Chap 3. Transformation

and Deformation of Random Sea Waves

3.1 Waves Refraction (+Shoaling)

3.1.1 Introduction

Ray theory for regular waves
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Conservation of energy:
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gng 2C9b = gngozcgobo
which gives
H=H,K.K,
shoaling coefficient, K, = |-
Cg
by

refraction coefficient, K, = B

2kh
sinh 2kh

= {tanh kh(1+

—K,(f,0,h); 6=0(f,h0,)

ﬂ =K, (f,h)



3.1.2 Refraction Coefficient of Random Sea Waves
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S(f,0) = [K,(f,h)K,(f,h,6)FS,(f ,90)%
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Goda’s book uses

© emax
Mo = .[0 J.Bmin So(f ’HO)[KS(f ’h)]zdeodf
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Define (K, ), :[ mOj

msO
For example, H_,=4,m, =significant wave height after shoaling and refraction

H,. =4Mm,, = significant wave height due to shoaling only

then, H,,=(K,),H
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Goda’s book explains how to discretize f and 4.
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m, = '[OOOS( f)df = total area

M,

J'?Af'S(f)df:V (i=12,--,M)

S(f) can be integrated analytically (e.g. B-M or P-M spectra), say

S(f)=af exp(-bf )

0

o a _ a
m, =j0 S(f)df =[4—bexp(—bf 4)} 0
0

Similarly,

ﬂ+Afi

f,+Af, —i s =i 3 ~ N4 _~._4 :m
J; S(f)df—Lbexp( bf )} 4b{exp[ b(F, + Af, )] - exp(-bf, )} !
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Hence,

expl-b(T +4F) ]~ exp(-bf, ) = (i=12.M)

Now we can find Af, (i=12,---,M) starting from fl =0.



Representative frequency f, for the band(?i to 17i+Afi )?

Goda suggests on the basis of T = Jmy/m, and m, = j: f2S(f)df

m
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Goda defines error function, ®(t) =1/\/27rj';exp(—x2/2)dx, though usual definition is

erf (t):2/\/;J';exp(—x2)dx so that erf () =1. Thus,

(me),=2 = Lol vab(7) " ]-of vab(F 1)}

=i - o o () ] -o (i)
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which should correspond to Eqg. (3.7) in Goda’s book if b=1.03T,* (B-M spectrum):
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It is required

,/2|niMTl V()" (i=12M)

On the other hand, exp[— b(i‘yI + Af, )4} - exp[— b(ﬂ)“} = ﬁ

Take bﬁ“‘:ln_l\/l—l.Then (MLJ_(IM;lJ:ﬁ satisfied.
I —

As for the discretization of wave angle ¢ (16-point bearing, see Table 3.2),

7 directions
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3.1.3 Computation of Random Wave Refraction by Means of the Energy Flux Equation

General transport equation for S (any scalar quantity):

88_?+V-(S\7)=Q (sink or source of S)

where V = transport velocity of S. For S(t,x,y, f,8) =directional random waves,

—

V = velocity following waves

— (dx dy d@ df
V B T T XaV Vg,V
(dt dt ' dt dt} ( v )



with
v,=C,cos8, v, =C;sind
7 cax

C
vV, = —{ﬁsin 0—- %cos 9j to account for refraction

v, =0 assuming f does not change following the wave.

Then

oS(f,0)

5 8 8 B
- +&[S(f,0)vx]+5[8(f,0)vy]+%[8(f,0)v9]—Q

For steady state (0S /ot = 0) with no sink or source (Q =0),

i(va)jti(Svy)jt %(Svg): 0 for S(xy,f,0)

OX oy

Assuming 0 =0(x,y),or x, y, € areindependent variables,

059M+sin0M+C ﬁ( oc aCj:O

o sing— —cosfd—
OX oy 00 OX oy

where C and C, using linear wave theory depend on h(x,y) and frequency f. &

is computed by ray theory. We need boundary conditions for S.

Example in Goda’s book Fig. 3.3: Waves over a circular shoal

« T, aswellas H_ changes depending on locations (Fig. 3.4).
* Fig. 3.5 for regular waves shows larger spatial variations of wave heights.
Ref. Vincent and Briggs (1989). Refraction-diffraction of irregular waves over a mound,

JWPCOE, 115(2), 269-284: Performed laboratory experiments on transformation of
monochromatic and random directional waves over an elliptic shoal. They concluded



that monochromatic waves using representative wave height and period (e.g. H, and
T,) provide a poor approximation of irregular wave conditions if there is directional
spread or high wave steepness.

