Chapter 2 Kinematics

\rightarrow nature of a flowing fluid without reference to the dynamics

2.1 The Velocity Field

velocity, acceleration \sim vector quantities

$$
\vec{q} \quad \vec{a}
$$

Cartesian coordinates

$$
\begin{array}{ccc}
x & y & z \\
u & v & w \\
a_{x} & a_{y} & a_{z}
\end{array}
$$

2.1.1 Lagrangian approach

\sim coordinates of moving particles are represented as function of time
\sim follow a particular particle through the flow field \rightarrow path line

At $\quad t=t_{0} \quad$ coordinates (position) of a particle $\quad(a, b, c)$
At $t=t \quad$ position of a particle $\quad(x, y, z)$

$$
\begin{gathered}
x=f_{1}(a, b, c, t) \\
y=f_{2}(a, b, c, t) \\
z=f_{3}(a, b, c, t) \\
u=\frac{\partial x}{\partial t} \\
v=\frac{\partial y}{\partial t} \\
w=\frac{a_{x}=\frac{\partial u}{\partial t}=\frac{\partial^{2} x}{\partial t^{2}}}{\partial t} \quad a_{y}=\frac{\partial v}{\partial t}=\frac{\partial^{2} y}{\partial t^{2}} \\
\quad a_{z}=\frac{\partial w}{\partial t}=\frac{\partial^{2} z}{\partial t^{2}}
\end{gathered}
$$

\sim commonly used in the solid dynamics
\sim convenient to identify a discrete particle, e.g. center of mass of spring - mass system
\sim cumbersome when dealing with a fluid as a continuum of particles
\rightarrow Due to deformation of fluid, we are not usually concerned with the detailed
history of an individual particle, but rather with interrelation of flow properties at individual points in the flow field.

2.1.2 Eulerian method

~ observer fixes attention at discrete points

\sim notes flow characteristics in the vicinity of a fixed point as particles pass by
\sim focused on the fluid which passes through a control volume that is fixed in space
\sim familiar framework in which most fluid problems are solved
$\sim \underline{\text { instantaneous picture }}$ of the velocities and accelerations of every particle
\rightarrow streamline
\sim velocities at various points are given as function of time

$$
\vec{q}=\vec{i} u+\vec{j} v+\vec{k} w
$$

where

$$
\begin{aligned}
& u=f_{1}(x, y, z, t) \\
& v=f_{2}(x, y, z, t) \\
& w=f_{3}(x, y, z, t)
\end{aligned}
$$

$$
\begin{aligned}
& x, y, z, t=\text { independent variables } \\
& \vec{i}, \vec{j}, \vec{k}=\text { unit vectors }
\end{aligned}
$$

2.1.3 Total Derivative

(1) Total change in velocity
$=$ sum of partial derivatives of the four independent variables, x, y, z, t

$$
x-\operatorname{dir}: \quad d u=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z
$$

total derivative: $\frac{d u}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}+\frac{\partial u}{\partial z} \frac{d u}{d t}$

$$
=\frac{\partial u}{\frac{\partial t}{\partial}}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}
$$

local change
due to unsteadiness
convective change due to translation

$$
\begin{aligned}
& y-\operatorname{dir}: \frac{d v}{d t}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
& z-\operatorname{dir}: \frac{d w}{d t}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{aligned}
$$

(2) Total rate of density change of compressible fluid
$\rho=\rho(x, y, z, t)$
$\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}=\frac{\partial \rho}{\partial t}+u_{j} \frac{\partial \rho}{\partial x_{j}}$

For incompressible fluid, $\frac{d \rho}{d t}=0$

For steady flow, $\quad \frac{\partial \rho}{\partial t}=0$

2.2 Steady versus Uniform motion

$$
\begin{aligned}
& a_{x}=\frac{d u}{d t}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\frac{\partial u}{\partial t}+u_{j} \frac{\partial u}{\partial x_{j}} \\
& a_{y}=\frac{d v}{d t}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=\frac{\partial v}{\partial t}+u_{j} \frac{\partial v}{\partial x_{j}} \\
& a_{z}=\frac{d w}{d t}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=\frac{\partial w}{\partial t}+u_{j} \frac{\partial w}{\partial x_{j}}
\end{aligned}
$$

