Chapter 6 Equations of Continuity and Motion

- Derivation of 3-D Eq.

6.1 Continuity Equation

Consider differential (infinitesimal) control volume ($\Delta x \Delta y \Delta z$)
[Cf] Finite control volume - arbitrary CV \rightarrow integral form equation

Apply principle of conservation of matter to the CV
\rightarrow sum of net flux = time rate change of mass inside C.V.

1) mass flux per unit time

$$
=\frac{\text { mass }}{\text { time }}=\rho \frac{\text { vol }}{\text { time }}=\rho Q=\rho u \Delta A
$$

- net flux through face perpendicular to x-axis

$$
\begin{aligned}
& =\text { flux in -flux out } \\
& =\rho u \Delta y \Delta z-\left(\rho u+\frac{\partial(\rho u)}{\partial x} \Delta x\right) \Delta y \Delta z=-\frac{\partial(\rho u)}{\partial x} \Delta x \Delta y \Delta z
\end{aligned}
$$

- net flux through face perpendicular to y-axis

$$
=-\frac{\partial(\rho v)}{\partial y} \Delta x \Delta y \Delta z
$$

- net flux through face perpendicular to Z-axis

$$
\begin{equation*}
=-\frac{\partial(\rho w)}{\partial z} \Delta x \Delta y \Delta z \tag{A}
\end{equation*}
$$

2) time rate change of mass inside C.V.

$$
\begin{equation*}
=\frac{\partial}{\partial t}(\rho \Delta x \Delta y \Delta z) \tag{B}
\end{equation*}
$$

Thus, equating (A) and (B) gives

$$
\frac{\partial}{\partial t}(\rho \Delta x \Delta y \Delta z)=-\frac{\partial(\rho u)}{\partial x} \Delta x \Delta y \Delta z-\frac{\partial(\rho v)}{\partial y} \Delta x \Delta y \Delta z-\frac{\partial(\rho w)}{\partial z} \Delta x \Delta y \Delta z
$$

$$
L H S=\frac{\partial}{\partial t}(\rho \Delta x \Delta y \Delta z)=\rho \frac{\partial}{\partial t}(\Delta x \Delta y \Delta z)+\Delta x \Delta y \Delta z \frac{\partial \rho}{\partial t}
$$

Since C.V. is fixed $\rightarrow \frac{\partial(\Delta x \Delta y \Delta z)}{\partial t}=0$
$\therefore \quad L H S=\Delta x \Delta y \Delta z \frac{\partial \rho}{\partial t}=0$

Cancelling terms makes

$$
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0
$$

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \vec{q}=0 \tag{6.1}
\end{equation*}
$$

\rightarrow Continuity Eq. for compressible fluid in unsteady flow (point form)

The $2^{\text {nd }}$ term of Eq. (6.1) can be expressed as

(I): $\vec{q} \nabla \rho=(u \vec{i}+v \vec{j}+w \vec{k})\left(\frac{\partial \rho}{\partial x} \vec{i}+\frac{\partial \rho}{\partial y} \vec{j}+\frac{\partial \rho}{\partial \mathrm{z}} \vec{k}\right)$

$$
\begin{align*}
& \text { gradient }=u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z} \\
& \text { (II): } \rho \nabla \cdot \vec{q}=\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \\
& \therefore \nabla \cdot(\rho \vec{q})=u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \tag{i}
\end{align*}
$$

Substituting (i) into Eq (6.1) yields

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)=0 \\
& \frac{d \rho}{d t} \tag{6.2a}\\
& \frac{d \rho}{d t}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)=0
\end{align*}
$$

$$
\begin{equation*}
\frac{d \rho}{d t}+\rho(\nabla \cdot \vec{q})=0 \tag{6.2b}
\end{equation*}
$$

[Re] Total derivative (total rate of density change)

$$
\begin{aligned}
& \frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial x} \frac{d x}{d t}+\frac{\partial \rho}{\partial y} \frac{d y}{d t}+\frac{\partial \rho}{\partial z} \frac{d z}{d t} \\
& =\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}
\end{aligned}
$$

1) For steady-state conditions

$$
\rightarrow \quad \frac{\partial \rho}{\partial t}=0
$$

Then (6.1) becomes

$$
\begin{equation*}
\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=\nabla \cdot(\rho \vec{q})=0 \tag{6.3}
\end{equation*}
$$

2) For incompressible fluid (whether or not flow is steady)

$$
\rightarrow \quad \frac{d \rho}{d t}=0
$$

Then (6.2) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=\nabla \cdot \vec{q}=0 \tag{6.5}
\end{equation*}
$$

[Re] Continuity equation derived using a finite CV method
Eq. (4.5a):

$$
\begin{equation*}
\int_{C V} \frac{\partial \rho}{\partial t} d V+\oint_{C S} \rho \vec{q} \cdot d \vec{A}=0 \tag{4.5}
\end{equation*}
$$

\rightarrow volume-averaged (integrated) form

- Gauss' theorem:
volume integral \leftrightarrow surface integral
- reduce dimensions by 1 ($3 \mathrm{D} \rightarrow 2 \mathrm{D}$)

$$
\int_{V}(\nabla \cdot \vec{X}) d V=\int_{A} \vec{X} \cdot d \vec{A}
$$

Thus,

$$
\oint_{C S} \rho \vec{q} \cdot d \vec{A}=\int_{C V} \nabla \cdot(\rho \vec{q}) d V
$$

Eq. (4.5) becomes

$$
\int_{C V} \frac{\partial \rho}{\partial t} d V+\int_{C V} \nabla \cdot(\rho \vec{q}) d V=\int_{C V}\left(\underline{\frac{\partial \rho}{\partial t}}+\nabla \cdot(\rho \vec{q})\right) d V=0
$$

Since integrands must be equal.

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{q})=0
$$

\rightarrow same as Eq. (6.1) \rightarrow point form
[Cf] 1D Continuity equation in 1-D

$$
\begin{aligned}
& \int \frac{\partial \rho}{\partial t} d A+\int \frac{\partial \rho u}{\partial x} d A=0 \\
& \frac{\partial}{\partial t} \int \rho d A+\frac{\partial}{\partial x} \int \rho u d A=0
\end{aligned}
$$

For incompressible fluid flow

where $V=$ cross-sectional average velocity

$$
\therefore \frac{\partial A}{\partial t}+\frac{\partial V A}{\partial x}=0
$$

Consider lateral inflow/outflow

$$
\frac{\partial A}{\partial t}+\frac{\partial V A}{\partial x}=\int_{\sigma} q d \sigma
$$

where q = flow through σ

For steady flow; $\frac{\partial A}{\partial t}=0$

$$
\begin{aligned}
& \therefore \quad \frac{\partial V A}{\partial x}=0 \\
& V A=\text { const. }=Q
\end{aligned}
$$

[Re] Continuity equation in polar (cylindrical) coordinates
u, r - radial
$v, \theta-$ azimuthal
w, z - axial
For compressible fluid of unsteady flow

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial(\rho u r)}{\partial r}+\frac{1}{r} \frac{\partial(\rho v)}{\partial \theta}+\frac{\partial(\rho w)}{\partial z}=0
$$

For incompressible fluid

$$
\frac{1}{r} \frac{\partial(u r)}{\partial r}+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}=0
$$

For incompressible fluid and flow of axial symmetry

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=0, \quad \frac{\partial \rho}{\partial r}=\frac{\partial \rho}{\partial \theta}=\frac{\partial \rho}{\partial z}=0, \quad \frac{\partial(\rho v)}{\partial \theta}=0 \\
& \therefore \frac{1}{r} \frac{\partial(u r)}{\partial r}+\frac{\partial w}{\partial z}=0 \rightarrow \text { 2-D boundary layer flow }
\end{aligned}
$$

Example: submerged jet

[Re] Green's Theorem

1) Transformation of double integrals into line integrals

$$
\begin{aligned}
& \iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y=\oint_{C}\left(F_{1} d x+F_{2} d y\right) \\
& \iint_{R}(\operatorname{curl} \vec{F}) \cdot \vec{k} d x d y=\oint_{C} \vec{F} \cdot d \vec{r} \\
& \vec{F}=F_{1} \vec{i}+F_{2} \vec{j}
\end{aligned}
$$

2) 1st form of Green's theorem

$$
\iiint_{T}\left(f \nabla^{2} g+\operatorname{grad} f \cdot \operatorname{grad} g\right) d V=\iint_{S} f \frac{\partial g}{\partial n} d A
$$

3) 2nd form of Green's theorem

$$
\iiint_{T}\left(f \nabla^{2} g+g \nabla^{2} f\right) d V=\iint_{S}\left(f \frac{\partial g}{\partial n}-g \frac{\partial f}{\partial x}\right) d A
$$

[Re] Divergence theorem of Gauss
\rightarrow transformation between volume integrals and surface integrals

$$
\iiint_{T} \operatorname{div} \vec{F} \quad d V=\iint_{S} \vec{F} \cdot \vec{n} d A
$$

Where $\quad n=$ outer unit normal vector of S

$$
\begin{aligned}
& \vec{F}=F_{1} \vec{i}+F_{2} \vec{j}+F_{3} \vec{k} \\
& \vec{n}=\cos \alpha \vec{i}+\cos \beta \vec{j}+\cos \gamma \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \iiint_{T}\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x d y d z \\
& =\iint_{S}\left(F_{1} \cos \alpha+F_{2} \cos \beta+F_{3} \cos \gamma\right) d A
\end{aligned}
$$

By the way

$$
\begin{aligned}
& \iint_{S} \vec{F} \cdot \vec{n} d A=\iint_{S}\left(F_{1} d y d z+F_{2} d z d x+F_{3} d x d y\right) \\
& \therefore \iiint_{T}\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x d y d z \\
& \quad=\iint_{S}\left(F_{1} d y d z+F_{2} d z d x+F_{3} d x d y\right)
\end{aligned}
$$

6.2 Stream Function in 2-D, Incompressible Flows

2-D incompressible continuity eq. is

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{6.7}
\end{equation*}
$$

Now, define stream function $\psi(x, y)$ as

$$
\left.\begin{array}{l}
u=-\frac{\partial \psi}{\partial y} \tag{6.8}\\
v=\frac{\partial \psi}{\partial x}
\end{array}\right] \begin{aligned}
& \psi=\int-u d y \\
& \psi=\int v d x
\end{aligned}
$$

Then LHS of Eq. (6.7) becomes

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}\left(-\frac{\partial \psi}{\partial y}\right)+\frac{\partial}{\partial y}\left(\frac{\partial \psi}{\partial x}\right)=-\frac{\partial^{2} \psi}{\partial x \partial y}+\frac{\partial^{2} \nLeftarrow}{\partial x \partial y}=0
$$

\rightarrow Thus, continuity equation is satisfied.

