Chapter 8 Origin of Turbulence and Turbulent Shear Stress

8.1 Introduction

8.1.1 Definition

- Hinze (1975): Turbulent fluid motion is an irregular condition of flow in which the various quantities show a random variation with time and space coordinates, so that statistically distinct average values can be discerned.

FIGURE 8-20
Fluctuations of the velocity component u with time at a specified location in turbulent flow.

- Types of turbulence

Wall turbulence: turbulence generated and continuously affected by actual physical boundary such as solid walls

Free turbulence: absence of direct effect of walls, turbulent jet \rightarrow AEH II

8.1.2 Origin of turbulence

(1) Shear flow instability

Figure 12.18 Nonlinear numerical calculation of the evolution of a vortex sheet that has been given a small sinusoidal displacement of wavelength λ. The density difference across the interface is zero, and U_{0} is the velocity difference across the sheet. J. S. Turner, Buoyancy Effects in Fluids, 1973 and reprinted with the permission of Cambridge University Press.

Figure 5.7. Vortex stretching, folding, sheetification.
Smaller size
[Reprinted with permission from J. Bell and D. Marcus, Comm. Math. Phys. 147, 371-394 (1992).]
(2) Boundary-wall-generated turbulence
\sim wall turbulence

Figure 1.1. Large eddies in a turbulent boundary layer. The flow above the boundary layer has a velocity \boldsymbol{U}; the eddies have velocities \boldsymbol{u}. The largest eddy size (l) is comparable to the boundary-layer thickness $\left(L_{\tau}\right)$. The interface between the turbulence and the flow above the boundary layer is quite sharp (Corrsin and Kistler, 1954).
(3) Free-shear-layer-generated turbulence
~ free turbulence

(a)

(c)

Figure 13.13 Three types of wall-free turbulent flows: (a) jet; (b) wake; and (c) shear layer.

157. Side view of a turbulent boundary layer. Here a turbulent boundary layer develops naturally on a flat plate 3.3 m long suspended in a wind tunnel. Streaklines from a smoke wire near the sharp leading edge are illuminated by
a vertical slice of light. The Reynolds number is 3500 based on the momentum thickness. The intermittent nature of the outer part of the layer is evident. Photograph by Thomas Corke, Y. Guezennec, and Hassan Nagib.

158. Turbulent boundary layer on a wall. A fog of tiny oil droplets is introduced into the laminar boundary layer on the test-section floor of a wind tunnel, and the layer then tripped to become turbulent. A vertical sheet of light
shows the flow pattern 5.8 m downstream, where the Reynolds number based on momentum thickness is about 4000. Falco 1977

92

An Album of
 Fluid Motion pp.99-101

169. Entrainment by a plane turbulent jet. A time exposure shows the mean flow of a plane jet of colored water issuing into ambient water at $100 \mathrm{~cm} / \mathrm{s}$. Tiny air bubbles mark the streamlines of the slow motion induced in the surrounding water. ONERA photograph, Werlé 1974

170. Entrainment by an axisymmetric turbulent jet. A jet of colored turbulent water flows from a tube of 9 mm diameter at 200 cm / s. According to boundary-layer theory the streamlines shown by air bubbles in the water outside the jet are paraboloids of revolution, and parabolas in the plane case above. ONERA photograph, Werlé 1974
 number of 1770 . Oil fog shows the instantaneous flow pat-
tern, covering 40 diameters centered 50 diameters downstream. Photograph by R. E. Falco

171. Generation of turbulence by a grid. Smoke wires show a uniform laminar stream passing through a $1 / 16$-inch plate with $3 / 4$-inch square perforations. The Reynolds numgrid turbulence
ber is 1500 based on the 1 -inch mesh size. Instability of the shear layers leads to turbulent flow downstream. Photograph by Thomas Corke and Hassan Nagib

Isotropic turbulence
153. Homogeneous turbulence behind a grid. Behind a finer grid than above, the merging unstable wakes, quickly form a homogeneous field. As it decays down
stream, it provides a useful approximation to the idealiza tion of isotropic turbulence. Photograph by Thomas Corke and Hassan Nagib

8.1.3 Nature of turbulence

(1) Irregularity
~ randomness
\sim need to use statistical methods to turbulence problems
~ Turbulent motion can also be described by Navier-Stokes Eq.
[Cf] Coherent structure

(2) Diffusivity

~ causes rapid mixing and increased rates of momentum, heat, and mass transfer
\sim exhibit spreading of velocity fluctuations through surrounding fluid
~ the most important feature as far as practical applications are concerned; it increases heat transfer rates in machinery, it increases mass transfer in water
(3) Large Reynolds numbers
~ occur at high Reynolds numbers
\sim Turbulence originates as an instability of laminar flows if Re becomes too large.

$$
\begin{array}{ll}
\text { pipe flow } & \operatorname{Re}_{c}=2,100 \\
\text { boundary layer } & \operatorname{Re}_{c}=\frac{U \delta^{*}}{v}=600 \\
\text { free shear flow } & \operatorname{Re}_{c} \sim \text { low }
\end{array}
$$

(4) Three-dimensional vorticity fluctuations
\sim Turbulence is rotational and three-dimensional.
~ high levels of fluctuating vorticity
\sim need to use vorticity dynamics
\sim tend to be isotropic
[Cf] The 2-D flows like cyclones, random (irrotational) waves in the ocean are not turbulent motions.
(5) Dissipations
\sim dissipative
\sim deformation work increases the internal energy of the fluid while dissipating kinetic energy of the turbulence
\sim needs a continuous supply of energy to make up for viscous losses.
\sim main energy supply comes from mean flow by interaction of shear stress and velocity gradient
~ If no energy is supplied, turbulence decays rapidly.
[Re] Energy cascade
main flow \rightarrow large scale turbulence \rightarrow small scale turbulence \rightarrow heat
(6) Continuum
~ continuum phenomenon
\sim governed by the equation of fluid mechanics: Navier-Stokes Eq. + Continuity Eq.
\sim larger than any molecular length scale
(7) Flow feature
~ feature of fluid flows not fluid itself
\sim Most of the dynamics of turbulence is the same in all fluids.
~ Major characteristics of turbulent flows are not controlled by the molecular properties of the fluid.