Vector notation

$$
\begin{aligned}
& \vec{a}=\vec{i} a_{x}+\vec{j} a_{y}+\vec{k} a_{z} \\
& \vec{a}=\frac{d \vec{q}}{d t}=\frac{\partial \vec{q}}{\partial t}+(\vec{q} \cdot \nabla) \vec{q}
\end{aligned}
$$

i) steady motion: no changes with time at fixed point unsteady motion

$$
\frac{\partial \vec{q}}{\partial t}=0 \rightarrow \text { local acceleration }=0
$$

ii) uniform motion: no changes with space \longleftrightarrow non-uniform motion

$$
(\vec{q} \cdot \nabla) \vec{q}=0 \quad \rightarrow \text { convective acceleration }=0
$$

Vector differential operators: $\nabla \rightarrow$ "del" or "nabla"

$$
\nabla=\frac{\partial}{\partial x} \vec{i}+\frac{\partial}{\partial y} \vec{j}+\frac{\partial}{\partial z} \vec{k}
$$

Gradient: $\quad \nabla f=\operatorname{grad} f=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}+\frac{\partial f}{\partial z} \vec{k}$

Divergence: $\quad \nabla \cdot \vec{q}=\operatorname{div} \vec{q}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}$
[Re] Vector product
i) dot product \rightarrow scalar
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \phi$
$\phi=$ angle between the vectors
$\vec{i} \cdot \vec{i}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1 \quad\left(\cos 0^{\circ}=1\right)$
$\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{k}=\vec{j} \cdot \vec{i}=\vec{k} \cdot \vec{j}=0 \quad\left(\because \cos 90^{\circ}=0\right)$
ii) cross product \rightarrow vector
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \phi$

Direction = perpendicular to the plane of \vec{a} and $\vec{b} \rightarrow$ right-hand rule

$$
\begin{aligned}
& \vec{q} \cdot \nabla=(\vec{i} u+\vec{j} v+\vec{k} w) \cdot\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right) \\
& =u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z} \\
& (\vec{q} \cdot \nabla) \vec{q}=\left(u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right)(\vec{i} u+\vec{j} v+\vec{k} w) \\
& =\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right) \vec{i} \\
& +\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right) \vec{j} \\
& +\left(u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right) \vec{k} \\
& \nabla^{2}=\nabla \cdot \nabla=\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right) \cdot\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}\right) \\
& =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
& \nabla^{2} \phi=0 \rightarrow \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \rightarrow \quad \text { Laplace Eq. } \\
& \operatorname{grad}(u+v)=\nabla(u+v)=\nabla u+\nabla v \\
& \operatorname{div}(\vec{u}+\vec{v})=\nabla \cdot(\vec{u}+\vec{v})=\nabla \cdot \vec{u}+\nabla \cdot \vec{v} \\
& \operatorname{grad}(u v)=\nabla(u v)=v \nabla u+u \nabla v \\
& \operatorname{div}(u \vec{v})=\nabla \cdot(u \vec{v})=\nabla u \cdot \vec{v}+u \nabla \cdot \vec{v} \\
& \text { div } \operatorname{grad} u=\nabla \cdot \nabla u=\nabla^{2} u
\end{aligned}
$$

2.3 Streamlines vs Path line

2.3.1 Flow lines

streamline, path line, streak line

(1) streamline
$=\underline{\text { imaginary line connecting a series of points in space at a given instant in such }}$ a manner that all particles falling on the line at that instant have velocities whose vectors are tangent to the line
$=$ instantaneous curves which are everywhere tangent to the velocity vector $=\mathrm{a}$ line that is (at a given instant) tangent to the velocity at every point on it

[^0]* stream filament $=$ if cross section of stream tube is infinitesimally small

Figure 2.2 (a) Stream tube and (b) vortex tube subtended by a contour of area A_{1} in a flow field.
(2) path line
$=$ trajectory of a particle of fixed identity as time passes
(3) streak line
$=\mathrm{a}$ line connecting all the particles that have passed successfully through a particular given point (injection point)
$=$ current location of all particles which have passed through a fixed point in space
[Ex] dye stream in water, smoke filament in air

* For steady flow, streamline = path line = streak line

How can we photo 3 lines?
(1) streamline: spread bunch of reflectors on the flow field, then take a instant shot
(2) path line: put only one particle on the flow field, then take long-time exposure
(3) streak line: take a instant shot of dye injecting from one slot of the dye tanks