1) Apply stream function to the equation for a stream line in 2-D flow

Eq. (2.10): $v d x-u d y=0$

Substitute (6.8) into (6.11)

$$
\begin{align*}
& \frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y=d \psi=0 \tag{6.12}\\
& \psi=\text { constant } \tag{6.13}
\end{align*}
$$

\rightarrow The stream function is constant along a streamline.

2) Apply stream function to the law of conservation of mass

$$
\begin{equation*}
-q d n=-u d y+v d x \tag{6.14}
\end{equation*}
$$

Substitute (6.8) into (6.14)

$$
\begin{equation*}
-q d n=\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{\partial x} d x=d \psi \tag{6.15}
\end{equation*}
$$

\rightarrow Change in $\psi(d \psi)$ between adjacent streamlines is equal to the volume rate of flow per unit width.
3) Stream function in cylindrical coordinates

$$
\begin{aligned}
& v_{r}=-\frac{\partial \psi}{r \partial \theta} \quad \text { radial } \\
& v_{\theta}=\frac{\partial \psi}{\partial r} \quad \text { azimuthal }
\end{aligned}
$$

6.3 Rotational and Irrotational Motion

6.3.1 Rotation and vorticity

Assume the rate of rotation of fluid element Δx and Δy about Z-axis is positive when it rotates counterclockwise.

- time rate of rotation of Δx-face about Z-axis

$$
=\frac{1}{\Delta t} \frac{\left[\left\{v+\left(\frac{\partial v}{\partial x}\right) \Delta x\right\}-v\right] \Delta t}{\Delta x}=\frac{\partial v}{\partial x}
$$

- time rate of rotation of Δy-face about Z-axis

$$
=-\frac{1}{\Delta t} \frac{\left[u+\left(\frac{\partial u}{\partial y} \Delta y\right)-u\right] \Delta t}{\Delta y}=-\frac{\partial u}{\partial y}
$$

net rate of rotation $=$ average of sum of rotation of Δx-and Δy-face

$$
\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$

Doing the same way for x-, and y-axis

$$
\begin{align*}
& \omega_{x}=\frac{1}{2}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \\
& \omega_{y}=\frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \tag{6.16a}
\end{align*}
$$

1) Rotation

$$
\begin{align*}
& \vec{\omega}=\frac{1}{2}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \vec{i}+\frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \vec{j}+\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \vec{k} \\
& =\frac{1}{2}(\nabla \times \vec{q})=\frac{1}{2} \operatorname{curl} \vec{q} \tag{6.16b}
\end{align*}
$$

Magnitude:

$$
|\vec{\omega}|=\sqrt{\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}}
$$

a) Ideal fluid \rightarrow irrotational flow

$$
\begin{align*}
& \nabla \times \vec{q}=0 \\
& \omega_{x}=\omega_{y}=\omega_{z}=0 \\
& \frac{\partial w}{\partial y}=\frac{\partial v}{\partial z}, \quad \frac{\partial u}{\partial z}=\frac{\partial w}{\partial x}, \quad \frac{\partial v}{\partial x}=\frac{\partial u}{\partial y} \tag{6.17}
\end{align*}
$$

b) Viscous fluid \rightarrow rotational flow

$$
\nabla \times \vec{q} \neq 0
$$

2) Vorticity

$$
\vec{\zeta}=\operatorname{curl} \vec{q}=\nabla \times \vec{q}=2 \vec{\omega}
$$

[Re] Rotation in cylindrical coordinates

$$
\begin{aligned}
& \omega_{r}=\frac{1}{2}\left(\frac{1}{r} \frac{\partial v_{z}}{\partial \theta}-\frac{\partial v_{\theta}}{\partial z}\right) \\
& \omega_{\theta}=\frac{1}{2}\left(\frac{\partial v_{r}}{\partial z}-\frac{\partial v z}{\partial r}\right) \\
& \omega_{z}=\frac{1}{2}\left(-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}+\frac{v_{\theta}}{r}+\frac{\partial v_{\theta}}{\partial r}\right)
\end{aligned}
$$

6.3.2 Circulation

$\Gamma=$ line integral of the tangential velocity component about any closed contour S

$$
\begin{equation*}
\Gamma=\oint \vec{q} \cdot d \vec{s} \tag{6.19}
\end{equation*}
$$

- take line integral from A to B, C, D, A ~ infinitesimal CV

$$
\begin{align*}
& d \Gamma \cong\left[u-\frac{\partial u}{\partial y} \frac{d y}{2}\right] d x+\left[v+\frac{\partial v}{\partial x} \frac{d x}{2}\right] d y-\left[u+\frac{\partial u}{\partial y} \frac{d y}{2}\right] d x-\left[v-\frac{\partial v}{\partial x} \frac{d x}{2}\right] d y \\
&=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y \\
& d \Gamma \cong\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y \\
& \Gamma=\iint_{A}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d A=\iint_{A} 2 \omega_{z} d A=\iint_{A}(\nabla \times \vec{q})_{z} d A \tag{6.20}
\end{align*}
$$

For irrotational flow,
circulation $\Gamma=0$ (if there is no singularity vorticity source).
[Re] Fluid motion and deformation of fluid element
Motion $\left\{\begin{array}{l}\text { translation } \\ \text { rotation }\end{array}\right.$

Deformation $\left\{\begin{array}{l}\text { linear deformation } \\ \text { angular deformation }\end{array}\right.$
(1) Motion

1) Translation: ξ, η

2) Rotation \leftarrow Shear flow

(2) Deformation
3) Linear deformation - normal strain

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\partial \xi}{\partial x} \\
& \varepsilon_{y}=\frac{\partial \eta}{\partial y}
\end{aligned}
$$

i) For compressible fluid, changes in temperature or pressure cause change in volume.
ii) For incompressible fluid, if length in 2-D increases, then length in another 1-D decreases in order to make total volume unchanged.
2) Angular deformation- shear strain

$$
\gamma_{x y}=\frac{\partial \eta}{\partial x}+\frac{\partial \xi}{\partial x}
$$

6.4 Equations of Motion

STRESS-STRAIN RELATIONS

- Apply Newton's 2nd law of motion

$$
\begin{equation*}
\sum \vec{F}=m \vec{a} \tag{A}
\end{equation*}
$$

$$
\Delta F_{x}=\Delta m a_{x}
$$

- External forces $=$ surface force + body force
- Surface force:
~ normal force + tangential force
- Body forces:
\sim due to gravitational or electromagnetic fields, no contact
\sim act at the centroid of the element \rightarrow centroidal force
Consider only gravitational force

$$
\vec{g}=\vec{i} g_{x}+\vec{j} g_{y}+\vec{k} g_{z}
$$

LHS of (A):

$$
\begin{array}{rlr}
\Delta F_{x} & =(\rho \Delta x \Delta y \Delta z) g_{x} & \text { body force } \\
& -\sigma_{x} \Delta y \Delta z+\left(\sigma_{x}+\frac{\partial \sigma_{x}}{\partial x} \Delta x\right) \Delta y \Delta z & \text { normal force } \\
& -\tau_{y x} \Delta x \Delta z+\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \Delta y\right) \Delta x \Delta z & \\
& -\tau_{z x} \Delta x \Delta y+\left(\tau_{z x}+\frac{\partial \tau_{z x}}{\partial z} \Delta z\right) \Delta x \Delta y & \text { tangential force }
\end{array}
$$

Divide (B) by volume of element

$$
\begin{equation*}
\frac{\Delta F_{x}}{\Delta x \Delta y \Delta z}=\rho g_{x}+\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z} \tag{C}
\end{equation*}
$$

RHS of (A):

$$
\begin{equation*}
\frac{\Delta m a_{x}}{\Delta x \Delta y \Delta z}=\rho a_{x} \tag{D}
\end{equation*}
$$

Combine (C) and (D)

$$
\begin{align*}
& \rho g_{x}+\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}=\rho a_{x} \\
& \rho g_{y}+\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}=\rho a_{y} \\
& \rho g_{z}+\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}=\rho a_{z} \tag{6.21}
\end{align*}
$$

6.4.1 Navier-Stokes equations

- Eq (6.21) ~ general equation of motion
- For Newtonian fluids (with single viscosity coeff.), use stress-strain relation given in (5.29) and (5.30)
\rightarrow Navier-Stokes equations

Eq. (5.29):

$$
\sigma_{x}=\underline{-p}+2 \mu \frac{\partial u}{\partial x}-\left(\frac{2}{3}\right) \mu(\nabla \cdot \vec{q})
$$

pressure normal stress due to fluid deformation and viscosity

$$
\begin{aligned}
& \sigma_{y}=-p+2 \mu \frac{\partial v}{\partial y}-\left(\frac{2}{3}\right) \mu(\nabla \cdot \vec{q}) \\
& \sigma_{z}=-p+2 \mu \frac{\partial w}{\partial z}-\left(\frac{2}{3}\right) \mu(\nabla \cdot \vec{q})
\end{aligned}
$$

Eq. (5.30):

$$
\begin{aligned}
& \tau_{y x}=\tau_{x y}=\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \\
& \tau_{y z}=\tau_{z y}=\mu\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right) \\
& \tau_{z x}=\tau_{x z}=\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)
\end{aligned}
$$