Ref. #3ql (1998). W3k ~AEF ulgdo djgt 3 2 Ay 2d,
o] Sl E -8} 3] =37, 18(11-6), 591-599: Include sink term due to wave breaking.

Ref. Mase, H. (2001). Multi-directional random wave transformation model based on
energy balance equation, Coastal Engineering Journal, 43(4), 317-337: Include wave
diffraction.

3.1.4 Wave Refraction on a Coast with Straight, Parallel Depth Contours

Snell’s law: %:Sm@o S canfind 6(f,h,6,) — %

0 0

cos 6,
cosé

C
Shoaling coefficient K, = /C—go =K (f,h)
g

Directional spectrum S(f,#) in water depth h:

Refraction coefficient K, (f,h,8,) =

S(f,0)=[K,(f,h)K, (f, he)](gg

0

j So(f,6,)

Need to specify S,(f,d,) in deep water. For example, S,(f,8,)=S,(f)G(f,d,)

with Sy(f) =B-M spectrum with given H,=H_, and T, =T /1.05,
G(f,6,) = Mitsuyasu-type with given s_., and (a )

p/o’

(ap)o = predominant wave direction in deep water,

G(f,6,) :GOCOSZ{QO_T(Q’))O} -7 s [00 _(ap)o]ﬁﬂ',



G=G, ismaximumat ¢, =(a,) .
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Fig. 3.6 shows (K, ), given by Eqg. (3.2) as a function of h/L, with L,=gT?/2z,
(ap)o and s, .

Note: (K,), =1 even for (ap)O:O (- directional spreading).

3.2 Wave Diffraction
3.2.1 Principle of Random Wave Diffraction Analysis

For linear monochromatic waves in constant water depth, Sommerfeld solution for a
semi-infinite thin breakwater:

L4 H(ij)

approx. circuban wane $ from (0,0)

ine dent wave reflected
W4 He wayve
anel f= %



Diffraction coefficient K, =H(x,y)/H, dependson f, 6,6 and h=constant.

H(x,y) = Ki(f,0;%y,hH,

J l
S(f) Si(f.6)
Frequency spectrum

S(f) at given (x,y) = [ [K,(f,0)FS,(f,6)d6
Since
[s(hydf =] "[" s(f.odadf =["[" [K,(f,6)Fs (f,6)dodf
therefore
S(£,0)=[K,(F.0)F5,(F.0) 5
Then
S(f) :j_’;S(f ,e)dezj_’;[Kd(f 0TS (f,6)d6,
In terms of zeroth moment,

(m, ), :J'Ow'[_” S;(f,0)dodf — (H,,). = 4,/(m,), : incident significant wave height
m, = j Owj_” S(f,0)dadf — H,, = 4,/m, : significant wave height at (x, )

m, = [ " [Ky(f,0)Fs,(f,60)dodf



Define effective diffraction coefficient:

1/2
(Kd)eﬁ= Hino = (::0)} = (3.14) in Goda's book where i added
0/i

(H mO)i

r 1/2

|y s skt .apfaoer

Read Goda’s book for field measurement (Figs. 3.9 and 3.10). (K, ) > K, based on

regular waves with H=H,, and T=T,, = 0.07, which is significantly
underestimated in this case.

3.2.2 Diffraction Diagrams of Random Sea Waves

S(f;x,y,h) :j_””[Kd(f,.9i;x,y,h)]zsi(f,ei)olei
my(x,y,h) = [ " S(f)df ; (my), = ["S,(F)df
mz(x,y,h)zj: f25(f)df ; (m,), :j: f 25, (f)df

peak T, (x y,h) from S(f); peak (Tp)i from S,(f)

Hoo =8y, T=ymlm;  (Hyo) =4y, (T) =) 7m,)

H,=H,, T,=T,/105; (Hy), =(Hy), (1) =(T,)/1.05
Wave height ratio = (K, ), = (|I—_||m0) = (HHS) only for H,,=H,
mo0 /i s/i
Period ratio = T or T = LE
(T)I (Tp)i (Ts)i

It is not specified in Goda’s book which relation is used for period ratio. It is likely to

use T’/(f), since T, may be difficult to find. But Goda uses (T,), tofind L (p.59).

S



Goda assumed S;(f,8)=S,(f)G(f,6) with B-M frequency spectrum and
Mitsuyasu-type directional spreading.

