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Chapter 5 Stress – Strain Relation 

 

5.1 General Stress – Strain system 

Parallelepiped, cube 

 

 

 

           

 

 

 

 

5.1.1 Surface Stress 

 Surface stresses:   normal stress – xσ   

shear stress   – ,xy xzτ τ  
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where , ,x y zF F F∆ ∆ ∆  = component of force vector F∆


 

xF∆ – acting in the direction of the x-axis 

xA∆ = area of the x- face of the element = y z∆ ∆  

yA x z∆ = ∆ ∆  

zA x y∆ = ∆ ∆  

 

•subscripts 

xσ :  subscript indicates the direction of stress

xyτ

  

:  1st - direction of the normal to the face on which τ  acts

2nd - 

  

direction in which τ acts

 

  

•general stress system:  stress tensor  

~ 9 scalar components  

xx xy xz

yx yy yz

zx zy zz

σ τ τ
τ σ τ
τ τ σ

 
 
 
 
 

 

 

[Re] Tensor    

~ an ordered array of entities which is invariant under coordinate transformation; includes 

scalars & vectors 

~ 3n  

0th order   – 1 component, scalar (mass, length, pressure) 
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1st order   – 3 components, vector (velocity, force, acceleration) 

2nd order – 9 components (stress, rate of strain, turbulent diffusion) 

 

At three other surfaces, 
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τ τ
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' zx
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z
ττ τ ∂
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∂

                   (5.1) 

 

◈ Shear stress is symmetric. 

→ Shear stress pairs with subscripts differing in order are equal. 

→ xy yxτ τ=  

 

 [Proof] 

In static equilibrium

 

, sum of all moments and sum of all forces equal zero for the element. 
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First, apply Newton's 2nd law 

 
duF m
dt

=∑  

 

Then, consider torque (angular momentum), T  

   2( ) ( ) ( )d d d dT rmu r m I I
dt dt dt dt

ωω ω= = = =∑  

 

where I = moment of inertia = 2r m  

  r = radius of gyration 

   
d
dt
ω

= angular acceleration 

Thus, 

   
2 dT mr

dt
ω

=∑        (A) 

 

Now, take a moment about a centroid axis in the z-direction 

   ( ) ( ) ( )
2 2 2xy yx xy yx
x y x y zy z x zLHS T τ τ τ τ∆ ∆ ∆ ∆ ∆∆ ∆ ∆ ∆= = − = −∑  

2 2d dRHS dvolr x y z r
dt dt
ω ωρ ρ= = ∆ ∆ ∆  

  ( ) 22xy yx
dx y z x y z r
dt
ωτ τ ρ−∴ ∆ ∆ ∆ = ∆ ∆ ∆  

After canceling terms, this gives 

 22xy yx
dr
dt
ωτ τ ρ− =  
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2

, , 0
lim 0

x y z
r

∆ ∆ ∆ →
→  

  0xy yxτ τ− =  

  xy yxτ τ∴ =  

 

[Homework Assignment-Special work] 

Due:  1 week from today 

 

1. Make your own “Stress Cube” using paper box. 
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5.1.2 Strain components 

 

○ Strain  normal strain:      ε  ← linear deformation 

    shear strain:     γ  ← angular deformation 

 

 

 

i) Displacement (translation): , ,ξ η ζ  

( ) ( )' , ,, ,O O x y zx y z ξ η ζ→ + + +  

 

ii) Deformation: due to system of external forces 

' ' ' 'OABC O A B C→  

 

(1) Deformation 

1) Normal strain, ε  

change in length
original length

ε =  
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~ ε  is positive when element elongates under deformation 

 

2) Shear strain, γ  

~ change in angle

 

 between two originally perpendicular elements 

For xy –plane 
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xy x y
η ξγ ∂ ∂

= +
∂ ∂

 

yz y z
ζ ηγ ∂ ∂

= +
∂ ∂

                            (5.4) 

zx z x
ξ ζγ ∂ ∂

= +
∂ ∂

 

 

[Re] displacement vs. deformation 

Motion  

translation 

rotation 

 

Deformation 

 linear deformation 

angular deformation 

 

 

(2) displacement vector δ


 

i j kδ ξ η ζ= + +
   

 

 

