Ch 5. Stress — Strain Relation

Chapter 5 Stress — Strain Relation

5.1 General Stress — Strain system

Parallelepiped, cube

STRESS-STRAIN RELATIONS

-

27

5.1.1 Surface Stress E‘ >

X

Surface stresses: {normal stress— o

shear stress - 7. ,7T

xz s X

xy !

. AF
o, =0,= lim — AF AF

X X A0 _ lim—" i z
AR, Fay M0 AA T”m
(AA, =AyAZ)

. AF
7, = lim —% AF
y AA,—0 AAy ny = O-y = r|Aiym0A—y Tyz :AIAiymo in
(AA, =AXAz) A A
AF
o= lim —=* . AF, AF
AA—0 AAZ Ty :AIAIsz A 0,=0,= AIAIZmO A
(AA, =AxAy) A ;
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Ch 5. Stress — Strain Relation

where AF, ,AFy, AF, =component of force vector AF
AF, - acting in the direction of the x-axis
AA = area of the x- face of the element = AyAz

AAy = AXAZ

face which is
AA, = AXAy normal to X axis

esubscripts

o, . subscript indicates the direction of stress

X

7,,: 1st-direction of the normal to the face on which 7 acts

2nd - direction in which 7 acts

ogeneral stress system:  stress tensor

~ 9 scalar components

XX Xy Xz
TYX yy yz
Tx sz o

[Re] Tensor
~ an ordered array of entities which is invariant under coordinate transformation; includes
scalars & vectors
~ 3
Oth order — 1 component, scalar (mass, length, pressure)
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Ch 5. Stress — Strain Relation

1st order — 3 components, vector (velocity, force, acceleration)

2nd order — 9 components (stress, rate of strain, turbulent diffusion)

At three other surfaces,

o, =0, + aG"AX
OX
. oo,
o, =0, + —Ay
o, =0, + do, Az
0z
. Oz'xy
Ty =Ty + x AX
. (%yx
Ty =Ty + —8y Ay
r =1, 4+ 867; Az (5.1)

& | Shear stress is symmetric.

— Shear stress pairs with subscripts differing in order are equal.

[Proof]

In static equilibrium, sum of all moments and sum of all forces equal zero for the element.
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Ch 5. Stress — Strain Relation

First, apply Newton's 2nd law

du
ZF_mE

Then, consider torque (angular momentum), T

d d do
T=—(rmu)=—(r'me)=—(w)=1—
ST =S mu) = S (rmo) = (1) < 18
where | = moment of inertia= r’m
I = radius of gyration
0] )
—— = angular acceleration
dt
Thus,
d
dT= mr2 @ (A)

Now, take a moment about a centroid axis in the z-direction

LHS:ZT:(AyAZTXy)AZX (7, AxAz)Azy AXAZVAZ(TW—TW)

dw dw
RHS = pdvolr? — = AXAyAz pr? —
P dt YAZPT 4t

L (7 — Ty ) AXAYAZ = 2AxAyA2pr2%—i}
After canceling terms, this gives

r—r—2r—
Ph
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Ch 5. Stress — Strain Relation

lim r?—=0

AX,AY,A7—0

[Homework Assignment-Special work]

Due: 1 week from today

1. Make your own “Stress Cube” using paper box.
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Ch 5. Stress — Strain Relation

5.1.2 Strain components

o Strain{normal strain: & < linear deformation

shear strain: y <« angular deformation

axial axial
stress stress
< >

i) Displacement (translation): &, 7, &

O(x,y,2) > O'(x+¢&, y+nm, 2+¢)

i) Deformation: due to system of external forces

OABC—->O'A'B'C’

(1) Deformation

1) Normal strain, &

oo change in length
original length
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Ch 5. Stress — Strain Relation

O'C' |/ OoC

S v | _
_oc-oc im{(x+Ax+§+aXij (x+§)} AX o

g =i = -l
AX—0 OC AX—0 AX OX
(y+Ay+n+a'7AyJ—(y+n) - Ay
. OA'-0A .. oy on
£, = Iim—————=1lim =
Ay—0 OA Ay—0 Ay ay
oo
0z

~ & s positive when element elongates under deformation

2) Shear strain, y

~ change in angle between two originally perpendicular elements

For Xy -—plane

Vo = lim (6,+6,)= lim (tan6, +tané,)

AX,Ay—0 AX,Ay—0

cD | —— A

X + ay 26_774_8_5

= lim
AX,Ay—0 AX + 85 &X Ay + 877 v OX 8y

%  ax OE
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Ch 5. Stress — Strain Relation

0 0
7/xy :_77 + _g
oXx oy
o 0
7/yz:_§"'_’7 (5.4)
oy oz
72X:6_§+6_§
0z OX

[Re] displacement vs. deformation

Motion 4

[ translation /

rotation

Deformation

[ linear deformation /

angular deformation

—

(2) displacement vector o

5:§T+77]+§R

(3) Volume dilation

o change of volume of deformed element
original volume
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Ch 5. Stress — Strain Relation