8.1.4 Description of turbulence problems

(1) Turbulence modeling

- Time-averaged Navier-Stokes Eq. \rightarrow Reynolds Equations
\rightarrow No. of unknowns \{mean values $(\bar{u}, \bar{v}, \bar{w}, \bar{p})+$ Reynolds stress components
$\left.\left(\sigma_{i j}=-\rho<u_{i}{ }^{\prime}, u_{j}{ }^{\prime}>\right)\right\}>$ No. of equations
\rightarrow Closure problem:
~ The gap (deficiency of equations) can be closed only with models and estimates based on intuition and experience.
(2) Methods of analysis

1) Phynomenological concepts of turbulence
\sim based on a superficial resemblance between molecular motion and turbulent motion
\sim crucial assumptions at a early stage in the analysis

- Eddy viscosity model
\sim turbulence-generated viscosity is modeled using analogy with molecular viscosity
~ characteristics of flow
- Mixing length model
\sim analogy with mean free path of molecules in the kinetic theory of gases

2) Dimensional analysis
~ one of the most powerful tools
\sim result in the relation between the dependent and independent variables
[Ex] form of the spectrum of turbulent kinetic energy
3) Asymptotic theory
\sim based on asymptotic invariance
\sim exploit asymptotic properties of turbulent flows as Re approaches infinity (or very
high).
[Ex)] Theory of turbulent boundary layers
Reynolds-number similarity
4) Deterministic approach

Large Eddy Simulation (L.E.S)
\sim model only large fluctuations
5) Stochastic approach

8.2 Sources of Turbulence

8.2.1 Source of turbulence

(1) Surfaces of flow discontinuity (velocity discontinuity)

1) tip of sharp projections - a
2) the trailing edges of air foils and guide vanes - c
3) zones of boundary-layer separation - d

FIG. 11-1. Eddy formation at velocity discontinuity surfaces: (a) sharp projection; (b) bluff body; (c) trailing edge; (d) boundary-layer separation.

At surfaces of flow discontinuity,
\rightarrow tendency for waviness to develop by accident from external cause or from disturbance transported by the fluid.
\rightarrow waviness tends to be unstable
\rightarrow amplify (grow in amplitude)
\rightarrow curl over
\rightarrow break into separate eddies

FIG. 11-3. Eddies arising from waves at a surface of discontinuity.
(2) Shear flows where velocity gradient occurs w/o an abrupt discontinuity
\sim Shear flow is becoming unstable and degenerating into turbulence.
[Ex] Reynolds' experiment with a dye-streak in a glass tube
[Re] How turbulence arises in a flow

1) Presence of boundaries as obstacles creates vorticity inside a flow which was initially irrotational (vorticity, $\vec{\omega}=\nabla \times \vec{u}$).
2) Vorticity produced in the proximity of the boundary will diffuse throughout the flow which will become turbulent in the rotational regions.
3) Production of vorticity will then be increased due to vortex filaments stretching mechanism.
[Re] Grid turbulence = turbulence created behind a fixed grid in a wind tunnel

8.2.2 Mechanisms of instability

- Tollmien-Schlichting's small perturbation theory
~ Disturbance are composed of oscillations of a range of frequencies which can be selectively amplified by the hydrodynamic flow field.
$\mathrm{Re}<\mathrm{Re}_{\text {crit }} \rightarrow$ all disturbances will be damped
$\mathrm{Re}>\mathrm{Re}_{\text {crit }} \rightarrow$ disturbances of certain frequencies will be amplified and others damped
- Tollmien-Schlichting stability diagram

FIG. 11-4. Tollmien-Schlichting stability diagram for a laminar boundary layer. The ordinate is a dimensionless frequency function. Above $\mathbf{R}_{\text {critit }}$, disturbances of the frequencies falling within the neutral stability loop are unstable and will amplify. Disturbances of all other frequencies will be stable [2].

- Disturbances appear in spots
~ These spots grow as they are swept downstream.
~ spread and amplification of a spot disturbance into a turbulence patch
~ Mechanism of the initiation of spots of turbulence is related to what happens when the small disturbance, whose amplification is predicted by the small-perturbation theory, become large.

FIG. 11-5. Two-dimensional versus localized spot disturbance in a laminar boundary layer: (a) two-dimensional wave amplification by Tollmien-Schlichting hypothesis; (b) observed spread and amplification a spot disturbance into a turbulence patch.