Need to specify (H,) =(H,,), (T.)=(T,)/1.05, s,.. (e,), constantdepth h,and

breakwater geometry.

height ratio = (K, ),

Plotted T,

period ratio = for normal incidence only, (cxp)i =0°.
(Ts )i

(probably)

Fig. 3.11 for a semi-infinite breakwater, for s =10 (wind waves) and s_, =75
(swell, more unidirectional).

Monochromatic versus directional random waves:
1) In general, monochromatic wave underestimates wave heights in sheltered area,
and overestimates in open area.
2) The wave height ratio along the boundary of the geometric shadow (or the
straight line from the tip of the breakwater to the wave direction) is 0.7 for
directional random waves, while it is 0.5 for monochromatic waves.

Figs. 3.12~3.15 for breakwater gap (B/L =1,2,4,8)
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3.2.3 Random Wave Diffraction of Oblique Incidence

Construct your own computer program if exact solution is needed. Otherwise, use an
approximate method suggested in the book.

3.2.4 Approximate Estimation of Diffracted Height by the Angular Spreading Method

For large barriers (e.g. headlands and islands),

rouahl K4 = 0in geometric shadow
oy K4 =1inilluminated region

Neglect wave refraction.

=[] si(f,6)d6df

Pf‘;nc;
wave oirecton
Assume S, =0 for |6|>7x/2.

o N SEICRALTL

m, _j j [K, (f.6)]S.(f,0)dodf

Ky=1 for —z/2<6 <6,
Ky=0 for <6 <r/2

Assume {



Then

my=["[" s.(f.6)dgdf

My

= P (6,) = cumulative relative energy from —z/2to 6,

= Eq.(2.27) or Fig. 2.15 (B - M spectrum + Mitsuyasu spreading)

(Ky )t = {(r;”—)} -[P.@)}"

o i

6,<0 and 6,>0 for this problem

my=["[" s.(f.6)dodf
+[[7 s, (1.0)dadf

My

m,)

(Kd )2 :& =P.(6) + [1_ Pe (92)]

T (my)

= (K, ) +(K, )i inthe text

=P.(6,) +[P.(7/2) - P.(6,)]

—_

3.2.5 Applicability of Regular Wave Diffraction Diagrams
T

Only for very narrow directional spreading



3.3 Equivalent Deepwater Wave

In real situation,

different olepencling on 4yeokion
e same oecprinter woves
t (see 3,227 < refirmetiom

desigm tcidert waves o)

//\VA‘ 4( ;{:f’mc{'f o, —
deepwater refroction, shoaln 3 ) -
drectional bottom frictiom,

random waves etc.

Hydraulic model test in 2D wave flume,

6‘"1/0;/";@( ﬁrmuja ﬁv
breaking, rum-up,

over<toppin ae , efte

In real situation, H, = K K KK, (H,),
In 2D wave flume, H,=K.H,'
Thus, H,'= KKK, (H,),

T

(unrefracted) equivalent deepwater wave height

For wave period, usually assumes T, =(T,), <« error if diffraction is dominant.

S



3.4 Wave Shoaling

C
Linear wave shoaling coeff. K, = Hi = C—go = function of % (3.16)
0

9

For shoaling of normally-incident linear random waves,
S(f;h)=[K,(f;h)FS,(f) <« can write a computer program easily.

For shoaling of nonlinear monochromatic waves, use Shuto (1974) model (read text).
3.5 Wave Deformation Due to Random Breaking

3.5.1 Limiting Wave Height of Regular Waves by Breaking

breaking pont (Aard 4o measure)
f/{?\') Wﬁx, ﬂi '{: f‘

Hy - f[tan Q,EJ — Fig. 3.23
h L,

b

Goda’s empirical formula (1970):

% = A{l—exp{—1.5%(l+15tan4/39)} (3.22)

0 0

with L,=9gT?/27; A=0.17



3.5.2 Computational Model of Random Wave Breaking

Before wave breaking, Rayleigh distribution may be assumed
T T, H
X)=—Xexp| ——X° |, X=—= 2.1
R0 =g xex -k x= (2

After breaking, p,(x) = p(x)

5 4 y
Prob o Fm e e e o
wave’z |
&reakin} :
| -
o x—l xl X
(=R)PA
does not- ex; st
! Aue o wave éreakfnot
|
] I o
X X > X

1—- p, = probability of non — breaking

0 for x > x,
- X
1-p, = X for x, <x<
Py X - X, 2 X

1 for x<x,

Let Azfoxl(l— P, )P,dx <1 since j: pdx =1

Assume p.d.f. adjusted for wave breaking:

P = (L= P, )ps(x) sothat [/ p(x)cx~1



3.5.3 Computation of the Change in Wave Height Distribution Due to Random Wave
Breaking

X, = upper limit

Need to estimate .
X, = lower limit

} of wave breaking.