Substitute Eqs. (5.29) \& (5.30) into (6.21)
$\rho g_{x}-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}\left[2 \mu \frac{\partial u}{\partial x}-\frac{2}{3} \mu(\nabla \cdot \vec{q})\right]+\frac{\partial}{\partial y}\left[\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]+\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)\right]=\rho a_{x}$

Assume constant viscosity (neglect effect of pressure and temperature on viscosity variation)

$$
\begin{aligned}
& \qquad \rho g_{x}-\frac{\partial p}{\partial x}+\mu \frac{\partial}{\partial x}\left[2 \frac{\partial u}{\partial x}-\frac{2}{3}(\nabla \cdot \vec{q})\right]+\mu \frac{\partial}{\partial y}\left[\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]+\mu \frac{\partial}{\partial z}\left[\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)\right]=\rho a_{x} \\
& \text { Expand and simplify }
\end{aligned} \frac{\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}}{}
$$

$$
\left.\left.\begin{array}{rl}
L . H . S= & \rho g_{x}-\frac{\partial p}{\partial x}+2 \mu \frac{\partial^{2} u}{\partial x^{2}}-\frac{2}{3} \mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial x \partial y}+\frac{\partial^{2} w}{\partial x \partial z}\right)+\mu\left(\frac{\partial^{2} v}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}+\frac{\partial^{2} w}{\partial x \partial z}\right) \\
& =\rho g_{x}-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]+\frac{1}{3} \mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial x \partial y}+\frac{\partial^{2} w}{\partial x \partial z}\right) \\
& =\rho g_{x}-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]+\frac{1}{3} \mu \frac{\partial}{\partial x}(\nabla \cdot \vec{q}) \\
& \rho g_{x}-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]+\frac{1}{3} \mu \frac{\partial u}{\partial x}(\nabla \cdot \vec{q})=\rho a_{x} \\
& \rho g_{y}-\frac{\partial p}{\partial y}+\mu\left[\frac{\partial w}{\partial z}\right) \\
& \rho g_{z}-\frac{\partial p}{\partial z}+\mu\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right]+\frac{1}{3} \mu \frac{\partial}{\partial y}(\nabla \cdot \vec{q})=\rho a_{y} \\
\partial y^{2} \tag{6.24}
\end{array}\right) \frac{\partial^{2} w}{\partial z^{2}}\right]+\frac{1}{3} \mu \frac{\partial}{\partial z}(\nabla \cdot \vec{q})=\rho a_{z} \quad, ~(6.24)
$$

\rightarrow Navier-Stokes equation for compressible fluids with constant viscosity

- Vector form

$$
\rho \vec{g}-\nabla p+\mu \nabla^{2} \vec{q}+\frac{\mu}{3} \nabla(\nabla \cdot \vec{q})=\rho \frac{\partial \vec{q}}{\partial t}+\rho(\vec{q} \cdot \nabla) \vec{q}
$$

where $\vec{a}=\frac{d \vec{q}}{d t}=\frac{\partial \vec{q}}{\partial t}+(\vec{q} \cdot \nabla) \vec{q} \quad--$ Eq. (2.5)

1) For inviscid (ideal) fluid flow, $(\mu=0) \rightarrow$ viscous forces are neglected.
$\rho \vec{g}-\nabla p=\rho \frac{\partial \vec{q}}{\partial t}+\rho(\vec{q} \cdot \nabla) \vec{q}$
\rightarrow Euler equations for ideal fluid
2)_For incompressible fluids, $\nabla \cdot \vec{q}=0 \quad$ (Continuity Eq.)

$$
\begin{equation*}
\rho \vec{g}-\nabla p+\mu \nabla^{2} \vec{q}=\rho \frac{\partial \vec{q}}{\partial t}+\rho(\vec{q} \cdot \nabla) \vec{q} \tag{6.25}
\end{equation*}
$$

Define acceleration due to gravity as

$$
\left.\begin{array}{l}
g_{x}=-g \frac{\partial h}{\partial x} \\
g_{y}=-g \frac{\partial h}{\partial y} \\
g_{z}=-g \frac{\partial h}{\partial z}
\end{array}\right\} \quad \vec{g}=-g \nabla h
$$

where $h=$ vertical direction measured positive upward
For Cartesian axes oriented so that h and Z coincide

$$
\begin{aligned}
& g_{x}=g_{y}=0 \quad, \quad \frac{\partial h}{\partial z}=1 \\
& g_{z}=-g
\end{aligned}
$$

\rightarrow minus sign indicates that acceleration due to gravity is in the negative h direction Then, N -S equation for incompressible fluids and isothermal flows are

Eq. (6.28): unknowns - u, v, w, p
\rightarrow We need one more equation to obtain a solution when the boundary conditions are specified.
\rightarrow Eq. of continuity for incompressible fluid

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
$$

- Boundary conditions

1) kinematic BC: velocity normal to any rigid boundary (wall) equal the boundary velocity (velocity $=0$ for stationary boundary)
2) physical BC: no slip condition (continuum stick to a rigid boundary)
\rightarrow tangential velocity relative to the wall vanish at the wall surface

- General solutions for Navier-Stocks equations are not available because of the nonlinear, 2nd-order nature of the partial differential equations.
\rightarrow Only particular solutions may be obtained by simplifications.
\rightarrow Numerical solutions are usually sought.
- Navier-Stocks equations in cylindrical coordinates for constant density and viscosity
r - component:

$$
\begin{aligned}
& \rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v_{r}}{\partial z}\right) \\
& =\rho g_{r}-\frac{\partial p}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left\{\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)\right\}+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right]
\end{aligned}
$$

θ - component:

$$
\begin{aligned}
& \rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}-\frac{v_{r} v_{\theta}}{r}+v_{z} \frac{\partial v_{\theta}}{\partial z}\right) \\
& =\rho g_{\theta}-\frac{1}{r} \frac{\partial p}{\partial \theta}+\mu\left[\frac{\partial}{\partial r}\left\{\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)\right\}+\frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta}+\frac{\partial^{2} v_{\theta}}{\partial z^{2}}\right]
\end{aligned}
$$

Z - component:

$$
\begin{aligned}
& \rho\left(\frac{\partial v_{z}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right) \\
& =\rho g_{z}-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]
\end{aligned}
$$

Continuity eq. for incompressible fluid

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(v_{z}\right)=0
$$

Normal \& shear stresses for constant density and viscosity

$$
\begin{aligned}
& \sigma_{r}=-p+2 \mu \frac{\partial v_{r}}{\partial r} \\
& \sigma_{\theta}=-p+2 \mu\left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r}}{r}\right) \\
& \sigma_{z}=-p+2 \mu \frac{\partial v_{z}}{\partial z} \\
& \tau_{r \theta}=\mu\left[r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right] \\
& \tau_{\theta z}=\mu\left[\frac{\partial v_{\theta}}{\partial z}+\frac{1}{r} \frac{\partial v_{z}}{\partial \theta}\right] \\
& \tau_{z r}=\mu\left[\frac{\partial v_{r}}{\partial z}+\frac{\partial v_{z}}{\partial r}\right]
\end{aligned}
$$

6.5 Examples of Laminar Motion

- N-S equations are important in viscous flow problems.
- Laminar motion
~ orderly state of flow in which macroscopic fluid particles move in layers
\sim viscosity effect is dominant
- Laminar flow through a tube (pipe) of constant diameter
\sim instantaneous velocity at any point is always unidirectional (along the axis of the tube)
~ no-slip condition @ boundary wall
~ apply concept of the Newtonian viscosity
\sim velocity gradient gives rise to viscous force within the fluid
\sim low Re
[Re] Reynolds number = inertial force $/$ viscous force $=$ destabilizing force $/$ stabilizing force
- Viscous force
~ dissipative
\sim have a stabilizing or damping effect on the motion
~ use Reynolds number
[Cf] Turbulent flow
~ unstable flow
\sim instantaneous velocity is no longer unidirectional
\sim destabilizing force $>$ stabilizing force
\sim high Re

6.5.1 Laminar flow between parallel plates

Consider the two-dimensional, steady, laminar flow between parallel plates in which either of two surfaces is moving at constant velocity and there is also an external pressure gradient.

- Assumptions:

$$
\begin{array}{ll}
\text { 2-D flow } & \rightarrow v=0 ; \frac{\partial(~)}{\partial y}=0 \\
\text { steady flow } & \rightarrow \frac{\partial(~)}{\partial t}=0 \\
\text { parallel flow } & \rightarrow w=0 ; \frac{\partial w}{\partial(~)}=0 \\
z \text {-axis coincides with } h \rightarrow \frac{\partial h}{\partial x}=\frac{\partial h}{\partial y}=0 ; \frac{\partial h}{\partial z}=1
\end{array}
$$

- External pressure gradient

$$
p_{1}>p_{2}
$$

i) $\frac{\partial p}{\partial x}<0 \rightarrow$ pressure gradient $\underline{\text { assists }}$ the viscously induced motion to overcome the
shear force at the lower surface

Continuity eq. for two-dimensional, parallel flow:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0 \\
& \rightarrow\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}=0 \\
u=f(z) \text { only }
\end{array}\right.
\end{aligned}
$$

N-S Eq.:

$$
\begin{align*}
& z-\operatorname{dir} .: \frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z} \\
& =-g \frac{\partial h}{\partial z}-\frac{1}{\rho} \frac{\partial p}{\partial z}+\frac{\mu}{\rho}\left[\frac{\partial^{2} \not W}{\partial x^{2}}+\frac{\partial^{2} \not W}{\partial y^{2}}+\frac{\partial^{2} \not W}{\partial z^{2}}\right] \\
& \therefore \quad 0=-g-\frac{1}{\rho} \frac{\partial p}{\partial z} \tag{6.31b}
\end{align*}
$$

(6.31b): $\frac{\partial p}{\partial z}=-\rho g=-\gamma$

$$
\begin{equation*}
\therefore \quad p=-\gamma z+f(x) \tag{6.32}
\end{equation*}
$$