8.3 Velocities, Energies, and Continuity in Turbulence

8.3.1 Reynolds decomposition

(1) Velocity decomposition

$$
\begin{align*}
& u=\bar{u}+u^{\prime} \\
& v=\bar{v}+v^{\prime} \\
& w=\bar{w}+w^{\prime} \tag{8.1}
\end{align*}
$$

FIGURE 8-20
Fluctuations of the veiocity
component u with time at a specified
location in turbulent flow.
$\bar{u}, \bar{v}, \bar{w}=$ mean value $=$ time-averaged value
$u^{\prime}, v^{\prime}, w^{\prime}=$ fluctuating components
$\bar{u}=\frac{1}{T} \int_{0}^{T} u d t \quad$ (steady flow; $\frac{\partial \bar{u}}{\partial t}=0$)
Pipe flow: $10^{-1} \sim 10^{0} \mathrm{sec}$ Channel/River flow: $\quad 10^{0} \sim 10^{1}$
where T = long time compared to the time scale of the turbulence

$$
\begin{align*}
& \overline{u^{\prime}}=\frac{1}{T} \int_{0}^{T} u^{\prime} d t \equiv 0 \quad(\because \text { fluctuations are both plus and minus }) \tag{8.3}\\
& \left(\frac{1}{T} \int_{0}^{T}(u-\bar{u}) d t=\bar{u}-\bar{u}=0\right)
\end{align*}
$$

(2) Pressure and stress decomposition

$$
p=\bar{p}+p^{\prime}
$$

$$
\begin{aligned}
& \overline{p^{\prime}} \equiv 0 \\
& \sigma_{i j}=\overline{\sigma_{i j}}+\sigma_{i j}^{\prime} \\
& \overline{\sigma_{i j}^{\prime}} \equiv 0
\end{aligned}
$$

- Mean stress tensor

$$
\begin{aligned}
& \overline{\sigma_{i j}}=-\bar{p} \delta_{i j}+2 \mu \overline{S_{i j}} \\
& \sigma_{i j}^{\prime}=-p^{\prime} \delta_{i j}+2 \mu S_{i j}{ }^{\prime}
\end{aligned}
$$

in which $\overline{S_{i j}}=$ mean strain rate $\equiv \frac{1}{2}\left(\frac{\partial \overline{u_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)$

$$
S_{i j}^{\prime}=\text { strain-rate fluctuations } \equiv \frac{1}{2}\left(\frac{\partial u_{i}{ }^{\prime}}{\partial x_{j}}+\frac{\partial u_{j}^{\prime}}{\partial x_{i}}\right)
$$

(3) Turbulence Intensity

\rightarrow root-mean-square $(\mathrm{rms})=$ square root of variance $=$ standard deviation average intensity of the turbulence $=\mathrm{rms}$ of u^{\prime}

$$
\begin{equation*}
T I=\sqrt{\overline{u^{\prime 2}}}=\left\{\frac{1}{T} \int_{0}^{T} u^{\prime 2} d t\right\}^{\frac{1}{2}} \tag{8.4}
\end{equation*}
$$

- Relative Turbulence Intensity (RTI) $=\frac{\sqrt{\overline{u^{\prime 2}}}}{\bar{u}}$
(4) Average kinetic energy of turbulence per unit mass
~ average KE of turbulence / mass

$$
\begin{align*}
& =\frac{1}{2}\left(\overline{u^{\prime 2}}+\overline{v^{\prime 2}}+\overline{w^{\prime 2}}\right) \\
& =\frac{1}{2} \sum(\text { intensity })^{2} \tag{8.5}
\end{align*}
$$

(5) Energy density, $\phi(f)$

The kinetic energy is decomposed into an energy spectrum (density) vs. frequency.
\equiv limit of average kinetic energy per unit mass divided by the bandwidth Δf

$$
\phi(f)=\lim _{\Delta f \rightarrow 0} \frac{\text { average } K E / \text { mass contained in } \Delta f}{\Delta f}=\frac{\partial K E}{\partial f}
$$

where $f=$ ordinary frequency in cycles per second $=\frac{\omega}{2 \pi}$
\therefore average KE of turbulence $/$ mass $=\int_{0}^{\infty} \phi(f) d f=\frac{1}{2}\left(\overline{u^{\prime 2}}+\overline{v^{\prime 2}}+\overline{w^{\prime 2}}\right)$
(6) Correlation between u^{\prime}, v^{\prime}, and w^{\prime}
exact correlation $=$ one-to-one correlation
zero correlation = completely independent

$$
\overline{u^{\prime} v^{\prime}}=\frac{1}{T} \int_{0}^{T} u^{\prime} v^{\prime} d t \quad\left[\begin{array}{ll}
\neq 0 & \text { correlated } \tag{8.6}\\
=0 & \text { uncorrelated }
\end{array}\right.
$$

\sim In a shear flow in an $x y$-plane, $\overline{u^{\prime} v^{\prime}}$ is finite, and it is related to the magnitude of the turbulent shear stress $\left(\tau=-\rho \overline{u^{\prime} v^{\prime}}\right.$).
[Re] Correlated variables

1) Averages of products u

$$
\begin{aligned}
\overline{u_{i} u_{j}} & =\overline{\left(\overline{u_{i}}+u_{i}^{\prime}\right)\left(\overline{u_{j}}+u_{j}^{\prime}\right)} \\
& =\overline{\overline{u_{i} u_{j}}}+\overline{u_{i}{ }^{\prime} u_{j}^{\prime}}+\overline{\overline{u_{i}} u_{j}^{\prime}}+\overline{\overline{u_{j}} u_{i}^{\prime}} \\
& =\overline{u_{i} u_{j}}+\overline{u_{i}^{\prime} u_{j}^{\prime}}
\end{aligned}
$$