Use %=A{l—exp{—l.S%(l+15tan‘”39)} (3.22)

2
with LozgzL and tané@ = beach slope
T

018 forx=x,
~10.12 for x = x,

Eq. (3.22) was developed for breaking point (h=h,) of regular waves. But it may be
used inside the surf zone if H, = broken wave height, h = local depth.

Water level change:

Wave setup (7) was computed using the results of monochromatic waves with T, and

H? = mean square of random waves, the latter of which is affected by 7. Therefore,

we need iteration to solve n and H? simultaneously. See Eq. (3.23).

Surf beat, £(t): slow (30~300 s) fluctuation of free surface mainly inside surf zone

T
from Gaussian distribution with £, given by Eq. (3.24)

Thus, h=d +7+¢(t)



3.6 Wave Reflection and Dissipation

3.6.1 Coefficient of Wave Reflection

Typical reflection coefficients are given in Table 3.7.

For perforated wall caissons, K, becomes minimum (0.3~0.4) at B/L=0.15~0.2
(see Fig. 3.36). Under a standing wave system, maximum u at node — maximum
energy dissipation & minimum reflection at B=L/4 — B/L=0.25. However, in
reality, minimum reflection occurs at B/L =0.15~ 0.2, due to inertia effect.

Vefy / :TZL' /
ZEIT=77 :/// e TER ',,'(_?,-_:%

k5 I e
No lnertia effect Incluckhg /mertia effect

3.6.2 Propagation of Reflected Waves

’1 s /722 7. 27222 0777772277

it

6, = 6. (geometrical optics theory)
diamond pattern of surface profile



For long-period waves incident at large angle, Mach stem is formed.

N /»:5\1;
mc.eéa't 55! 9; . ‘L — L \' ——

amplitude dispersion
— — (Higher waves go faster.)

wave

Reflection from finite length of seawall «— diffraction by breakwater gap

’ef/ec-&e,( I\-ne,\O/en'&
waves waves (H;:)

4%43?714'-5 brea kwater

<mag mar
meldent waves
H= Ko He

{
reflection coeff. at seawaltl

Reflection from very long seawall < diffraction by semi-infinite breakwater
(or angular spreading method for headland)

reflectesd medent

waves | waves

|

Ie‘

\
____________ - |
A L Y Yl W N UL W N W N N W W W W S W Y W N
wmag mary :_\,\
Semn, - ’” ;‘hl:ée |a~\
breakwater | \\

imagﬂnarj

2medent waves

Effect of opposing wind (sea — land): attenuates waves of large steepness, but its effect
is minor for swell of low steepness.



3.6.3 Superposition of Incident and Reflected Waves

For linear waves, we can superpose the free surface displacement:

(X y) =7,(t% y) + D 7 t.x,y)

n=1

total incident reflected waves

Time-averaged energy per unit surface area:
o7’ atgiven (x,y) = pgmq;  my = [ “S(f)df

If the distance from the reflective structure is more than one wavelength, we may
assume

g =0 (n=12,---,N), 7gng =0 (n=m) uncorrelated.

Fig. 3.40 indicates Hmoz\/(Hmo).2+(HmO)2 at x/L>1.0



3.7 Spatial Variation of Wave Height along Reflective Structures

3.7.1 Wave Height Variation near the Tip of a Semi-Infinite Structure

wewe o, Lfoctionn
behimol breakwater

A scussed im cectiom 3.2

o > X
Lneldent waves ref/ecteo
W;'é'A Ae 1}4 + HI Wwawves

Wave height (crest elevation — trough elevation) along vertical wall (y =0):

%:\/(C+S+l)2+(C—S)2

where

)

C=Jucos T2 |dt, S:J'usin T2 ldt, u=2 Qsin—
0 2 0 2 L

N

Note:at x=0, u=0 - C=S=0 —» H /H, =1

AS X—> o, U— o, then C—>£, S—>i i:2
2 2 H,



2.5

=
2 A less undulation
S 20 /\‘\ N _
2 v for irregular waves
z
5 1.5 Irregular Wlaves ‘;;;zzz
I
R
E egular Waves T13=10s
= 1.0 lI|=:|0m
) 50 100 150 200 250

Distance from Breakwater Tip,z (m)

Fig. 3.42. Variation of wave height in front of a semi-infinite breakwater.

For irregular waves, K, :% was used in Eq. (3.14)
|
T

for component waves (f - L —>u)

Explains meandering damage of concrete caissons.