\rightarrow hydrostatic pressure distribution normal to flow
\rightarrow For any orientation of Z -axis. in case of a parallel flow, pressure is distributed hydrostatically in a direction normal to the flow.
(6.31a): $\quad \frac{\partial p}{\partial x} \rightarrow \frac{d p}{d x} \sim$ independent of z

$$
\therefore \quad \frac{d p}{d x}=\mu \frac{\partial^{2} u}{\partial \mathrm{z}^{2}} \quad \begin{align*}
& \text { Energy loss due to } \tag{A}\\
& \text { viscosity }
\end{align*}
$$

Integrate (A) twice w.r.t. Z

$$
\begin{align*}
& \iint \frac{d p}{d x} d z d z=\iint \mu \frac{\partial^{2} u}{\partial z^{2}} d z d z \\
& \int \frac{d p}{d x} z d z=\int \mu \frac{\partial u}{\partial z} d z+\int C_{1} d z \\
& \frac{d p}{d x} \frac{z^{2}}{2}=\mu u+C_{1} z+C_{2} \tag{6.33}
\end{align*}
$$

Use the boundary conditions,
i) $z=0, \quad u=0 \rightarrow \frac{d p}{d x} \times 0=\mu(0)+C_{2} \quad \therefore C_{2}=0$
ii) $z=h, \quad u=U \rightarrow \frac{d p}{d x} \frac{a^{2}}{2}=\mu U+C_{1} a$
$\therefore C_{1}=\frac{1}{a}\left(\frac{d p}{d x} \frac{a^{2}}{2}-\mu U\right)$
\therefore (6.33) becomes

$$
\begin{aligned}
& \frac{d p}{d x} \frac{z^{2}}{2}=\mu u+\frac{1}{a}\left(\frac{d p}{d x} \frac{a^{2}}{2}-\mu U\right) z \\
& \therefore \quad \mu u=\frac{z}{a} \mu U-\frac{d p}{d x}\left(\frac{a z}{2}-\frac{z^{2}}{2}\right)
\end{aligned}
$$

i) If $\frac{d p}{d x}=0 \rightarrow$ Couette flow (plane Couette flow)

$$
u=\frac{U}{a} Z
$$

\rightarrow driving mechanism $=U$ (velocity)

ii) If $U=0 \rightarrow$ 2-D Poiseuille flow (plane Poiseuille flow)

$$
u=\frac{1}{2 \mu} \frac{d p}{d x}(z-a) z \sim \text { parabolic }
$$

\rightarrow driving mechanism $=$ external pressure gradient, $\frac{d p}{d x}$

$u_{\max } @ z=\frac{a}{2}$

$$
u_{\max }=-\frac{a^{2}}{8 \mu} \frac{d p}{d x}
$$

V = average velocity
$=\frac{Q}{A}=\frac{2}{3} u_{\max }=-\frac{a^{2}}{12 \mu} \frac{d p}{d x}$
[Re] detail

$$
\begin{aligned}
& Q=\int_{0}^{a} u d z=\int_{0}^{a} \frac{1}{2 \mu} \frac{d p}{d x}\left(z^{2}-a z\right) d z=-\frac{1}{12 \mu} \frac{d p}{d x} a^{3} \\
& A=a \times 1 \quad \therefore V=\frac{Q}{A}=-\frac{a^{2}}{12 \mu} \frac{d p}{d x}=\frac{2}{3} u_{\max }
\end{aligned}
$$

6.5.2 Laminar flow in a circular tube of constant diameter

\rightarrow Hagen-Poiseuille flow

$$
\frac{\partial p}{\partial x}<0
$$

\rightarrow Poiseuille flow: steady laminar flow due to pressure drop along a tube

Assumptions:

- use cylindrical coordinates

$$
\text { paraboloid } \quad \rightarrow \frac{\partial v_{z}}{\partial \theta}=0
$$

$$
\text { steady flow } \quad \rightarrow \frac{\partial v_{z}}{\partial t}=0
$$

Eq. (6.29c) becomes

$$
\begin{equation*}
0=-\underline{\frac{\partial p}{\partial z}+\rho g_{z}}+\mu \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right) \tag{A}
\end{equation*}
$$

By the way,

$$
\begin{gathered}
-\frac{\partial p}{\partial z}+\rho g_{z}=-\frac{\partial}{\partial z}(p+\gamma h)=-\frac{d}{d z}(p+\gamma h) \\
{\left[\rho g_{z}=-\rho g \frac{\partial h}{\partial z}\right] \quad \text { independent of } r}
\end{gathered}
$$

$$
\begin{aligned}
& r-\text { comp. Eq. } \rightarrow \\
& 0=-\frac{1}{\rho} \frac{\partial p}{\partial r}+g_{r} \\
& \rightarrow \frac{\partial}{\partial r}(p+\gamma r)=0
\end{aligned}
$$

Then (A) becomes

$$
\begin{align*}
& \frac{d}{d z}(p+\gamma h)=\mu \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right) \\
& \frac{1}{\mu} \frac{d}{d z}(p+\gamma h) r=\frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right) \tag{B}
\end{align*}
$$

Integrate (B) twice w.r.t. r

$$
\begin{align*}
& \frac{1}{\mu} \frac{d}{d z}(p+\gamma h) \frac{r^{2}}{2}=r \frac{\partial v_{z}}{\partial r}+C_{1} \tag{C}\\
& \frac{1}{2 \mu} \frac{d}{d z}(p+\gamma h) r=\frac{\partial v_{z}}{\partial r}+\frac{C_{1}}{r} \\
& \frac{1}{2 \mu} \frac{d}{d z}(p+\gamma h) \frac{r^{2}}{2}=v_{z}+C_{1} \ln r+C_{2} \tag{D}
\end{align*}
$$

Using BCs

$$
\begin{array}{ll}
r=0, v_{z}=v_{z_{\max }} & \rightarrow \\
(\mathrm{C}): \quad C_{1}=0 \tag{D1}\\
r=r_{0}, v_{z}=0 & \rightarrow \\
& (\mathrm{D}): \quad C_{2}=\frac{1}{2 \mu} \frac{d}{d z}(p+\gamma h) \frac{r_{0}{ }^{2}}{2}
\end{array}
$$

Then, substitute (D1) into (D) to obtain v_{z}

$$
\begin{align*}
\therefore \quad v_{z} & =\frac{1}{4 \mu}\left[-\frac{d}{d z}(p+\gamma h)\right]\left(r_{0}^{2}-r^{2}\right) \\
v_{z} & =-\frac{d}{d z}(p+\gamma h) \frac{r_{0}^{2}}{4 \mu}\left[1-\left(\frac{r}{r_{0}}\right)^{2}\right] \tag{6.39}
\end{align*}
$$

$$
\rightarrow \text { equation of a paraboloid of revolution }
$$

(1) maximum velocity, $V_{z_{\max }}$

$$
\begin{aligned}
& v_{z_{\max }} @ r=0 \\
& v_{z_{\max }}=-\frac{d}{d z}(p+\gamma h) \frac{r_{0}^{2}}{4 \mu}
\end{aligned}
$$

(2) mean velocity, V_{z}

$$
\begin{aligned}
& d Q=v_{z} d A \\
= & \frac{1}{4 \mu}\left[-\frac{d}{d z}(p+\gamma h)\right]\left(r_{0}^{2}-r^{2}\right) 2 \pi r d r \\
Q= & \int_{0}^{r_{0}} \frac{1}{4 \mu}\left[-\frac{d}{d z}(p+\gamma h)\right]\left(r_{0}^{2}-r^{2}\right) 2 \pi r d r \\
= & \frac{\pi}{2 \mu}\left[-\frac{d}{d z}(p+\gamma h)\right]\left[r_{0}^{2} \frac{r^{2}}{2}-\frac{r^{4}}{4}\right]_{r}^{r_{0}}=\frac{\pi r_{0}^{4}}{8 \mu}\left[-\frac{d}{d z}(p+\gamma h)\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad V_{z}=\frac{Q}{A}=\frac{Q}{\pi r_{0}^{2}}=\frac{r_{0}^{2}}{8 \mu}\left[-\frac{d}{d z}(p+\gamma h)\right]=\frac{v_{z_{\max }}}{2} \tag{E}
\end{equation*}
$$

[Cf] For 2 - D Poiseuille flow $V=\frac{2}{3} u_{\text {max }}$
(3) Head loss per unit length of pipe

Total head $=$ piezometric head + velocity head
Here, velocity head is constant.
Thus, total head = piezometric head

$$
\frac{h_{f}}{L} \equiv \frac{1}{\gamma}\left[-\frac{d}{d z}(p+\gamma h)\right]=\frac{8 \mu V_{z}}{\gamma r_{0}^{2} \underbrace{}_{\text {(E) }}}=\frac{32 \mu V_{z}}{\gamma D^{2}}
$$

where $D=2 r_{0}=$ diameter
[Re] Consider Darcy-Weisbach Eq.

$$
\begin{equation*}
\frac{h_{f}}{L}=f \frac{1}{D} \frac{V_{z}^{2}}{2 g} \tag{F}
\end{equation*}
$$

$h_{f}=$ head loss due to friction

$$
f=\text { friction factor }
$$

Combine (6.42) and (F)

$$
\begin{aligned}
& \frac{32 \mu V_{z}}{\gamma D^{2}}=f \frac{1}{D} \frac{V_{z}^{2}}{2 g} \\
& f=\frac{64}{V_{z}} \frac{v}{D}=\frac{64}{V_{z} D / v}=\frac{64}{\operatorname{Re}} \quad \rightarrow \text { For laminar flow }
\end{aligned}
$$

(4) Shear stress

$$
\begin{equation*}
\tau_{z r}=\mu\left(\frac{\partial v / r}{\partial z}+\frac{\partial v_{z}}{\partial r}\right)=\mu \frac{\partial v_{z}}{\partial r} \tag{G}
\end{equation*}
$$

Differentiate (6.39) w.r.t. r

$$
\begin{equation*}
\frac{\partial v_{z}}{\partial r}=\frac{d}{d z}(p+\gamma h) \frac{1}{2 \mu} r \tag{H}
\end{equation*}
$$

Combine (G) and (H)

$$
\begin{equation*}
\tau_{z r}=\frac{1}{2} \frac{d}{d z}(p+\gamma h) r \tag{6.45}
\end{equation*}
$$

At center and walls

$$
\begin{aligned}
& r=0, \quad \tau_{z r}=0 \\
& r=r_{0}, \quad \tau_{z r}=\frac{1}{2} \frac{d}{d z}(p+\gamma h) r_{0}=\tau_{z r_{\max }}
\end{aligned}
$$

6.6 Equations for Irrotational Motion

- Newton's 2nd law \rightarrow Momentum eq. \rightarrow Eq. of motion
- In Ch. 4, 1st law of thermodynamics \rightarrow 1D Energy eq.
\Rightarrow Bernoulli eq. for steady flow of an incompressible fluid with zero friction (ideal fluid)
\circ In Ch. 6, Eq. of motion \rightarrow Bernoulli eq.