If $\overline{u_{i}{ }^{\prime} u_{j}{ }^{\prime}}=0 \rightarrow \quad u_{i}{ }^{\prime}$ and $u_{j}{ }^{\prime}$ are uncorrelated.
2) Correlation coefficient

$$
c_{i j}=\frac{\overline{u_{i}^{\prime} u_{j}^{\prime}}}{\overline{\left(u_{i}^{\prime 2} \cdot u_{j}^{\prime 2}\right)^{1 / 2}}}
$$

in which $\overline{u_{i}{ }^{\prime 2}}, \overline{u_{j}{ }^{\prime 2}}=$ variances
If $c_{i j}= \pm 1 \quad \rightarrow$ perfect correlation
[Re] Classification of turbulence

1) General turbulence

$$
\begin{aligned}
& \bar{u} \neq \bar{v} \neq \bar{w} \\
& \overline{u^{\prime 2}} \neq \overline{v^{\prime 2}} \neq \overline{w^{\prime 2}} \\
& \overline{u^{\prime} v^{\prime}} \neq \overline{v^{\prime} w^{\prime}} \neq \overline{w^{\prime} u^{\prime}}
\end{aligned}
$$

2) Homogeneous turbulence
\sim statistically independent of the location

$$
\left(\overline{u_{i}^{\prime} u_{j}^{\prime}}\right)_{a}=\left(\overline{u_{i}{ }^{\prime} u_{j}^{\prime}}\right)_{b}
$$

3) Isotropic turbulence
\sim statistically independent of the orientation and location of the coordinate axes

$$
\begin{aligned}
& \overline{u^{\prime 2}}=\overline{v^{\prime 2}}=\overline{w^{\prime 2}}=\text { constant } \\
& \overline{u^{\prime} v^{\prime}}=\overline{v^{\prime} w^{\prime}}=\overline{w^{\prime} u^{\prime}}=0
\end{aligned}
$$

~ uncorrelated
~ not coherent structures

Isotropic

Anisotropic

Figure 13.6 Isotropic and anisotropic turbulent fields. Each dot represents a $u v$-pair at a certain time.

8.3.2 Measurement of turbulence

~ measure turbulent fluctuations
(1) Hot-wire (hot-film) anemometer
~ Hot-film is usable in contaminated water.
~ Change of temperature affects the electric current flow or voltage drop through wire. Fine platinum wire (film) is heated electrically by a circuit that maintains voltage drop constant. \sim When inserted into the stream, the cooling, which is a function of the velocity, can be detected as variations in voltage.
\sim Use two or more wires at one point in the flow to make simultaneous measurements of different velocity components.
\rightarrow After subtracting mean value, rms-values, correlations, and energy spectra can be computed using fluctuation.
\rightarrow These operations can be performed electronically

(2) Laser Doppler Velocimeter (LDV)
~ Doppler effects
\sim An laser (ultrasonic) beam transmitted into the fluid will be reflected by impurities or bubbles in the fluid to a receiving sensor at a different frequency.
\rightarrow The transmitted and reflected signals are then compared by electronic means to calculate the Doppler shift which is proportional to the velocity.
~ non-intrusive sensing (immersible LDA)
\sim sampling frequency $=20,000 \mathrm{~Hz}$

(3) Acoustic Doppler Velocimeter (ADV)
~ use Doppler effects
~ intrusive sensing
\sim sampling frequency $=25-50 \mathrm{~Hz}$

(4) Particle Image Velocimetry (PIV)
~ use Laser and CCD camera
~ measure flow field at once
~ sampling frequency $=30 \mathrm{~Hz}$

PIV system

Δt - time between two pulses
$\Delta \mathrm{x}$ - particle displacement in x direction
Δy - particle displacement in y direction
路

Velocity of particle A: $u_{x}=\frac{\Delta x}{\Delta t}$ as $\Delta t \rightarrow 0$

$$
u_{y}=\frac{\Delta y}{\Delta t} \text { as } \Delta t \rightarrow 0
$$

LDV: single point measurement

PIV: field measurement

a) Image

b)Velocity

c)Turbulence Intensity

Fig. 1 Jet Characteristics Measured by PIV (Seo et al., 2002)
[Re] Reynolds rules of averages: Schlichting (1979) Boundary-Layer Theory

Let f and g are two dependent variables whose time mean values are to be found. s is any one of the independent variables x, y, z, t.

$$
\begin{aligned}
& \overline{\bar{f}}=\bar{f} \\
& \overline{f+g}=\bar{f}+\bar{g} \\
& \overline{f \cdot \bar{g}}=\bar{f} \cdot \bar{g}
\end{aligned}
$$

$$
\frac{\overline{\partial f}}{\partial s}=\frac{\partial \bar{f}}{\partial s} \rightarrow\left(\begin{array}{l}
\text { since time averaging is carried out by integrating over a long } \\
\text { period of time,which commutes with differentiation with respect } \\
\text { to another independant variable }
\end{array}\right.
$$

$$
\overline{\int f d s}=\int \bar{f} d s
$$

8.3.3 Continuity for turbulent motion

Continuity equation for incompressible fluid

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{A}
\end{equation*}
$$

Substitute velocity decomposition into (A)

$$
\begin{align*}
& \frac{\partial\left(\bar{u}+u^{\prime}\right)}{\partial x}+\frac{\partial\left(\bar{v}+v^{\prime}\right)}{\partial y}+\frac{\partial\left(\bar{w}+w^{\prime}\right)}{\partial z}=0 \tag{8.7}\\
& \frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}+\frac{\partial u^{\prime}}{\partial x}+\frac{\partial v^{\prime}}{\partial y}+\frac{\partial w^{\prime}}{\partial z}=0 \tag{B}
\end{align*}
$$