2.3.2 Differential equations for flow lines

(1) Streamline

By virtue of definition of a streamline (velocity vector \vec{q} is tangent to the streamline), it's slope in the $x y$-plane, $\frac{d y}{d x}$, must be equal to that of the velocity, $\frac{v}{u}$.

$$
\frac{d y}{d x}=\frac{v}{u}
$$

By similarly treating the projections on the $x z$ plane and on the $y z$ plane

$$
\frac{d z}{d x}=\frac{w}{u} ; \quad \frac{d z}{d y}=\frac{w}{v}
$$

$$
\rightarrow \quad \frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w}
$$

\rightarrow Integration of the differential equation for streamline yields equation of streamline.

For 2-D Cartesian coordinates

$$
\frac{d x}{u}=\frac{d y}{v} \rightarrow \frac{d y}{d x}=\frac{v}{u} \rightarrow v d x-u d y=0
$$

Δ Vector form of equation of streamline

$$
\begin{aligned}
& \vec{q} \times d \vec{r}=0 \\
& \begin{aligned}
& \vec{q}=\vec{i} u+\vec{j} v+\vec{k} w \\
& d \vec{r}=\vec{i} d x+\vec{j} d y+\vec{k} d z \\
&=\vec{n} d s=\text { element of length along streamline } \\
& \begin{aligned}
\vec{q} \times d \vec{r} & =\vec{i} v d z+\vec{j} w d x+\vec{k} u d y-\vec{i} w d y-\vec{j} u d z-\vec{k} v d x \\
& =\vec{i}(v d z-w d y)+\vec{j}(w d x-u d z)+\vec{k}(u d y-v d x)=0
\end{aligned}
\end{aligned} \begin{aligned}
& \\
&
\end{aligned} \\
& \begin{aligned}
\\
\end{aligned} \\
&
\end{aligned}
$$

(2) Path line

Since the particle is moving with the fluid at its local velocity

$$
\frac{d x}{d t}=u ; \frac{d y}{d t}=v ; \frac{d z}{d t}=w
$$

[App] Vector Products

(1) dot product \rightarrow scalar

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

(2) cross product \rightarrow vector

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \vec{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k} \\
& \operatorname{curl} \vec{V}=\nabla \times \vec{V}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
u & v & w
\end{array}\right| \\
& =\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \vec{i}+\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \vec{j}+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \vec{k}
\end{aligned}
$$

[Ex] Vorticity: $\xi=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \quad$ 3-D flow, $\xi=\nabla \times \vec{V}$

For irrotational flow, $\quad \xi=0 ; \nabla \times \vec{V}=0$
$\cdot \operatorname{curl}(u \vec{v})=\nabla \times(u \vec{v})=\nabla u \times \vec{v}+u \nabla \times \vec{v}$

- curl $\operatorname{grad} u=\nabla \times \nabla u=0$
- divcurl $\vec{u}=\nabla \cdot(\nabla \times \vec{u})=0$

Homework Assignment 1

Due: 1 week from today

1. The velocity of an inviscid, incompressible fluid as it steadily approaches the stagnation point at the leading edge of a sphere of radius R is

$$
u=u_{s}\left(1+\frac{R^{3}}{x^{3}}\right)
$$

What is the fluid acceleration at (a) $x=-3 R$, (b) $x=-2 R$, and (c) $x=-R$?
(d) When and $u_{\mathrm{s}}=2 \mathrm{~m} / \mathrm{s}$ and $R=3 \mathrm{~cm}$, what is the magnitude of the acceleration at $x=-2 R$?
2. The velocity field in a flow system is given by

$$
\vec{q}=5 \vec{i}+\left(x+y^{2}\right) \vec{j}+3 x y \vec{k}
$$

What is the fluid acceleration (a) at $(1,2,3)$ and (b) at $(-1,-2,-3)$?
3. A nozzle is shaped such that the axial-flow velocity increases linearly from 2 to $18 \mathrm{~m} / \mathrm{s}$ in a distance of 1.20 m . What is the convective acceleration (a) at the inlet and (b) at the exit of the nozzle?

[^0]: * stream tube $=$ small imaginary tube bounded by streamlines