Integration assuming irrotational flow

- Irrotational flow = Potential flow

6.6.1 Velocity potential and stream function

If $\phi(x, y, z, t)$ is any scalar quantity having continuous first and second derivatives, then by a fundamental vector identity

$$
\begin{equation*}
\rightarrow \operatorname{curl}(\operatorname{grad} \phi) \equiv \nabla \times(\nabla \phi) \equiv 0 \tag{6.46}
\end{equation*}
$$

[Detail] vector identity

$$
\begin{aligned}
& \operatorname{grad} \phi=\frac{\partial \phi}{\partial x} \vec{i}+\frac{\partial \phi}{\partial y} \vec{j}+\frac{\partial \phi}{\partial z} \vec{k} \\
& \operatorname{curl}(\operatorname{grad} \phi)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z}
\end{array}\right| \\
& =\vec{i}\left(\frac{\partial \phi^{2}}{\partial y \partial z} /-\frac{\partial \phi^{2}}{\partial y \partial z}\right)+\vec{j}\left(\frac{\partial \phi^{2}}{\partial z \partial z}-\frac{\partial \phi^{2}}{\partial z \partial x}\right)+\vec{k}\left(\frac{\partial \phi^{2}}{\partial x \partial y}-\frac{\partial \phi^{2}}{\partial x \partial y}\right) \Rightarrow 0 \\
& 6-37
\end{aligned}
$$

By the way, for irrotational flow
Eq.(6.17): $\quad \underline{\nabla \times \vec{q}=0}$

Thus, from (6.46) and (A), we can say that for irrotational flow there must exist a scalar function ϕ whose gradient is equal to the velocity vector \vec{q}.

$$
\begin{equation*}
\operatorname{grad} \phi=\vec{q} \tag{B}
\end{equation*}
$$

Now, let's define the positive direction of flow is the direction in which ϕ is decreasing, then

$$
\begin{equation*}
\vec{q}=-\operatorname{grad} \phi(x, y, z, t)=-\nabla \phi \tag{6.47}
\end{equation*}
$$

where $\phi=$ velocity potential

$$
\begin{equation*}
u=-\frac{\partial \phi}{\partial x}, v=-\frac{\partial \phi}{\partial y}, w=-\frac{\partial \phi}{\partial z} \tag{6.47a}
\end{equation*}
$$

\rightarrow Velocity potential exists only for irrotational flows; however stream function is not subject to this restriction.
\rightarrow irrotational flow = potential flow for both compressible and incompressible fluids
(1) Continuity equation for incompressible fluid

Eq. (6.5): $\quad \nabla \cdot \vec{q}=0$
(C)

Substitute (6.47) into (C)

$$
\begin{array}{ll}
\therefore \nabla \cdot(-\nabla \phi)=-\nabla^{2} \phi=0 & \rightarrow \text { Laplace Eq. } \\
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 & \leftarrow \text { Cartesian coordinates } \\
\nabla^{2} \phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 & \leftarrow \text { Cylindrical coordinates }
\end{array}
$$

[Detail] velocity potential in cylindrical coordinates

$$
v_{r}=-\frac{\partial \phi}{\partial r}, v_{\theta}=-\frac{\partial \phi}{r \partial \theta}, v_{z}=-\frac{\partial \phi}{\partial z}
$$

(2) For 2-D incompressible irrotational motion

- Velocity potential

$$
\begin{aligned}
& u=-\frac{\partial \phi}{\partial x} \\
& v=-\frac{\partial \phi}{\partial y}
\end{aligned}
$$

- Stream function: Eq. (6.8)

$$
\left.\begin{array}{rl}
u= & -\frac{\partial \psi}{\partial y} \\
v= & \frac{\partial \psi}{\partial x} \\
& \therefore \frac{\partial \psi}{\partial y}=\frac{\partial \phi}{\partial x} \tag{6.51}\\
& \frac{\partial \psi}{\partial x}=-\frac{\partial \phi}{\partial y}
\end{array}\right\} \rightarrow \text { Cauchy-Riemann equation }
$$

Now, substitute stream function, (6.8) into irrotational flow, (6.17)
Eq. (6.17): $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} \quad \leftarrow[$ rotation $=0 \quad \nabla \times \vec{q}=0]$

$$
\begin{equation*}
\therefore-\frac{\partial^{2} \psi}{\partial y^{2}}=\frac{\partial^{2} \psi}{\partial x^{2}} \rightarrow \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0 \quad \rightarrow \text { Laplace eq. } \tag{D}
\end{equation*}
$$

Also, for 2-D flow, velocity potential satisfies the Laplace eq.

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{E}
\end{equation*}
$$

\rightarrow Both ϕ and ψ satisfy the Laplace eq. for 2-D incompressible irrotational motion.
$\rightarrow \phi$ and ψ may be interchanged.
\rightarrow Lines of constant ϕ and ψ must form an orthogonal mesh system
\rightarrow Flow Net

(3) Flow net analysis

Along a streamline, $\psi=$ constant.
Eq. for a streamline, Eq. (2.10)

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{y=\text { const. }}=\frac{v}{u} \tag{6.54}
\end{equation*}
$$

Along lines of constant velocity potential
$\rightarrow d \phi=0$

$$
\begin{align*}
& d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=0 \tag{F}\\
& \left.\frac{d y}{d x}\right|_{\phi=\text { const. }}=-\frac{\partial \phi / \partial x}{\partial \phi / \partial y}=-\frac{u}{v}
\end{align*}
$$

From Eqs. (6.54) and (6.55)

$$
\begin{equation*}
\left.\frac{d y}{d x}\right|_{\psi=\text { const. }}=-\left.\frac{d x}{d y}\right|_{\phi=\text { const. }} \tag{6.56}
\end{equation*}
$$

\rightarrow Slopes are the negative reciprocal of each other.
\rightarrow Flow net analysis (graphical method) can be used when a solution of the Laplace equation is difficult for complex boundaries.
[Appendix I] Typical potential flow systems

1. Uniform flow

$$
\begin{aligned}
& \rightarrow \\
& u \rightarrow \quad u=\frac{\partial \phi}{\partial x}=U \\
& \rightarrow \\
& \therefore \phi=U x+\text { const. } \quad \text { 1-D } \\
& \phi=U(l x+m y+n z) \quad \text { 3-D }
\end{aligned}
$$

where $l, m, n=$ directional unit vectors
2. Source or Sink

let $\phi=-\frac{M}{R}$ (spherical source)

$$
M=\text { strength of sink or source }\left(m^{3} / s\right)
$$

$$
u=\frac{\partial \phi}{\partial R} \text { (spherical coordinates) }=\frac{M}{R^{2}}
$$

$$
v=w=0
$$

3. Doublet

\rightarrow sink plus source with the distance between, $d \rightarrow 0$

4. Vortex

In cylindrical coordinate: let $\phi=k \theta$

$$
\left\{\begin{array}{l}
u=0 \\
v=-\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{k}{r} \\
w=0
\end{array}\right.
$$

By the way $\left\{\begin{array}{l}v=-\frac{\partial \psi}{\partial r} \\ \psi=-\int \frac{k}{r} d r=-k \ln r+C\end{array}\right.$

$$
\Gamma=\oint v d s=\int_{0}^{2 \pi} v r d \theta=2 \pi k(\because \text { singularity at the origin })
$$

[Appendix II] Potential flow problem
Find velocity potential $\phi\left\{\begin{array}{l}\text { Find } \psi \rightarrow \text { Find flow pattern } \\ \text { Find velocity } \\ \text { Find kinetic energy }\end{array}\right\} \xrightarrow{\sim}$ Find pressure, force
Bernoulli eq.
6.6.2 The Bernoulli equation for irrotational incompressible fluids
(1) For irrotational incompressible fluids

Substitute Eq. (6.17) into Eq. (6.28)

Eq. (6.17) : $\left.\quad \nabla \times \vec{q}=0 \quad \begin{array}{l}\frac{\partial w}{\partial y}=\frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial z}=\frac{\partial w}{\partial x} \\ \frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}\end{array}\right\} \quad$ irrotational flow

Eq. (6.28): Navier-Stokes eq. (x-comp.) for incompressible fluid

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}+\frac{v^{2}}{2}+\frac{w^{2}}{2}\right)=-g \frac{\partial h}{\partial x}-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\mu}{\rho} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \tag{6.57}
\end{align*}
$$

Substitute $q^{2}=u^{2}+v^{2}+w^{2}$ and continuity eq. for incompressible fluid into Eq. (6.57)
Continuity eq., Eq. (6.5): $\quad \nabla \cdot \vec{q}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
Then, viscous force term can be dropped.