Take time-averages of each term of (B)

$$
\begin{aligned}
& \frac{\overline{\partial \bar{u}}}{\partial x}+\frac{\overline{\partial \bar{v}}}{\partial y}+\frac{\overline{\partial \bar{w}}}{\partial z}+\frac{\overline{\partial y}}{\partial x}+\frac{\overline{\partial y}}{\partial y}+\frac{\overline{\partial y^{\prime}}}{\partial z}=0 \\
& \left(\because \frac{\partial \overline{u^{\prime}}}{\partial x}=\frac{\partial\left(\overline{u^{\prime}}\right)}{\partial x}=0\right)
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}=0 \tag{8.8}
\end{equation*}
$$

Substitute (8.8) into (B)

$$
\begin{equation*}
\frac{\partial u^{\prime}}{\partial x}+\frac{\partial v^{\prime}}{\partial y}+\frac{\partial w^{\prime}}{\partial z}=0 \tag{8.9}
\end{equation*}
$$

\rightarrow Both mean-motion components and the superposed turbulent-motion components must satisfy the continuity equation.
\rightarrow Continuity must be satisfied for both turbulent and laminar motions.
[Re] Continuity Eq. for compressible fluid

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{i}}{\partial x_{i}}=0 \\
& \frac{\partial\left(\bar{\rho}+\rho^{\prime}\right)}{\partial t}+\frac{\partial\left\{\left(\bar{\rho}+\rho^{\prime}\right)\left(\overline{u_{i}}+u_{i}^{\prime}\right)\right\}}{\partial x_{i}}=0
\end{aligned}
$$

Time averaging yields

$$
\begin{aligned}
& \frac{\overline{\partial\left(\bar{\rho}+\rho^{\prime}\right)}}{\partial t}+\frac{\overline{\partial\left\{\left(\bar{\rho}+\rho^{\prime}\right)\left(\overline{u_{i}}+u_{i}^{\prime}\right)\right\}}}{\partial x_{i}}=0 \\
& \frac{\overline{\partial \bar{\rho}}}{\partial t}+\frac{\overline{\partial \rho^{\prime}}}{\partial t}+\frac{\partial \overline{\partial x_{i}}}{\left.\partial \overline{\rho \bar{u}_{i}}+\rho^{\prime} \bar{u}_{i}+\overline{\rho^{\prime}} u_{i}^{\prime}+\rho^{\prime} u_{i}^{\prime}\right)}=0 \\
& \frac{\partial \bar{\rho}}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\overline{\rho u_{i}}+\overline{\rho^{\prime} u_{i}^{\prime}}\right)=0 \\
& \frac{\partial \bar{\rho}}{\partial t}+\frac{\partial \bar{\rho} \bar{u}}{\partial x}+\frac{\partial \overline{\rho \bar{v}}}{\partial y}+\frac{\partial \bar{\rho} \bar{w}}{\partial z}+\frac{\partial}{\partial x}\left(\overline{\rho^{\prime} u^{\prime}}\right)+\frac{\partial}{\partial y}\left(\overline{\rho^{\prime} v^{\prime}}\right)+\frac{\partial}{\partial z}\left(\overline{\rho^{\prime} w^{\prime}}\right)=0
\end{aligned}
$$

8.4 Turbulent Shear Stress and Eddy Viscosities

8.4.1 Fall of pressure drop due to shear stress

shear stress $=$ resistance to motion
\rightarrow dissipate flow energy \rightarrow fall of pressure drop along a pipe \rightarrow head $\operatorname{loss}\left(h_{L}=\frac{\tau^{\prime} l}{\gamma R}\right)$
laminar flow; $\quad \frac{d(p+\gamma h)}{d z} \propto V_{z}$
turbulent flow: $\frac{d(p+\gamma h)}{d z} \propto V_{z}^{n} \quad(n \approx 2)$
where $V_{z}=$ average velocity

8.4.2 Shear stress resisting to motion

(1) Boussinesq's eddy viscosity concept

where

$$
\bar{u}=\text { mean local velocity (time }- \text { averaged) }
$$

$\mu=$ dynamic molecular viscosity \rightarrow property of the fluid
$\eta=$ dynamic eddy viscosity that depends on the state of the turbulent motion

$$
\text { (} \varepsilon=\frac{\eta}{\rho}=\text { kinematic eddy viscosity) }
$$

$\mu \frac{d \bar{u}}{d y}$ - apparent stress computed from the velocity gradient of mean motion.
$\eta \frac{d \bar{u}}{d y}$ - additional apparent stress associated with the turbulence

For laminar flow, $\quad \eta=0$

For turbulent flow, $\eta \gg \mu \quad \rightarrow \quad \tau_{\text {curb }}>\tau_{\text {lam }}$
(2) Physical model of momentum transport (exchange)
~ momentum transport by turbulent velocity fluctuation

Step 1: lower-velocity fluid parcel in layer 1 fluctuates with a \underline{v} '-velocity into layer 2

Step 2: its velocity in the direction of the stream is less than mean velocity of the layer 2 by an amount $-u^{\prime}$