(Ax + 866ij(Ay + aﬂij(Az + % Azj — AXAyAz
_dav) _

e OX oy oz
AV AXAYAZ
E8_§+8_77+8_§:gx+8 + g,
oXx oy oz y
e=¢, + & + ¢ (5.6)
e= 6—5 + 6—77 + 8_4“ =V-5 - divergence (5.7)

ox oy 0z
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Ch 5. Stress — Strain Relation

5.2 Relations between Stress and Strain for Elastic Solids

5.2.1 Normal Stresses

Hooke's law: stress is linear with strain

1
g, =— O,
E

inwhich E = Young's modulus of elasticity

&, =elongation in the X — dir . due to normal stress, o,
.., O,
y—dir. : g =—
’E

. . O
z—dir. @ & :EZ

Now, we have to consider other elongations because of lateral contraction of matter under

tension.

¢, =elongation in thex —dir . dueto o,

g," =elongation inthe X —dir. dueto o,

X '
...................... - / gx
i i

I [ Y p

i | X negative

I I

! !

! |

A
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Ch 5. Stress — Strain Relation

Now, define
‘= _net =-n2 (5.9)
g, =—nNg, =—N— .
X y E
. o
g =-ne, = —nEZ (5.10)

where N = Poisson's ratio \
concrete: 0.1-0.2

steel: 0.25~0.35
[Re] Cork cork: ~0

Thus, total strain ¢ is

g, = é[az - n(O'X +0, )J (5.12)
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Ch 5. Stress — Strain Relation

5.2.2 Shear Stress

~Hooke’slaw 7, =Gy,

Y G ox oy

T, 04 0
7yZ:_v__‘=V+_’7

G oy oz
_In 05, 00
* G o0z ox
The axial stress induces
both normal strain and
where G = shear modulus of elasticity shear strain.
E
R (5.14)
2(1+n)

m VVolume dialation
e= gx+gy+gzzé[ax—n(ay+az)]
1
+E|:Gy—n(02 +Gx):|

+é[02 -n(o, +o, )]

1
:E[(l_gn)(ax to,+0,)] (5.15)
n g = arithmetic mean of 3 normal stresses
o= g(ax +o, + GZ) (5.16)
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Ch 5. Stress — Strain Relation

Combine Egs. (5.12), (5.14) and (5.15)

GX=ZG{8X+ ne } (5.17)
1-2n

Therefore

y y 3
— e
o,-0=2G| g, —gj (5.18)

oo ox oy

Ty =7, = G(ﬁ—’/%-a—ﬂj
oy oz

Ty =T = G (% + %j (5'19)
0z OX

[Proof] Derivation of Egs. (5.17) & (5.18)

(5.15) _)e:é(l_ 2n)(0X +to,+ O'Z) (A)
(5.12) —¢& =i[0 -n(o, +o )} (B)
X E X y z
(5.14) > G = E . E=2G(1+n) (C)
' ~ 2(1+n) -
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Ch 5. Stress — Strain Relation

i) Combine (A) and (B)

n n (1-2 n
+ (l+2n)xe :(1_2n)( En)(o-x+o-y+O'Z):E(O'X+O'y+O'Z)
1
&y —E[O'X—n(ay+az)]
n n
e+€x——o'x
(1-2n)

E n
o, =——| &+ e
1+n{ (1-2n) }

Substitute (C) into (D)

n
o, =2Gle + e —  Eq.(5.17

ii) Subtract (5.16) from (5.17)

Gx—g=2G{6‘x+ n e}—l(ax+0'y+0'2)

(1-2n) | 3
: . E
Substitute (A) into (E); o, + o,+0,= e
(1-2n)

_ B n 1 E
. RHS of (E)_ZG{5X+(1_2n)e} 3(1_2n)e

(D)

(E)

=2ng+{ 2Gn _126(1+n)}3:2G .

(1-2n) 3 (1-2n)

=2G1 _3(1_2”)e :ZG(gX—%ej — Eq. (5.18)
* (1-2n)

(1—2n) (1+2n)
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Ch 5. Stress — Strain Relation

5.3 Relations between Stress and Rate of Strain for Newtonian Fluids

Experimental evidence suggests that, in fluid, stress is linear with|time rate of strain.

