 
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(4) Cumulative distribution curve of wave energy 
 
Read text. 
 



(5) Other directional spreading functions 
 
Simplest: 
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which is independent of . f
 
SWOP (Stereo Wave Observation Project): 
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Eqs. (2.29) and (2.30) are similar to Mitsuyasu-type with 10max =s  except energy 
spread with . f
 
Wrapped normal function (Borgman, 1984): 
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mθ  = mean wave direction 

mσ  = directional spreading parameter (broad directional spreading as ) ↑mσ

 



2.4 Relationship between Wave Spectra and Characteristic Wave 
Dimensions 
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← relates each other. 
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where  = zeroth moment of  0m )( fS

2η  = variance of )(tη  

 

Defining 2ηη =rms  = root-mean-squared value of )(tη , we get 

 

0
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For Rayleigh distribution of H , 



 

044 mH rmss =≅ η  

 

Since  and sH 04 m  are not exactly the same, use 

 
3/1HHs =  = average height of highest 1/3 waves from zero-crossing method 

00 4 mHm =  = spectral estimate of significant wave height 

 
As for wave periods, 
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