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{q^{2}}{2}\right)=-g \frac{\partial h}{\partial x}-\frac{1}{\rho} \frac{\partial p}{\partial x} \\
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left[\frac{q^{2}}{2}+g h+\frac{p}{\rho}\right]=0 & \rightarrow x-E q . \\
y-E q . & \frac{\partial v}{\partial t}+\frac{\partial}{\partial y}\left[\frac{q^{2}}{2}+g h+\frac{p}{\rho}\right]=0 \\
z-E q . & \frac{\partial w}{\partial t}+\frac{\partial}{\partial z}\left[\frac{q^{2}}{2}+g h+\frac{p}{\rho}\right]=0 \tag{6.59}
\end{array}
$$

Introduce velocity potential

$$
u=-\frac{\partial \phi}{\partial x}, v=-\frac{\partial \phi}{\partial y}, w=-\frac{\partial \phi}{\partial z}
$$

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial^{2} \phi}{\partial t \partial x}, \quad \frac{\partial v}{\partial t}=-\frac{\partial^{2} \phi}{\partial t \partial y}, \quad \frac{\partial w}{\partial t}=-\frac{\partial^{2} \phi}{\partial t \partial z} \tag{A}
\end{equation*}
$$

Substituting (A) into (6.59) yields

$$
\begin{array}{ll}
\frac{\partial}{\partial x}\left[-\frac{\partial \phi}{\partial t}+\frac{q^{2}}{2}+g h+\frac{p}{\rho}\right]=0 & x-E q . \\
\frac{\partial}{\partial y}\left[-\frac{\partial \phi}{\partial t}+\frac{q^{2}}{2}+g h+\frac{p}{\rho}\right]=0 & y-E q . \\
\frac{\partial}{\partial z}\left[-\frac{\partial \phi}{\partial t}+\frac{q^{2}}{2}+g h+\frac{p}{\rho}\right]=0 & z-E q . \tag{B}
\end{array}
$$

Integrating (B) leads to Bernoulli eq.

$$
\begin{equation*}
-\frac{\partial \phi}{\partial t}+\frac{q^{2}}{2}+g h+\frac{p}{\rho}=F(t) \tag{6.60}
\end{equation*}
$$

\sim valid throughout the entire field of irrotational motion

For a steady flow; $\frac{\partial \phi}{\partial t}=0$

$$
\begin{equation*}
\frac{q^{2}}{2}+g h+\frac{p}{\rho}=\text { const } \tag{6.61}
\end{equation*}
$$

\rightarrow Bernoulli eq. for a steady, irrotational flow of an incompressible fluid

Dividing (6.61) by g (acceleration of gravity) gives the head terms

$$
\begin{align*}
& \frac{q^{2}}{2 g}+h+\frac{p}{\gamma}=\text { const. } \\
& \frac{q_{1}^{2}}{2 g}+h_{1}+\frac{p_{1}}{\gamma}=\frac{q_{2}^{2}}{2 g}+h_{2}+\frac{p_{2}}{\gamma}=H \tag{6.62}
\end{align*}
$$

$H=$ total head at a point; constant for entire flow field of irrotational motion (for both along and normal to any streamline)
\rightarrow point form of 1- D Bernoulli Eq. for negligible friction
p, $H, q=$ values at particular point \rightarrow point values in flow field
[Cf] Eq. (4.26)

$$
\frac{p_{1}}{\gamma}+h_{1}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+h_{2}+\frac{V_{2}^{2}}{2 g}=H
$$

$H=$ constant along a stream tube
\rightarrow 1-D form of 1-D Bernoulli eq.
$p, h, V=$ cross-sectional average values at each section \rightarrow average values
-Assumptions made in deriving Eq. (6.62)
\rightarrow incompressibility + steadiness + irrotational motion+ constant viscosity (Newtonian fluid)

In Eq. (6.57), viscosity term dropped out because $\nabla \cdot \vec{q}=0$ (continuity Eq.).
\rightarrow Thus, Eq. (6.62) can be applied to either a viscous or inviscid fluid.

- Viscous flow

Velocity gradients result in viscous shear.
\rightarrow Viscosity causes a spread of vorticity (forced vortex).
\rightarrow Flow becomes rotational.
$\rightarrow H$ in Eq. (6.62) varies throughout the fluid field.
\rightarrow Irrotational motion takes place only in a few special cases (irrotational vortex).

-Irrotational motion can never become rotational as long as only gravitational and pressure
force acts on the fluid particles (without shear forces).
\rightarrow In real fluids, nearly irrotational flows may be generated if the motion is primarily a
result of pressure and gravity forces.
[Ex] free surface wave motion generated by pressure forces (Fig. 6.8)
flow over a weir under gravity forces (Fig. 6.9)

FIG. 6-8. Wave generation by pressure forces.

-Vortex motion
i) Forced vortex - rotational flow
\sim generated by the transmission of tangential shear stresses
\rightarrow rotating cylinder
ii) Free vortex - irrotational flow
\sim generated by the gravity and pressure
\rightarrow drain in the tank bottom, tornado, hurricane

Figure 5.2 Constant pressure surfaces in a solid-body rotation generated in a rotating tank containing
liquid.

-Boundary layer flow (Ch. 8)
i) Flow within thin boundary layer - viscous flow- rotational flow
\rightarrow use boundary layer theory
ii) Flow outside the boundary layer - irrotational (potential) flow
\rightarrow use potential flow theory

6.7 Equations for Frictionless Flow

6.7.1 The Bernoulli equation for flow along a streamline

For inviscid flow $(\mu=0)$
\rightarrow Assume no frictional (viscous) effects but compressible fluid flows
\rightarrow Bernoulli eq. can be obtained by integrating Navier-Stokes equation along a streamline.
Eq. (6.24a): $\quad N$-S eq. for compressible fluid ($\mu=0$)

$$
\begin{align*}
& \rho \vec{g}-\nabla p+\mu \nabla^{2} \vec{q}+\frac{\mu}{z} \nabla(\nabla \cdot \vec{q})=\rho \frac{\partial \vec{q}}{\partial t}+\rho(\vec{q} \cdot \nabla) \vec{q} \\
& \vec{g}-\frac{\nabla p}{\rho}=\frac{\partial \vec{q}}{\partial t}+(\vec{q} \cdot \nabla) \vec{q} \tag{6.63}
\end{align*}
$$

\rightarrow Euler's equation of motion for inviscid (ideal) fluid flow

Substituting (6.26a) into (6.63) leads to

$$
\begin{equation*}
-g \nabla h-\frac{\nabla p}{\rho}=\frac{\partial \vec{q}}{\partial t}+(\vec{q} \cdot \nabla) \vec{q} \tag{6.64}
\end{equation*}
$$

Multiply $d \vec{r}$ (element of streamline length) and integrate along the streamline

$$
\begin{aligned}
& -g \int \nabla h \cdot d \vec{r}-\int \frac{1}{\rho} \nabla p \cdot d \vec{r}=\int\left(\frac{\partial \vec{q}}{\partial t}\right) \cdot d \vec{r}+\int[(\vec{q} \cdot \nabla) \vec{q}] \cdot d \vec{r}+C(t) \\
& -g h-\int \frac{d p}{\rho}=\int\left(\frac{\partial \vec{q}}{\partial t}\right) \cdot d \vec{r}+\int \frac{[(\vec{q} \cdot \nabla) \vec{q}] \cdot d \vec{r}}{}+C(t) \\
& I=[(\vec{q} \cdot \nabla) \vec{q}] \cdot d \vec{r}=d \vec{r} \cdot[(\vec{q} \cdot \nabla) \vec{q}]=\vec{q} \cdot[(d \vec{r} \cdot \nabla) \vec{q}] \\
& \mathrm{II}
\end{aligned}
$$

By the way,

$$
\begin{aligned}
& I I=d \vec{r} \cdot \nabla=\frac{\partial()}{\partial x} d x+\frac{\partial()}{\partial y} d y+\frac{\partial()}{\partial z} d z \\
& \therefore(d \vec{r} \cdot \nabla) \vec{q}=\frac{\partial \vec{q}}{\partial x} d x+\frac{\partial \vec{q}}{\partial y} d y+\frac{\partial \vec{q}}{\partial z} d z=d \vec{q} \\
& I=\vec{q} \cdot d \vec{q}=d\left(\frac{q^{2}}{2}\right) \\
& \therefore \int[(\vec{q} \cdot \nabla) \vec{q}] \cdot d \vec{r}=\int d\left(\frac{q^{2}}{2}\right)=\frac{q^{2}}{2}
\end{aligned}
$$

Thus, Eq. (6.66) becomes

$$
\begin{equation*}
\int \frac{d p}{\rho}+g h+\frac{q^{2}}{2}+\int\left(\frac{\partial q}{\partial t}\right) \cdot d \vec{r}=-C(t) \tag{6.67}
\end{equation*}
$$

For steady motion, $\frac{\partial \vec{q}}{\partial t}=0 ; C(t) \rightarrow C$

$$
\begin{equation*}
\int \frac{d p}{\rho}+g h+\frac{q^{2}}{2}=\text { const. along a streamline } \tag{6.68}
\end{equation*}
$$

For incompressible fluids, $\rho=$ const.

$$
\frac{p}{\rho}+g h+\frac{q^{2}}{2}=\text { const } .
$$

Divide by g

$$
\begin{equation*}
\frac{p}{\gamma}+h+\frac{q^{2}}{2 g}=C \quad \text { along a streamline } \tag{6.69}
\end{equation*}
$$

\rightarrow Bernoulli equation for steady, frictionless, incompressible fluid flow
\rightarrow Eq. (6.69) is identical to Eq. (6.22). Constant C is varying from one streamline to another in a rotational flow, Eq. (6.69); it is invariant throughout the fluid for irrotational flow, Eq. (6.22).

