
Chap 3. Transformation and Deformation of Random Sea Waves 
 

3.1 Waves Refraction (+Shoaling) 
 
3.1.1 Introduction 
 
Ray theory for regular waves 
 

 
Conservation of energy: 
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3.1.2 Refraction Coefficient of Random Sea Waves 
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Goda’s book uses 
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For example, 00 4 mHm =  = significant wave height after shoaling and refraction 

            00 4 sms mH =  = significant wave height due to shoaling only 
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Goda’s book explains how to discretize  and f θ . 
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)( fS  can be integrated analytically (e.g. B-M or P-M spectra), say 
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Goda defines error function, ∫ −=Φ
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which should correspond to Eq. (3.7) in Goda’s book if  (B-M spectrum): 403.1 −= sTb
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As for the discretization of wave angle θ  (16-point bearing, see Table 3.2), 

 
 
3.1.3 Computation of Random Wave Refraction by Means of the Energy Flux Equation 
 
General transport equation for  (any scalar quantity): S
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For steady state ( ) with no sink or source (0/ =∂∂ tS 0=Q ), 
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Assuming ),( yxθθ ≠ , or x , y , θ  are independent variables, 
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where  and  using linear wave theory depend on  and frequency . C gC ),( yxh f θ  

is computed by ray theory. We need boundary conditions for . S
 
Example in Goda’s book Fig. 3.3: Waves over a circular shoal 

•  as well as  changes depending on locations (Fig. 3.4). sT sH

• Fig. 3.5 for regular waves shows larger spatial variations of wave heights. 
 
Ref. Vincent and Briggs (1989). Refraction-diffraction of irregular waves over a mound, 
JWPCOE, 115(2), 269-284: Performed laboratory experiments on transformation of 
monochromatic and random directional waves over an elliptic shoal. They concluded 



that monochromatic waves using representative wave height and period (e.g.  and 
) provide a poor approximation of irregular wave conditions if there is directional 

spread or high wave steepness. 

sH
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Ref. 권혁민 (1998). 방향 스펙트럼 파랑에 대한 3 차원 쇄파변형 모델, 
대한토목학회논문집, 18(II-6), 591-599: Include sink term due to wave breaking. 
 
Ref. Mase, H. (2001). Multi-directional random wave transformation model based on 
energy balance equation, Coastal Engineering Journal, 43(4), 317-337: Include wave 
diffraction. 
 
3.1.4 Wave Refraction on a Coast with Straight, Parallel Depth Contours 
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0

0sinsin
CC
θθ

=  → can find ),,( 0θθ hf  → 
0θ
θ

∂
∂  

Refraction coefficient 
θ
θθ

cos
cos),,( 0

0 =hfKr  

Shoaling coefficient ),(0 hfK
C
C

K s
g

g
s ==  

Directional spectrum ),( θfS  in water depth : h
 

[ ] ),(),,(),(),( 00

1

0

2
0 θ

θ
θθθ fShfKhfKfS rs

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=  

 
Need to specify ),( 00 θfS  in deep water. For example, ),()(),( 0000 θθ fGfSfS =  

with  = B-M spectrum with given )(0 fS 0ms HH =  and 05.1/ps TT = , 
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Fig. 3.6 shows  given by Eq. (3.2) as a function of  with , ( )effrK 0/ Lh π2/2
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3.2 Wave Diffraction 
 
3.2.1 Principle of Random Wave Diffraction Analysis 
 
For linear monochromatic waves in constant water depth, Sommerfeld solution for a 
semi-infinite thin breakwater: 
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In terms of zeroth moment, 
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Define effective diffraction coefficient: 
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Read Goda’s book for field measurement (Figs. 3.9 and 3.10). ( ) deffd KK >  based on 

regular waves with  and 3/1HH = 3/1TT =  = 0.07, which is significantly 
underestimated in this case. 
 
3.2.2 Diffraction Diagrams of Random Sea Waves 
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Goda assumed ),()(),( iiii fGfSfS θθ =  with B-M frequency spectrum and 
Mitsuyasu-type directional spreading. 
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Fig. 3.11 for a semi-infinite breakwater, for 10max =s  (wind waves) and  
(swell, more unidirectional). 

75max =s

 
Monochromatic versus directional random waves:  

1) In general, monochromatic wave underestimates wave heights in sheltered area, 
and overestimates in open area. 

2) The wave height ratio along the boundary of the geometric shadow (or the 
straight line from the tip of the breakwater to the wave direction) is 0.7 for 
directional random waves, while it is 0.5 for monochromatic waves. 

 
Figs. 3.12~3.15 for breakwater gap ( 8,4,2,1/ =LB ) 
 

 

 



3.2.3 Random Wave Diffraction of Oblique Incidence 
 
Construct your own computer program if exact solution is needed. Otherwise, use an 
approximate method suggested in the book. 
 

 
 
3.2.4 Approximate Estimation of Diffracted Height by the Angular Spreading Method 
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Neglect wave refraction. 
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3.2.5 Applicability of Regular Wave Diffraction Diagrams 
        ↑ 

Only for very narrow directional spreading 



3.3 Equivalent Deepwater Wave 
 
In real situation, 
 

 

 
Hydraulic model test in 2D wave flume, 
 

 
 

In real situation, ( )0sfsrds HKKKKH =  

In 2D wave flume, '  0HKH ss =

Thus,  ( )00 ' sfrd HKKKH =

↑ 
(unrefracted) equivalent deepwater wave height 

 

For wave period, usually assumes ( )ss TT 0=  ← error if diffraction is dominant. 