Step 3: drag of the faster moving surroundings accelerates the fluid element and increases its momentum

Step 4: The mass flux crossing from layer 1 to layer 2

$$
=\rho v^{\prime}\left(\frac{\text { mass }}{\text { time } \times \text { area }}\right)
$$

$$
=\rho v^{\prime} \times\left(-u{ }^{\prime}\right)=-\rho u^{\prime} v^{\prime}
$$

Step 6: Average over a time period

$$
\begin{aligned}
& =-\overline{\rho u^{\prime} v^{\prime}} \\
& =\underline{\text { effective resistance to motion }} \\
& =\text { effective shearing stress }
\end{aligned}
$$

(3) Reynolds stress
$=-\rho \overline{u^{\prime} v^{\prime}}$
= time rate change of momentum per unit area
$=$ effective resistance to motion
~ actually acceleration terms
\sim instantaneous viscous stresses due to turbulent motion $=\eta \frac{d \bar{u}}{d y}$

$$
\begin{equation*}
\tau_{\text {total }}=\underset{\uparrow}{\mu\left(\frac{d \bar{u}}{d y}\right)-\rho \overline{u^{\prime} v^{\prime}}=\tau_{y x}} \tag{8.12}
\end{equation*}
$$

shear stress	shear stress due to
due to transverse	transverse momentum transport of
molecular momentum	macroscopic fluid particles by
transport	turbulent motion

For fully developed turbulence,

$$
\begin{equation*}
\tau_{y x} \cong \eta\left(\frac{d \bar{u}}{d y}\right) \approx-\overline{\rho u^{\prime} v^{\prime}} \propto V_{z}^{2} \tag{8.13}
\end{equation*}
$$

[Re] Reynolds stress $=-\rho \overline{u^{\prime} v^{\prime}}$
\sim If u^{\prime} and v^{\prime} are uncorrelated, there would be no turbulent momentum transport.
~ usually not zero (correlated)
\sim may exchange momentum of mean motion
\sim exchanges momentum between turbulence and mean flow
[Re] Effective addition to the normal pressure intensity acting in the flow direction

$$
\begin{equation*}
=-\overline{\rho u^{\prime} u^{\prime}}=-\overline{\rho u^{\prime 2}} \tag{8.14}
\end{equation*}
$$

[Re] Momentum transport

$$
\text { Eq. (3.2): } \frac{d(\Delta m v)}{d t} \frac{1}{\text { area }}=K \frac{d}{d y}\left(\frac{\Delta m v}{\text { vol }}\right)
$$

Newton's 2nd law of motion

$$
\begin{align*}
& F=m a=m \frac{d v}{d t}=\frac{d(m v)}{d t} \tag{A}\\
& \frac{F}{\text { area }}=\frac{d(m v)}{d t} \frac{1}{\text { area }} \tag{B}
\end{align*}
$$

Assume only shear stresses exist,
Then LHS of $(\mathrm{B})=\tau$
Combine (3. 2) \& (B)

$$
\begin{equation*}
\tau=\eta \frac{d \bar{u}}{d y} \tag{C}
\end{equation*}
$$

By the way, for the turbulent motion
RHS of $(\mathrm{B})=$ time rate change of momentum per unit area $=-\rho \overline{u^{\prime} v^{\prime}}$

$$
\begin{equation*}
\therefore-\rho \overline{u^{\prime} v^{\prime}}=\tau \tag{D}
\end{equation*}
$$

Combine (C) and (D)

$$
\begin{equation*}
\tau_{t}=-\rho \overline{u^{\prime} v^{\prime}}=\eta \frac{d \bar{u}}{d y} \tag{E}
\end{equation*}
$$

[Re] Shear stress for turbulent jet

Case I: $\frac{d u}{d y}>0 \rightarrow \underline{\text { positive }} \tau$

1) $y_{1}-\delta \rightarrow y_{1}$
mass flux $=\rho v^{\prime}$
velocity change $=-u^{\prime}$
\therefore momentum change $=\left(\rho v^{\prime}\right) \times\left(-u^{\prime}\right)=-\rho u^{\prime} v^{\prime}$
$\tau=-\rho u^{\prime} v^{\prime} \rightarrow+$ momentum change \rightarrow positive
2) $y_{1}+\delta \rightarrow y_{1}$
mass flax $=\rho\left(-v^{\prime}\right)$
velocity change $=+u^{\prime}$
\therefore momentum change $=\left(-\rho v^{\prime}\right) \times\left(u^{\prime}\right)=-\rho u^{\prime} v^{\prime}$
$\tau=-\rho u^{\prime} v^{\prime} \rightarrow+$ momentum change \rightarrow positive

Case II: $\frac{d u}{d y}<0 \rightarrow \underline{\text { negative }} \tau$

1) $y_{1}{ }^{\prime}-\delta \rightarrow y_{1}{ }^{\prime}$
mass flax $=\rho v^{\prime}$
velocity change $=+u^{\prime}$
\therefore momentum change $=\left(\rho v^{\prime}\right) \times\left(u^{\prime}\right)=\rho u^{\prime} v^{\prime}$
$\tau=-\rho u^{\prime} v^{\prime} \rightarrow-$ momentum change \rightarrow negative
2) $y_{1}{ }^{\prime}+\delta \rightarrow y_{1}{ }^{\prime}$
mass flux $=\rho\left(-v^{\prime}\right)$
velocity change $=-u^{\prime}$
\therefore momentum change $=\left(-\rho v^{\prime}\right) \times\left(-u{ }^{\prime}\right)=\rho u^{\prime} v^{\prime}$
$\tau=-\rho u^{\prime} v^{\prime} \rightarrow-$ momentum change \rightarrow negative