6.7.2 Summary of Bernoulli equation forms

- Bernoulli equations for steady, incompressible flow

1) For irrotational flow

$$
\begin{equation*}
H=\frac{p}{\gamma}+h+\frac{q^{2}}{2 g}=\text { constant throughout the flow field } \tag{6.62}
\end{equation*}
$$

2) For frictionless flow (rotational)

$$
\begin{equation*}
H=\frac{p}{\gamma}+h+\frac{q^{2}}{2 g}=\text { constant along a streamline } \tag{6.69}
\end{equation*}
$$

3) For 1-D frictionless flow (rotational)

$$
\begin{equation*}
H=\frac{p}{\gamma}+h+K e \frac{V^{2}}{2 g}=\text { constant along finite pipe } \tag{4.25}
\end{equation*}
$$

4) For steady flow with friction
\sim include head loss h_{L}

$$
\frac{p_{1}}{\gamma}+h_{1}+\frac{q_{1}^{2}}{2 g}=\frac{p_{2}}{\gamma}+h_{2}+\frac{q_{2}^{2}}{2 g}+h_{L}
$$

6.7.3 Applications of Bernoulli's equation to flows of real fluids

(1) Efflux from a short tube

1) Zone of viscous action (boundary layer): frictional effects cannot be neglected.
2) Flow in the reservoir and central core of the tube: primary forces are pressure and gravity forces. \rightarrow irrotational flow

Apply Bernoulli eq. along the centerline streamline between (0) and (1)

$$
\begin{align*}
& \frac{p_{0}}{\gamma}+z_{0}+\frac{q_{0}^{2}}{2 g}=\frac{p_{1}}{\gamma}+z_{1}+\frac{q_{1}^{2}}{2 g} \\
& p_{0}=\text { hydrostatic pressure }=\gamma d_{0}, \quad p_{1}=p_{\text {atm }} \rightarrow p_{1_{\text {gage }}}=0 \\
& z_{0}=z_{1} \\
& q_{0}=0 \quad \text { (neglect velocity at the large reservoir) } \\
& \therefore \frac{q_{1}^{2}}{2 g}=d_{0} \\
& q_{1}=\sqrt{2 g d_{0}} \rightarrow \text { Torricelli's result } \tag{6.74}
\end{align*}
$$

If we neglect thickness of the zone of viscous influence

$$
Q=\frac{\pi D^{2}}{4} q_{1}
$$

(2) Stratified flow

During summer months, large reservoirs and lakes become thermally stratified.
\rightarrow At thermocline, temperature changes rapidly with depth.

- Selective withdrawal: Colder water is withdrawn into the intake channel with a velocity q_{1} (uniform over the height b_{1}) in order to provide cool condenser water for thermal (nuclear) power plant.

Apply Bernoulli eq. between points (0) and (1)

$$
\begin{aligned}
& \frac{p_{0}}{\gamma}+a_{0}+\frac{q_{0}^{2}}{2 g}=\frac{p_{1}}{\gamma}+b_{1}+\frac{q_{1}^{2}}{2 g} \\
& q_{0} \cong 0 \\
& p_{0}=\text { hydrostatic pressure }=(\gamma-\Delta \gamma)\left(d_{0}-a_{0}\right) \\
& p_{1}=\gamma\left(d_{0}-\Delta h-b_{1}\right) \\
& \therefore \frac{q_{1}^{2}}{2 g}=\Delta h-\frac{\Delta \gamma}{\gamma}\left(d_{0}-a_{0}\right)
\end{aligned}
$$

$$
\begin{equation*}
q_{1}=\left[2 g\left\{\Delta h-\frac{\Delta \gamma}{\gamma}\left(d_{0}-a_{0}\right)\right\}\right]^{\frac{1}{2}} \tag{6.77}
\end{equation*}
$$

For isothermal (unstratified) case, $a_{0}=d_{0}$

$$
q_{1}=\sqrt{2 g \Delta h} \quad \rightarrow \text { Torricelli's result }
$$

(3) Velocity measurements with the Pitot tube (Henri Pitot, 1732)
\rightarrow Measure velocity from stagnation or impact pressure

$$
\begin{aligned}
& \frac{p_{0}}{\gamma}+h_{0}+\frac{q_{0}^{2}}{2 g}=\frac{p_{s}}{\gamma}+h_{s}+\frac{q_{s}^{2 /}}{2 g} \\
& h_{0}=h_{s}, q_{s}=0 \\
& \therefore \frac{q_{0}^{2}}{2 g}=\frac{p_{s}-p_{0}}{\gamma}=\Delta h
\end{aligned}
$$

$$
q_{0}=\sqrt{2 g \Delta h}
$$

- Pitot-static tube

By the way,

$$
\begin{align*}
& p_{1}=p_{s}+\gamma \Delta h=p_{2}=p_{0}+\gamma_{m} \Delta h \\
& p_{s}-p_{0}=\Delta h\left(\gamma_{m}-\gamma\right) \tag{B}
\end{align*}
$$

Combine (A) and (B)

$$
q_{0}=\sqrt{\frac{2 \Delta h\left(\gamma_{m}-\gamma\right)}{\rho}}
$$

6.8 Vortex Motion

- vortex = fluid motion in which streamlines are concentric circles

For steady flow of an incompressible fluid, apply Navier-Stokes equations in cylindrical coordinates

Assumptions:

$$
\begin{aligned}
& \frac{\partial()}{\partial t}=0 \\
& v_{r}=0 ; \quad v_{z}=0 ; \quad \frac{\partial v_{\theta}}{\partial z}=0 \\
& \frac{\partial p}{\partial \theta}=0 \\
& \frac{\partial p}{\partial z}=\frac{\partial p}{\partial h} \quad(h=\text { vertical direction })
\end{aligned}
$$

Continuity Eq.: Eq. (6.30)

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(v_{\theta}\right)+\frac{\partial}{\partial z}\left(y_{z}\right)=0
$$

$$
\frac{1}{r} \frac{\partial}{\partial \theta}\left(v_{\theta}\right)=0 \rightarrow \frac{\partial v_{\theta}}{\partial \theta}=0
$$

Navier-Stokes Eq.: Eq. (6.29)

1) r-comp.

$$
\begin{align*}
& \rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v / r}{\partial z}\right) \\
& =-\frac{\partial p}{\partial r}+\mu\left\{\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left[r v_{r}\right]\right)+\frac{1}{r^{2}} \frac{\partial^{2} y_{r}}{\partial \partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v / \theta}{\partial \theta}+\frac{\partial^{2} y_{r}}{\partial z^{2}}\right\}+\rho \sigma_{r} \\
& \frac{v_{\theta}{ }^{2}}{r}=\frac{1}{\rho} \frac{\partial p}{\partial r} \tag{6.83a}
\end{align*}
$$

2) θ-comp.

$$
\begin{align*}
& \rho\left(\frac{\partial v / \theta}{\partial t}+y_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}-\frac{v_{r} y_{\theta}}{r}+y_{z} \frac{\partial v_{\theta}}{\partial z}\right) \\
& =-\frac{1}{r} \frac{\partial p}{\partial \theta}+\mu\left\{\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left[r v_{\theta}\right]\right)+\frac{1}{r^{2}} \frac{\partial^{2} y_{\theta}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v^{\prime} / r}{\partial \theta}+\frac{\partial^{2} y_{\theta}}{\partial z^{2}}\right\}+\rho \rho_{\theta} \\
& \therefore 0=\frac{\mu}{\rho} \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)\right] \tag{6.83b}
\end{align*}
$$

3) z-comp.

$$
\rho\left(\frac{\partial v / z}{\partial t}+y_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v / z}{\partial \theta}-\frac{v_{r} y / \theta}{r}+v_{z} \frac{\partial v / z}{\partial z}\right)
$$

$$
\begin{align*}
& =-\frac{\partial p}{\partial z}+\mu\left\{\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial y / z}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} y_{z}}{\partial \theta^{2}}+\frac{\partial^{2} y_{z}}{\partial z^{2}}\right\}+\rho g_{z} \\
& 0=-\frac{1}{\rho} \frac{\partial p}{\partial z}+g_{z}=-\frac{1}{\rho} \frac{\partial p}{\partial h}-g \tag{6.83c}
\end{align*}
$$

Integrate θ-Eq. w.r.t. r

$$
\begin{aligned}
& C_{1}=\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right) \\
& r C_{1}=\frac{\partial}{\partial r}\left(r v_{\theta}\right)
\end{aligned}
$$

Integrate again

$$
\left.\begin{array}{ll}
\frac{r^{2}}{2} C_{1}+C_{2}=r v_{\theta} & (A) \\
v_{\theta}=\frac{C_{1}}{2} r+\frac{C_{2}}{r} & (B)
\end{array}\right\} \text { need 2 BCs }
$$

z-Eq.

$$
\begin{aligned}
& \frac{\partial p}{\partial h}=-\rho g=-\gamma \\
& p=-\gamma h \quad \rightarrow \text { hydrostatic pressure distribution }
\end{aligned}
$$

6.8.1 Forced Vortex - rotational flow

Consider cylindrical container of radius R is rotated at a constant angular velocity $\underline{\Omega}$ about a vertical axis

Substitute BCs into Eq. (6.84)
i) $r=0, v_{\theta}=0 \quad \rightarrow(A): 0+C_{2}=0 \quad \therefore C_{2}=0$
ii) $r=R, v_{\theta}=R \Omega \quad \rightarrow(B): R \Omega=\frac{C_{1}}{2} R \quad \therefore C_{1}=2 \Omega$

Eq. (B) becomes

$$
v_{\theta}=\frac{2 \Omega}{2} r=\Omega r \quad \rightarrow \text { solid-body rotation }
$$

$$
\begin{equation*}
r-E q .: \frac{\Omega^{2} r^{2}}{r}=\frac{1}{\rho} \frac{\partial p}{\partial r} \quad \rightarrow \quad \frac{\partial p}{\partial r}=\rho \Omega^{2} r \tag{C}
\end{equation*}
$$

Integrate once

$$
p=\rho \Omega^{2} \frac{r^{2}}{2}-\gamma h+C_{3}
$$

Incorporate B.C. to decide C_{3}

$$
\begin{aligned}
& r=0 ; \quad h=h_{0} \text { and } p=p_{0} \\
& p_{0}=0-\gamma h_{0}+C_{3} \quad \therefore C_{3}=p_{0}+\gamma h_{0} \\
& p-p_{0}=\rho \frac{\Omega^{2} r^{2}}{2}-\gamma\left(h-h_{0}\right)
\end{aligned}
$$

At free surface

$$
p=p_{0}
$$

$$
h=h_{0}+\frac{\Omega^{2}}{2 g} r^{2} \quad \rightarrow \text { paraboloid of revolution }
$$

-Rotation components in cylindrical coordinates

Eq. (6.18):

$$
\begin{aligned}
& \begin{aligned}
\omega_{z} & =\frac{1}{2}\left(-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}+\frac{v_{\theta}}{r}+\frac{\partial v_{\theta}}{\partial r}\right) \\
& =\frac{1}{2}\left(\frac{r \Omega}{r}+\frac{\partial}{\partial r}(r \Omega)\right)=\frac{1}{2}(\Omega+\Omega)=\Omega
\end{aligned} \\
& \text { vorticity }=2 \omega_{z}=2 \Omega \neq 0
\end{aligned}
$$

\rightarrow rotational flow
\rightarrow Forced vortex is generated by the transmission of tangential shear stresses.