(3) Volume dilation 

 

change of volume of deformed element
original volume

e =  
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( )
y y x y zx x z z

yd x zVe
V x y z

ηξ ζ∂ ∂ ∂   ∆ + ∆ − ∆ ∆ ∆∆ + ∆ ∆ + ∆    ∂∂ ∂   ∆  = =
∆ ∆ ∆ ∆

 

x y zx y z
ξ η ζ ε ε ε∂ ∂ ∂

≅ + + = + +
∂ ∂ ∂

 

x y ze ε ε ε= + +              (5.6) 

e
x y z
ξ η ζ δ∂ ∂ ∂

= + + = ∇ ⋅
∂ ∂ ∂


   --- divergence               (5.7) 
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5.2 Relations between Stress and Strain for Elastic Solids  

5.2.1 Normal Stresses 

 Hooke's law: stress is linear with strain  

x xEσ ε= 
 

1
x xE

ε σ=  

 

in which E  = Young's modulus of elasticity 

xε

 = elongation in the x dir− . due to normal stress, xσ  

. : y
yy dir

E
σ

ε− =
 

. : z
zz dir

E
σε− =  

 

Now, we have to consider other elongations because of lateral contraction of matter under 

tension

'xε

. 

 = elongation in the x dir− . due to yσ  

''xε  = elongation in the x dir− . due to zσ  

 

 

 

 

 

xε
  

yε
  

'
xε  
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Now, define 

' y
x yn n

E
σ

ε ε= − = −
                                              (5.9) 

    '' z
x zn n

E
σε ε= − = −                                        (5.10) 

where n  = Poisson's ratio 

 

[Re] Cork 

 

Thus, total strain xε is 

( ) ( )1' '' x
y z y zx x x x x

n n
E E E
σ σ σ σ σε ε ε ε σ+ + = + + = − = − 

  

( )1
y z xy n

E
σ σ σε  − +=     

( )1
x yz z n

E
σ σε σ + = −                                    (5.12) 
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5.2.2 Shear Stress 

~ Hooke’s law  xy xyGτ γ=  

 xy
xy G x y

τ η ξγ ∂ ∂
= = +

∂ ∂
 

yz
yz G y z

τ ζ ηγ ∂ ∂
= = +

∂ ∂
 

zx
zx G z x

τ ξ ζγ ∂ ∂
= = +

∂ ∂
 

 

    where G = shear modulus of elasticity 

      
( )2 1

EG
n

=
+

                                                   (5.14) 

 

■ Volume dialation 

( )

( )

( )

1

1
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y zx y z x

y z x

x yz

e n
E

n
E

n
E

σ σε ε ε σ

σ σ σ

σ σσ

+ = + + = − 

− ++   

+ + − 

 

( )( )1
1 2 x y znE

σ σ σ+ + = −                  (5.15) 

 

■ σ  = arithmetic mean of 3 normal stresses 

( )1
3 x y zσ σ σσ + +=                                     (5.16) 
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Combine Eqs. (5.12), (5.14) and (5.15) 

2
1 2x x

neG
n

σ ε = + − 
                                     (5.17) 

 

Therefore 

2
3x x
eGσ σ ε − = − 

 
 

2
3y y
eGσ σ ε − = − 

 
 

2
3z z
eGσ σ ε − = − 

 
                                      (5.18) 

 

 xy yx G
x y
η ξ

τ τ
∂ ∂ += =  ∂ ∂ 

 

 zy yz G
y z
ζ η

τ τ
∂ ∂ += =  ∂ ∂ 

 

xz zx G
z x
ξ ζτ τ ∂ ∂ = = + 
∂ ∂ 

                                           (5.19) 

 

[Proof] Derivation of Eqs. (5.17) & (5.18) 

(5.15) →e = ( )( )1
1 2 x y znE

σ σ σ+ +−                           (A) 

(5.12) → ( )1
y zx x n

E
σ σε σ + = −                                    (B) 

(5.14) →
2(1 )

EG
n

=
+

 → 2 (1 )E G n= +                          (C) 
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i) Combine (A) and (B)  

( ) ( )
( ) ( ) ( )

( )

1 2
1 2 1 2

1

x y z x y z

y zx x

n n nne
E En n

n
E

σ σ σ σ σ σ

σ σε σ

− + + + +× = =
+ −+
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1

1 2 x x
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En
ε σ+
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−

                                

 

( )1 1 2xx
nE e

n n
εσ  +∴ =  + − 

                                 (D) 

Substitute (C) into (D) 