3.7.2 Wave Height Variation at an Inward Corner of Reflective Structures

4‘/”0;‘0/80“: waves H 2T
W/:f‘ /1' ' S = (331)
o0 | S H B
H
for p=n#, —2=2
p=r H,
0");
acts Lke rrer p= Z, & =4
a m;rvor 2 H,

\ wave height Hg = crest elevation — trough elevation

Ag"‘“‘ﬂ AR Same as sum of 4 waves
Ry ah\
- \ propagating in 4 different directions

A ‘amm;ﬁtj’t \Bajaks)
A 8oy Wl s
o) WA Y

(22B2>AM)

If the length is finite, use a computer program or an approximate method given in
Goda’s book.

merdent

/ waves



3.7.3 Wave Height Variation along an Island Breakwater

waves:

Ca/z

[FZzror72777 2 221
l |

8<(@~3)L

cause undulation along wall (Fig. 3.46 and 3.47)

If B>>L,mayadd two waves diffracted from each tip:



3.8 Wave Transmission over Breakwater

3.8.1 Wave Transmission Coefficient

&‘ over-t—o/’/o, ” ;

+ trom ; SSion
o( Ffraction S 33e

(A) Vertical breakwater

overtoppin
A transmission coefficient K, _H
£ H,

N -
'tmm,.sr,m 7
//=//~//=//-//-//~// n=vs/

Wave transmission through rubble mound may be negligible.

Expect K, = function[ :‘3

,9, B,T,mound material,---j

Fig. 3.48 for regular wave tests — may be applicable to irregular waves with
H, =(Hys), and Hy =(H,;), (see Fig. 3.49)

Eg. (3.33) » K; = function[ :° ]; Effect of % is minor (see Fig. 3.48).

Eq. (3.34) — horizontally composite breakwaters

Vi'e i PIT vl
> <

77 7P 7 ¢ 7 7t 7 ¢ P 7772777



. T, T . .
Fig. 3.50 suggests (T ) and i ~0.5~0.8 due to generation of higher
(Tl/3)| TI
harmonic waves.
neole,t waves Lransmitted waves

/\/\ due o /"m,aact

oF overtoppedd

period = T Wate, Shorter wanes

are generactes

(B) Breakwater consisting of energy-dissipating blocks (Tetrapod, Dolos,...)

2
Fig. 3.51

(C) Rubble mound breakwater
Less void than concrete blocks — smaller K. (0.1~0.3).But K. Tas T7T

3.8.2 Propagation of Transmitted Waves in a Harbor

No reliable information is available (Read text)

— 7 can be Ma%éea( and computed!
\ d:fn; Lmear. avod nm/mear wave

+transmtted wanes

onrtermittent
overtoppin
g - transmitted waves

£ =g

L4 N L a——
May propogete . a pottern
Similan +v ,\'nc,‘a/enf Wowe S,

———

eor,;es



3.9 Longshore Currents by Random Waves on Planar Beach
3.9.1 Longshore Currents by Unidirectional Irregular Waves

Longshore current profile for regular waves

o
L L Ll L0208l 2777
el

Wo bateral m,‘x,‘n; -« AA%‘& cAamje a{ D at breaker Aime
(: waves dreak at a single Iocafm)

o — == = breaker £me
—ch/uo/,‘n; Loterold 0’17)0\/1&? (artificial)
v Goda. assumed dhat +he ;m:/ua-ﬂ variatim o U
may be due +o randon éreaking waves

x 2]
(ce, breakin 33 bocatims are different Sfor ndrviclual waves)

Fig. 3.52 gives cross-shore variation of longshore current velocity based on random
breaking model discussed in Section 3.5. In terms of deepwater wave condition,

. . . C,v
\Y :dlmensmnlessvelocny:\/ e fe -
gH, tandsing,

z =depth normalizedw.r.t. H, = 0
0

v(z):vo(z;Bj _ exp{—[z_ABj }

v,, A, B, k aregiveninEgs. (3.37) to (3.40)

Tofind v,

dv . (z-B i (z-B ‘ . [z2-B “ (z-BY" B
@ 1)( A) exp[ ( ” V‘{ Aj k( Aj exp{ ( A

A5 o {52 a2




1 1/k
Vo = vo(l—ij ‘ exp(i—lj at z= LU B+ A(l—ij (3.41)
k k H, k

3.9.2 Longshore Currents by Directional Random Waves

s, v , more directional spreading, smaller longshore current velocity (see Fig. 3.53).