- Total head
$H=\frac{p}{\gamma}+h+\frac{v_{\theta}{ }^{2}}{2 g} \neq$ const.
\rightarrow increases with radius

6.8.2 Irrotational or free vortex

Free vortex: drain hole vortex, tornado, hurricane, morning glory spillway

For irrotational flow,

$$
\frac{p}{\gamma}+h+\frac{v_{\theta}^{2}}{2 g}=\text { const. } \quad \rightarrow \text { throughout the fluid field }
$$

Differentiate w.r.t r

$$
\begin{array}{l|l}
\frac{1}{\gamma} \frac{\partial p}{\partial r}+\frac{\partial h}{\partial r}+\frac{1}{g} v_{\theta} \frac{\partial v_{\theta}}{\partial r}=0 & \begin{array}{l}
z \text { coincides with } h \\
\left(\frac{\partial h}{\partial r}=\frac{\partial h}{\partial \theta}=0, \frac{\partial h}{\partial z}=1\right)
\end{array} \\
\therefore \frac{\partial p}{\partial r}=-\rho v_{\theta} \frac{\partial v_{\theta}}{\partial r} & \text { (A) } \tag{A}
\end{array}
$$

Eq (6.83a): r-Eq. of N-S Eq.

$$
\begin{equation*}
\frac{\partial p}{\partial r}=\rho \frac{v_{\theta}^{2}}{r} \tag{B}
\end{equation*}
$$

Equate (A) and (B)

$$
-\rho v_{\theta} \frac{\partial v_{\theta}}{\partial r}=\rho \frac{v_{\theta}^{2}}{r} \quad \rightarrow \quad-\frac{\partial v_{\theta}}{\partial r} r=v_{\theta}
$$

Integrate using separation of variables

$$
\begin{aligned}
& \int \frac{1}{v_{\theta}} \partial v_{\theta}=\int-\frac{1}{r} \partial r \\
& \ln v_{\theta}=-\ln r+C \\
& \ln v_{\theta}+\ln r=\ln \left(v_{\theta} r\right)=C \\
& v_{\theta} r=C_{4} \sim \text { constant angular momentum }
\end{aligned}
$$

$$
v_{\theta}=\frac{C_{4}}{r}
$$

[Cf] Forced vortex

$$
v_{\theta}=\Omega r
$$

-Radial pressure gradient
(B):

$$
\frac{\partial p}{\partial r}=\rho \frac{v_{\theta}^{2}}{r}=\rho \frac{\left(v_{\theta} r\right)^{2}}{r^{3}}=\rho \frac{C_{4}^{2}}{r^{3}}
$$

- Total derivative

$$
\frac{\partial p}{\partial h}=-\gamma
$$

$$
d p=\frac{\partial p}{\partial r} d r+\frac{\partial p}{\partial h} d h=\rho \frac{C_{4}^{2}}{r^{3}} d r-\gamma d h
$$

Integrate once

$$
\begin{equation*}
p=-\rho \frac{C_{4}^{2}}{2 r^{2}}-\gamma h+C_{5} \tag{6.93}
\end{equation*}
$$

B.C.: $r=\infty: h=h_{0}$ and $p=p_{0}$

Substitute B.C. into Eq. (6.93)

$$
\begin{aligned}
& p_{0}=-\gamma h_{0}+C_{5} \\
& C_{5}=p_{0}+\gamma h_{0}
\end{aligned}
$$

$$
\begin{equation*}
p-p_{0}=\gamma\left(h_{0}-h\right)-\rho \frac{C_{4}^{2}}{2 r^{2}} \tag{6.94}
\end{equation*}
$$

[Cf] Forced vortex: $p-p_{0}=\frac{\rho}{2} \Omega^{2} r^{2}+\gamma\left(h_{0}-h\right)$
-Locus of free surface is given when $p=p_{0}$

$$
h=h_{0}-\frac{C_{4}^{2}}{2 g r^{2}} \quad \rightarrow \text { hyperboloid of revolution }
$$

[Cf] Forced vortex: $h=h_{0}+\frac{\Omega^{2}}{2 g} r^{2}$
-Circulation

$$
\Gamma=\oint \vec{q} \cdot d \vec{s}=\int_{0}^{2 \pi} v_{\theta} r d \theta=r d \theta
$$

\rightarrow Even though flow is irrotational, circulation for a contour enclosing the origin is not zero because of the singularity point.
-Stream function, ψ

$$
C_{4}=\frac{\Gamma}{2 \pi}
$$

$$
\begin{align*}
& v_{\theta}=\frac{\partial \psi}{\partial r}=\frac{C_{4}}{r}=\frac{\Gamma}{2 \pi r} \\
& \psi=\frac{\Gamma}{2 \pi} \int \frac{d r}{r}=\frac{\Gamma}{2 \pi} \ln r \tag{6.97}
\end{align*}
$$

where $\Gamma=$ vortex strength

- Vorticity component ω_{z}

$$
\omega_{z}=-\frac{1}{r} \frac{\partial v / r}{\partial \theta}+\frac{v_{\theta}}{r}+\frac{\partial v_{\theta}}{\partial r}
$$

Substitute $v_{\theta}=\frac{C_{4}}{r}$

$$
\omega_{z}=\frac{C_{4}}{r^{2}}+\frac{\partial}{\partial r}\left(\frac{C_{4}}{r}\right)=\frac{C_{4}}{r^{2}}-\frac{C_{4}}{r^{2}}=0
$$

\rightarrow Irrotational motion

At $r=0$ of drain hole vortex, either fluid does not occupy the space or fluid is rotational (forced vortex) when drain in the tank bottom is suddenly closed.
\rightarrow Rankine combined vortex
\rightarrow fluid motion is ultimately dissipated through viscous action

FIGURE 4-28
Streamlines and velocity profiles for
(a) flow A, solid-body rotation and
(b) flow B, a line vortex. Flow A is rotational, but flow B is irrotational everywhere except at the origin.

FIGURE 4-29
A simple analogy: (a) rotational circular flow is analogous to a roundabout, while (b) irrotational circular flow is analogous to a Ferris wheel.
© Robb Gregg/PhotoEdit

Homework Assignment \# 4

Due: 1 week from today

6-4. Consider an incompressible two-dimensional flow of a viscous fluid in the $x y$-plane in which the body force is due to gravity. (a) Prove that the divergence of the vorticity vector is zero. (This expresses the conservation of vorticity, $\nabla \cdot \zeta=0$.) (b) Show that the NavierStokes equation for this flow can be written in terms of the vorticity as $d \zeta / d t=\nu \nabla^{2} \zeta$. (This is a "diffusion" equation and indicates that vorticity is diffused into a fluid at a rate which depends on the magnitude of the kinematic viscosity.) Note that $d \zeta / d t$ is the substantial derivative defined in Section 2-1.

6-5. Consider a steady, incompressible laminar flow between parallel plates as shown in Fig. 64 for the following conditions: $a=0.03 \mathrm{~m}, U=0.3 \mathrm{~m} / \mathrm{sec}, \quad \mu=0.476 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}^{2}$, $\partial p / \partial x=625 \mathrm{~N} / \mathrm{m}^{3}$ (pressure increases in $+x$-direction). (a) Plot the velocity distribution, u, in the z-direction. (b) In which direction is the net fluid motion? (c) Plot the distribution of shear stress $\tau_{z x}$ in the z-direction.

6-7. An incompressible liquid of density ρ and viscosity μ flows in a thin film down glass plate inclined at an angle α to the horizontal. The thickness, a, of the liquid film normal to the plate is constant, the velocity is everywhere parallel to the plate, and the flow is steady. Neglect viscous shear between the air and the moving liquid at the free surface. Determine the variation in longitudinal velocity in the direction normal to the plate, the shear stress at the plate, and the average velocity of flow.

6-11. Consider steady laminar flow in the horizontal axial direction through the annular space between two concentric circular tubes. The radii of the inner and outer tube are r_{1} and r_{2}, respectively. Derive the expression for the velocity distribution in the direction as a function of viscosity, pressure gradient $\partial p / \partial x$, and tube dimensions.

6-15. The velocity potential for a steady incompressible flow is given by $\Phi=(-a / 2)\left(x^{2}+2 y-z^{2}\right)$, where a is an arbitrary constant greater than zero. (a) Find the equation for the velocity vector $\vec{q}=\vec{i} u+\vec{j} v+\vec{k} w$. (b) Find the equation for the streamlines in the $x z \quad(y=0)$ plane. (c) Prove that the continuity equation is satisfied.

6-21. The velocity variation across the radius of a rectangular bend (Fig.6-22) may be approximated by a free vortex distribution $v_{\theta} r=$ const. Derive an expression for the pressure difference between the inside and outside of the bend as a function of the discharge Q, the fluid density ρ, and the geometric parameters R and b, assuming frictionless flow.