( )
2

1 2xx
n eG

n
εσ  +∴ =  − 

     →  Eq. (5.17) 

 

ii) Subtract (5.16) from (5.17) 

( ) ( )12
31 2 x y zxx

n eG
n

σ σ σεσ σ   + ++− = − − 
                (E) 

Substitute (A) into (E); 
( )1 2x y z

E e
n

σ σ σ+ + =
−

 

( ) ( )
1( ) 2
31 2 1 2

x
n EeRHS of E G e

n n
ε +∴ = − − − 
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( )

( ) ( ) ( )
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x x

nGn G n nG e G e
n n n n

ε ε
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( )

( )

1
1 22 3

1 2x

nG e
n

ε

 − −=  +
 − 

12
3xG eε = − 

 
   → Eq. (5.18)
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5.3 Relations between Stress and Rate of Strain for Newtonian Fluids 

Experimental evidence suggests that, 

→ 

in fluid, stress is linear with time rate of strain.  

( )stress strain
t
∂

∝
∂

 

→ Newtonian fluid (Newton's law of viscosity) 

[Cf]  For solid,  

 stress strain∝  

 

5.3.1 Normal stress 

 For solid, Eq. (5.18) can be used as 

Hookeian elastic solid: 
2

2
3x x
eF

L
σ σ ε  − = −  

  
 

 

By analogy, 

Newtonian fluid: 
2

2
3x x
eFt

tL
σ σ ε

∂   − = −   ∂   
                  (5.20) 

 

Now set  2

Ft
L

µ ≡  = 

Then,  

dynamic viscosity 

22
3

x
x

e
t t
εσ σ µ µ∂ ∂

− = −
∂ ∂

                               (5.21) 

 

 

By the way, 

Time rate of strain 

G 
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,x e
x
ξε δ∂

= = ∇⋅
∂


 

 

Therefore, 

x u
t t x xx t
ε ξ ξ∂ ∂ ∂ ∂∂ ∂   = = =   ∂ ∂ ∂ ∂∂ ∂   

      (5.22) 

e u v wq
t t x y z

δ∂ ∂ ∂ ∂ ∂
= ∇ ⋅ = ∇ ⋅ = + +

∂ ∂ ∂ ∂ ∂




     (5.23) 

 

 

 

 

Eq. (5.21) becomes 

( )22
3x

u
qx

σ σ µ µ∂
= + − ∇ ⋅

∂


 

 

For compressible fluid, 

( )22
3x

u
qx

σ σ µ µ∂
= + − ∇ ⋅

∂


 

( )22
3y

v
qy

σ σ µ µ∂
= + − ∇ ⋅

∂


 

( )22
3z

w
qz

σ σ µ µ∂
= + − ∇ ⋅

∂


                                 (5.24) 

 

 

, , ( , , displacement)u v w
t x t
ξ η ζ ξ η ζ∂ ∂ ∂

= = = =
∂ ∂ ∂

 

i j kδ ξ η ζ= + +
   

 

q ui v j wk
t
δ∂

= = + +
∂


   

 

u v wq
x y z
∂ ∂ ∂

∇ ⋅ = + +
∂ ∂ ∂
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For incompressible fluid,  

0de q
dt

=∇ ⋅ =


 ← time rate of volume expansion=0 

0q→∇⋅ =


 → Continuity Eq.  

 

Therefore, Eq. (5.24) becomes 

2x
u
x

σ σ µ ∂= +
∂

 

2y
v
y

σ σ µ ∂
= +

∂
 

2z
w
z

σ σ µ ∂= +
∂

 

 

5.3.2. Shear stress 

By following the same analogy 

2xy
FtG

x y x ytL
η ξ η ξ

τ
∂ ∂ ∂ ∂∂    + += =     ∂ ∂ ∂ ∂∂    

  

v u
x yx t y t

η ξµ µ
∂ ∂∂ ∂ ∂  ∂    += + =    ∂ ∂∂ ∂ ∂ ∂    

                                  

 

 

 

µ
 

v
t
η∂
=

∂
 u

t
ξ∂
=

∂
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xy yx

zy yz

xz zx

v u
x y

w v
y z

u w
z x

τ τ µ

τ τ µ

τ τ µ

∂ ∂ += =  ∂ ∂ 
∂ ∂ += =  ∂ ∂ 
∂ ∂ = = + 
∂ ∂ 

      (5.25) 

 