— stress oc g(strain)
ot

— Newtonian fluid (Newton's law of viscosity)

[Cf] For solid,

stress oc strain

5.3.1 Normal stress

For solid, Eq. (5.18) can be used as

Eq.(5.3); (m/m)

Hookeian elastic solid: o, —o= 2(5 (5 —Ej
AN

\G

By analogy,
— 0
Newtonian fluid: o, —o = Z(E;[j—(gx —Ej (5.20)
L° ot 3

Ft \ Time rate of strain
Now set =— = dynamic viscosity
Then,

— o€ 2 oe

o,—oc=2 e —u— (5.21)
X H ot 3 # ot
\due to shear
strain

By the way,
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Ch 5. Stress — Strain Relation

8x:g_§’ e=V-5 o _on ¢
X _on 8¢ a4
u= ot v e W o (&,m,¢ = displacement)
Therefore
O¢, :Q(a_fj:i(ﬁ_f)za_“ (5.22)
ot ot\ox/) ox\ ot OX
@:v.@:v.a:a_“Jr@Jr@ (5.23)
ot ot . X oy oz
=&i+nj+ck
a—ﬁ—u7+v]+wﬁ
ot
- OUu oV ow
Q=—t+_—+—
ox oy oz
Eq. (5.21) becomes
ou 2 -
—o+2U—-=
S S
For compressible fluid,
ou 2 -
—o+2u——=
e me 2l (g
_ o 2 -
_ ow 2 -
o, =0 +2u—-—u(v.q) (5.24)
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Ch 5. Stress — Strain Relation

For incompressible fluid,

de

—=V-(q=0 < time rate of volume expansion=0

dt

—>V- a =0 — Continuity Eq.

Therefore, Eq. (5.24) becomes

— ou
o, =0+2u—
OX

0'y=5+2,u@

o, =0 +2u—
z ,Uaz

5.3.2. Shear stress
y7i

By following the same analogy  /

T, =G 8_774_% — (E)g 6_77+a_§
d ox oy L2 )ot\ ox oy

:ﬂi(a_ﬂj+i 5_65):#[@+8_UJ

ox\ ot ) oyt ox oy
on_ j \; o¢
ot i
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Ch 5. Stress — Strain Relation

romr = XM
Xy yx_:u OX ay
B e
e YR
Xz X 82 ax

[Appendix 1]

1
Xy 'y
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Ch 5. Stress — Strain Relation

i) Ty Tix
2" AS /
| 2(u,|
T’d“ - 2 K

iii) composition

» Relation between thermodynamic pressure P and mean normal stress &

1) Assume viscous effects are completely represented by the viscosity g _for

incompressible fluid

G=-p=3(0,+0,+)) (5.26)

~ minus sign accounts for pressure (compression)

2) For compressible fluid

G=-p+u'(v-q)
inwhich  u"' = 2nd coefficient of viscosity associated solely with dilation

= bulk viscosity
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Ch 5. Stress — Strain Relation

Since, dilation effect is small for most cases

#(v-q)=0

L F=—p

For zero-dilation viscosity effects (x' = 0), (5.24) becomes

oW
o, :_p+2ﬂ5—(
/ |

o, =-p+2use~( 2Ju(v q)

0 -
Gy=—p+2ﬂgv—(§jﬂ(vq)

%}ﬂ(va)

Normal
stress

]

pressure

m Shear stresses in a real fluid

(5.29)

T,=T, = @Jr@
yz zy_;u 8y 82

= 4
07 OX

Ty =T = @+8_u
v = I T T

(5.30)

For zero viscous effects (,u = O) — inviscid fluids in motion and for all fluids at rest

JX:Gy:GZ:G:—p
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Ch 5. Stress — Strain Relation

[Appendix 2] Bulk viscosity and thermodynamic pressure

— Boundary-Layer Theory (Schlichting, 1979) pp. 61-63

| ®
Y et T
> 1 e Bl
%\\.‘ ' S
1\\\ 4 fﬁ ;

G=—p+u(v-q)
If fluid is compressed, expanded or made to oscillate at a finite rate, work done in a

thermodynamically reversible process per unit volume is
- de L
W=pV.g= Pa ~ dissipation of energy

where 1'= bulk viscosity of fluid that represents that property which is responsible for

energy dissipation in a fluid of uniform temperature during a change in volume at a finite rate
= second property of a compressible, isotropic, Newtonian fluid

[Cf] u = shear viscosity = first property

lulzov p:_a

u'#0, px-c

Direct measurement of bulk viscosity is very difficult.
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Ch 5. Stress — Strain Relation

[Appendix 3] Normal stress

Normal stress = pressure + deviation from it

o,=—-p+o,’
o,=—Pp+o,
o,=—p+o,’

Thus, stress matrix becomes

—-p 0 0 Oy ' 7’-xy Ty
0 - p 0 |+ Ty Oy ' Ty,
0 0 Y Tox sz g, l

Normal stresses are proportional to the volume change (compressibility) and corresponding

components of linear deformation, a, b, c.

Thus,
o,=—p+A(a+b+c)+2ua
o,=—p+A(a+b+c)+2ub
o,=—p+A(a+b+c)+2uc

where A = compressibility coefficient
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Ch 5. Stress — Strain Relation

Homework Assignment # 3

Due: 1 week from today

5-1. Verify Eq. (5-14)

G= E
2(1+n)

5-3. Consider a fluid element under a general state of stress as illustrated in Fig. 5-1. Given
that the element is in a gravity field, show that the equilibrium requirement between surface,

body and inertial forces leads to the equations

0o, + Oty + %0 g, = pa
o oy P P =p
6z'xy 8Gy N arxy N _a
x Ty T PP
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