Fig. 4.6(c) Velocity Vector Fields for Case NFJ300 by PIV
(a)
$x / B=1$

(b)

${ }_{00}^{00}$

Fig. 4.15 Streamwise Development of Turbulent Characteristics for NFJ300 :
(a) $\overline{u^{\prime} v^{\prime}} / U^{2}$; (b) k / U^{2}

$$
\begin{aligned}
k & =\text { kinetic turbulat energy } \\
& =\frac{1}{2}\left(\overline{u^{\prime 2}}+\overline{w^{\prime 2}}+\overline{w^{\prime 2}}\right)
\end{aligned}
$$

8.5 Reynolds Equations for Incompressible Fluids

8.5.1 Reynolds Equation

Navier-Stokes Eq. = equations of motion of a viscous fluid
\sim applicable to both turbulent and non-turbulent flows
\sim very difficult to obtain exact solution because of complexity of turbulence
~ Alternative is to consider the pattern of the mean turbulent motion even through we cannot establish the true details of fluctuations.
\rightarrow average Navier-Stokes Eq. over time to derive Reynolds Eq.

N-S Eq. in x -dir.:

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=\rho g_{x}-\frac{\partial p_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z} \tag{8.15}
\end{equation*}
$$

Continuity Eq. for incompressible fluid:

$$
\begin{equation*}
\rho\left(u \frac{\partial u}{\partial x}+u \frac{\partial v}{\partial y}+u \frac{\partial w}{\partial z}\right)=0 \tag{A}
\end{equation*}
$$

Add (A) to (11.15), then LHS becomes

$$
\text { LHS }=\frac{\partial u}{\partial t}+2 u \frac{\partial u}{\partial x}+\left(v \frac{\partial u}{\partial y}+u \frac{\partial v}{\partial y}\right)+\left(w \frac{\partial u}{\partial z}+u \frac{\partial w}{\partial z}\right)=\frac{\partial u}{\partial t}+\frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}+\frac{\partial u w}{\partial z}
$$

Whole equation is

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+\frac{\partial u^{2}}{\partial x}+\frac{\partial u v}{\partial y}+\frac{\partial u w}{\partial z}\right)=\rho g_{x}-\frac{\partial p_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z} \tag{8.16}
\end{equation*}
$$

Decomposition:

$$
\begin{align*}
& u=\bar{u}+u^{\prime} \\
& v=\bar{v}+v^{\prime} \\
& w=\bar{w}+w^{\prime} \\
& p_{x}=\overline{p_{x}}+p_{x}^{\prime} \tag{8.17}
\end{align*}
$$

Substitute (8.17) into (8.16), and average over time

$$
\begin{aligned}
& \rho\left\{\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)}}{\partial t}+\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)^{2}}}{\partial x}+\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)\left(\bar{v}+v^{\prime}\right)}}{\partial y}+\frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)\left(\bar{w}+w^{\prime}\right)}}{\partial z}\right\} \\
& =\rho g_{x}-\frac{\overline{\partial\left(\overline{p_{x}}+p_{x}^{\prime}\right)}}{\partial x}+\frac{\overline{\partial \tau_{y x}}}{\partial y}+\frac{\overline{\partial \tau_{z x}}}{\partial z}
\end{aligned}
$$

Rearrange according to the Reynolds average rule

$$
\begin{aligned}
& \frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)}}{\partial t}=\frac{\partial \bar{u}}{\partial t}+\frac{\partial \overline{\psi^{\prime}}}{\partial t}=\frac{\partial \bar{u}}{\partial t} \\
& \frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)^{2}}}{\partial x}=\frac{\partial}{\partial x}\left(\overline{\overline{u^{2}}+2 \bar{u} u^{\prime}+u^{\prime 2}}\right)=\frac{\partial \bar{u}^{2}}{\partial x}+\frac{\partial \overline{u^{\prime 2}}}{\partial x} \\
& \frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)\left(\bar{v}+v^{\prime}\right)}}{\partial y}=\frac{\partial}{\partial y} \overline{\left(\bar{u} \bar{v}+\overline{\nu^{\prime}} \bar{v}^{\prime}+y^{\prime} \bar{v}^{\prime}+u^{\prime} v^{\prime}\right)}=\frac{\partial \bar{u} \bar{v}}{\partial y}+\frac{\overline{\partial u^{\prime} v^{\prime}}}{\partial y} \\
& \frac{\partial\left(\bar{u}+u^{\prime}\right)\left(\bar{w}+w^{\prime}\right)}{\partial z}=\frac{\partial}{\partial z} \overline{\left(\bar{u} \bar{w}+\bar{u} w^{\prime}+u^{\prime} \bar{w}+u^{\prime} w^{\prime}\right)}=\frac{\partial \bar{u} \bar{w}}{\partial z}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z} \\
& \therefore \rho\left(\frac{\partial \bar{u}}{\partial t}+\frac{\partial \bar{u}^{2}}{\partial x}+\frac{\partial \bar{u} \bar{v}}{\partial y}+\frac{\partial \bar{u} \bar{w}}{\partial z}\right)=\rho g_{x}-\frac{\partial \overline{p_{x}}}{\partial x}+\frac{\partial \bar{\tau}_{y x}}{\partial y}+\frac{\partial \bar{\tau}_{z x}}{\partial z} \\
& -\rho\left(\frac{\partial \overline{u^{\prime 2}}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right)
\end{aligned}
$$