[Appendix 1] 

xy yx
v u
x y

τ τ µ
∂ ∂ += =  ∂ ∂ 

 

 

 

 

 

 

 

 

i) , 'xy xyτ τ  
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ii) , 'yx yxτ τ  

 

 

 

 

 

iii) composition 

 

 

 

 

 

▪ Relation between thermodynamic pressure p  and mean normal stress σ  

1) Assume µviscous effects are completely represented by the viscosity  for  

incompressible fluid

( )1
3 x y zp σ σ σσ + += − =

  

                    (5.26) 

~ minus sign accounts for pressure (compression) 

 

2) For 

( )'p qσ µ= − + ∇ ⋅


compressible fluid 

 

in which  'µ  = 2nd coefficient of viscosity associated solely with dilation  

  = bulk viscosity  
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Since, dilation effect is small for most cases 

 ( )' 0qµ →∇ ⋅


  pσ∴ = −  

 

For zero-dilation viscosity effects ( 'µ  = 0), (5.24) becomes 

( )22
3x

up qx
σ µ µ∂  = − + − ∇ ⋅ ∂  


 

( )22
3y

vp qy
σ µ µ∂  = − + − ∇ ⋅ ∂  


  

( )22
3z

wp qz
σ µ µ∂  = − + − ∇ ⋅ ∂  


                                   (5.29) 

 

 

 

■ Shear stresses in a real fluid 

xy yx
v u
x y

τ τ µ
∂ ∂ += =  ∂ ∂ 

 

yz zy
w v
y z

τ τ µ
∂ ∂ += =  ∂ ∂ 

 

xz zx
u w
z x

τ τ µ ∂ ∂ = = + 
∂ ∂ 

                                     (5.30) 

 

For zero viscous effects ( )0µ = → inviscid fluids in motion and for all fluids at rest 

x y z pσ σ σ σ= = = = −  

0xy yz zxτ τ τ= = =  

Normal 
stress pressure 

Viscous 
effects 
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[Appendix 2] Bulk viscosity and thermodynamic pressure  

→ Boundary-Layer Theory (Schlichting, 1979) pp. 61-63 

 

 

 

 

 

 

 

( )'p qσ µ= − + ∇ ⋅


 

If fluid is compressed, expanded or made to oscillate at a finite rate, work done in a 

thermodynamically reversible process per unit volume is 

deW p q P
dt

= ∇ ⋅ =


  ~ dissipation of energy 

where 'µ = bulk viscosity of fluid that represents that property which is responsible for 

energy dissipation in a fluid of uniform temperature during a change in volume at a finite rate  

= second property of a compressible, isotropic, Newtonian fluid  

[Cf] µ  = shear viscosity = first property 

      

' 0 , pµ σ= = −  

' 0 , pµ σ≠ ≠ −  

 

Direct measurement of bulk viscosity is very difficult. 
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[Appendix 3] Normal stress 

Normal stress = pressure + deviation from it  

'x xpσ σ= − +  

'y ypσ σ= − +  

'z zpσ σ= − +  

 

Thus, stress matrix becomes  

 

'0 0
'0 0

'0 0

x xy xz

yx y yz

zx zy z

p
p

p

σ τ τ
τ σ τ
τ τ σ

−   
   +−      −   

 

 

Normal stresses are proportional to the volume change (compressibility) and corresponding 

components of linear deformation

 

, a, b, c.  

Thus, 

( )

( )

( )

2

2

2

x

y

z

p aa b c

p ba b c

p ca b c

σ λ µ

σ λ µ

σ λ µ

= − + ++ +

= − + ++ +

= − + ++ +

 

where λ = compressibility coefficient 
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Homework Assignment # 3 

Due: 1 week from today 

 

5-1. Verify Eq. (5-14) 

2(1 )
EG

n
=

+ .
 

 

 

5-3. Consider a fluid element under a general state of stress as illustrated in Fig. 5-1. Given 

that the element is in a gravity field, show that the equilibrium requirement between surface, 

body and inertial forces leads to the equations 

yxx zx
x xg a

x y z
τσ τ ρ ρ
∂∂ ∂

+ + + =
∂ ∂ ∂

 

xy y xy
y yg a

x y x
τ σ τ

ρ ρ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

 

yzxz z
xg a

x y z
ττ σ ρ ρ
∂∂ ∂

+ + + =
∂ ∂ ∂

x 
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