3.4 Wave Shoaling 
 

Linear wave shoaling coeff. 
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For shoaling of normally-incident linear random waves, 
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For shoaling of nonlinear monochromatic waves, use Shuto (1974) model (read text). 
 
3.5 Wave Deformation Due to Random Breaking 
 
3.5.1 Limiting Wave Height of Regular Waves by Breaking 
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Goda’s empirical formula (1970): 
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3.5.2 Computational Model of Random Wave Breaking 
 
Before wave breaking, Rayleigh distribution may be assumed 
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3.5.3 Computation of the Change in Wave Height Distribution Due to Random Wave 
Breaking 
 

Need to estimate  of wave breaking. 
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Eq. (3.22) was developed for breaking point ( bhh = ) of regular waves. But it may be 
used inside the surf zone if  = broken wave height,  = local depth. bH h
 
Water level change: 
 

Wave setup (η ) was computed using the results of monochromatic waves with  and sT

2H  = mean square of random waves, the latter of which is affected by η . Therefore, 

we need iteration to solve η  and 2H  simultaneously. See Eq. (3.23). 

 
Surf beat, )(tζ : slow (30~300 s) fluctuation of free surface mainly inside surf zone 

↑ 
from Gaussian distribution with rmsζ  given by Eq. (3.24) 

 

Thus, )(tdh ζη ++=  



3.6 Wave Reflection and Dissipation 
 
3.6.1 Coefficient of Wave Reflection 
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Typical reflection coefficients are given in Table 3.7.  
 
For perforated wall caissons,  becomes minimum (0.3~0.4) at  
(see Fig. 3.36). Under a standing wave system, maximum  at node → maximum 
energy dissipation & minimum reflection at 

RK 2.0~15.0/ =LB
u

4/LB =  → 25.0/ =LB . However, in 
reality, minimum reflection occurs at 2.0~15.0/ =LB , due to inertia effect. 
 

 
 
3.6.2 Propagation of Reflected Waves 
 

 
ri θθ =  (geometrical optics theory) 

diamond pattern of surface profile 
 



For long-period waves incident at large angle, Mach stem is formed. 
 
 

amplitude dispersion 
(Higher waves go faster.) 

 
Reflection from finite length of seawall ← diffraction by breakwater gap 
 

 
 
Reflection from very long seawall ← diffraction by semi-infinite breakwater 

(or angular spreading method for headland) 
 

 
 
Effect of opposing wind (sea → land): attenuates waves of large steepness, but its effect 
is minor for swell of low steepness. 
 



3.6.3 Superposition of Incident and Reflected Waves 
 
For linear waves, we can superpose the free surface displacement: 
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Fig. 3.40 indicates ( ) ( )20
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3.7 Spatial Variation of Wave Height along Reflective Structures 
 
3.7.1 Wave Height Variation near the Tip of a Semi-Infinite Structure 
 

 
 
Wave height (crest elevation – trough elevation) along vertical wall ( ): 0=y
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less undulation 
for irregular waves 
 
 
 
 
 
 

 

For irregular waves, 
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S
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HK =  was used in Eq. (3.14) 

↑ 
for component waves ( ) uLf →→

 
Explains meandering damage of concrete caissons. 
 



3.7.2 Wave Height Variation at an Inward Corner of Reflective Structures 
 

β
π2

=
I

S

H
H    (3.31) 

for 2, ==
I

S

H
Hπβ  

   4,
2

==
I

S

H
Hπβ  

 
wave height = crest elevation – trough elevation SH

 
 

Same as sum of 4 waves  
propagating in 4 different directions 

 
 
 
 
 
 
 
 
 
 
 
If the length is finite, use a computer program or an approximate method given in 
Goda’s book. 
 

 
 
 



3.7.3 Wave Height Variation along an Island Breakwater 
 

 
cause undulation along wall (Fig. 3.46 and 3.47) 
 
If LB >> , may add two waves diffracted from each tip: 
 

 
 



3.8 Wave Transmission over Breakwater 
 
3.8.1 Wave Transmission Coefficient 
 

 

 
(A) Vertical breakwater 
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Wave transmission through rubble mound may be negligible. 
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Fig. 3.48 for regular wave tests → may be applicable to irregular waves with 
 and  (see Fig. 3.49) ( II HH 3/1= ) ( )TT HH 3/1=

 

Eq. (3.33) → ⎟⎟
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⎞
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= onlyfunction
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c
T H

hK ; Effect of 
h
d  is minor (see Fig. 3.48). 

Eq. (3.34) → horizontally composite breakwaters 

 



Fig. 3.50 suggests 
( )
( )I

T

T
T

3/1

3/1  and ( )
( )I

T

T
T  8.0~5.0≅  due to generation of higher 

harmonic waves. 

 

(B) Breakwater consisting of energy-dissipating blocks (Tetrapod, Dolos,…) 
                                                 ↓ 

Fig. 3.51 
 
(C) Rubble mound breakwater 
Less void than concrete blocks → smaller  (0.1~0.3). But ↑ as TK TK T ↑ 
 
3.8.2 Propagation of Transmitted Waves in a Harbor 
 
No reliable information is available (Read text) 
 

 



3.9 Longshore Currents by Random Waves on Planar Beach 
 
3.9.1 Longshore Currents by Unidirectional Irregular Waves 
 
Longshore current profile for regular waves 
 

 
Fig. 3.52 gives cross-shore variation of longshore current velocity based on random 
breaking model discussed in Section 3.5. In terms of deepwater wave condition, 
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3.9.2 Longshore Currents by Directional Random Waves 
 

maxs ↓ , more directional spreading, smaller longshore current velocity (see Fig. 3.53). 