Subtract Continuity Eq. of mean motion ($\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{u} \frac{\partial \bar{v}}{\partial y}+\bar{u} \frac{\partial \bar{w}}{\partial z}=0$)

$$
\begin{aligned}
& \rho\left(\frac{\partial \bar{u}}{\partial t}+\frac{\partial \bar{u}^{2}}{\partial x}+\frac{\partial \bar{u} \bar{v}}{\partial y}+\frac{\partial \bar{u} \bar{w}}{\partial z}\right)-\left(\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{u} \frac{\partial \bar{v}}{\partial y}+\bar{u} \frac{\partial \bar{w}}{\partial z}\right) \\
& =\rho g_{x}-\frac{\partial \bar{p}_{x}}{\partial x}+\frac{\partial \bar{\tau}_{y x}}{\partial y}+\frac{\partial \bar{\tau}_{z x}}{\partial z}-\rho\left(\frac{\partial \overline{u^{\prime 2}}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right) \\
& \therefore \rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}\right) \\
& \quad=\rho g_{x}-\frac{\partial \bar{p}_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \bar{\tau}_{z x}}{\partial z}-\rho\left(\frac{\partial \overline{u^{\prime 2}}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right) \\
& /
\end{aligned}
$$

y-direction:

$$
\begin{aligned}
\rho\left(\frac{\partial \bar{v}}{\partial t}+\bar{u} \frac{\partial \bar{v}}{\partial x}+\bar{v} \frac{\partial \bar{v}}{\partial y}+\bar{w} \frac{\partial \bar{v}}{\partial z}\right) & =\rho g_{y}+\frac{\partial \bar{\tau}_{x y}}{\partial x}-\frac{\partial \bar{p}_{y}}{\partial y}+\frac{\partial \bar{\tau}_{z y}}{\partial z} \\
& -\rho\left(\frac{\partial \overline{v^{\prime} u^{\prime}}}{\partial x}+\frac{\partial \overline{v^{\prime 2}}}{\partial y}+\frac{\partial \overline{v^{\prime} w^{\prime}}}{\partial z}\right)
\end{aligned}
$$

z-direction:

$$
\begin{aligned}
\rho\left(\frac{\partial \bar{w}}{\partial t}+\bar{u} \frac{\partial \bar{w}}{\partial x}+\bar{v} \frac{\partial \bar{w}}{\partial y}+\bar{w} \frac{\partial \bar{w}}{\partial z}\right) & =\rho g_{z}+\frac{\partial \bar{\tau}_{x z}}{\partial x}+\frac{\partial \bar{\tau}_{y z}}{\partial y}-\frac{\partial \bar{p}_{z}}{\partial z} \\
& -\rho\left(\frac{\partial \overline{w^{\prime} u^{\prime}}}{\partial x}+\frac{\partial \overline{w^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{w^{\prime 2}}}{\partial z}\right)
\end{aligned}
$$

Rearrange (8.18)

$$
\begin{array}{r}
\rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}\right) \\
=\rho g_{x}+\frac{\partial}{\partial x}\left(\frac{\left.-\bar{p}_{x}-\rho \overline{u^{\prime 2}}\right)+\frac{\partial}{\partial y}\left(\bar{\tau}_{y x}-\rho \overline{u^{\prime} v^{\prime}}\right)+\frac{\partial}{\partial z}\left(\bar{\tau}_{z x}-\rho \overline{u^{\prime} w^{\prime}}\right)}{}\right. \\
\text { Sum of apparent stress of the mean }
\end{array}
$$ motion and additional apparent stress due to turbulent fluctuations

Introduce Newtonian stress relations: Eqs. 5.29 \& 5.30

$$
\begin{aligned}
& \sigma_{x}=-p+2 \mu \frac{\partial u}{\partial x}-\frac{2}{3} \mu \nabla \cdot \vec{q} \\
& \sigma_{y}=-p+2 \mu \frac{\partial v}{\partial y}-\frac{2}{3} \mu \nabla \cdot \vec{q} \\
& \sigma_{z}=-p+2 \mu \frac{\partial w}{\partial z}-\frac{2}{3} \mu \nabla \cdot \vec{q} \\
& \tau_{y x}=\tau_{x y}=\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \\
& \tau_{y z}=\tau_{z y}=\mu\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right) \\
& \tau_{z x}=\tau_{x z}=\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)
\end{aligned}
$$

Substitute velocity decomposition, Eqs (8.17) into Eqs. (5.29) \& (5.30) and average over time for incompressible fluid $(\nabla \cdot \vec{q}=0)$

1) x-direction:

$$
\begin{align*}
& \bar{\sigma}_{x}=-\bar{p}_{x}=-\overline{\left(\bar{p}+\not p^{\prime}\right)}+2 \mu \frac{\partial \overline{\left(\bar{u}+\mu^{\prime}\right)}}{\partial x}=-\bar{p}+2 \mu \frac{\partial \bar{u}}{\partial x} \\
& \bar{\tau}_{y x}=\mu\left\{\frac{\partial \overline{\left(\bar{v}+y^{\prime}\right)}}{\partial x}+\frac{\partial \overline{\left(\bar{u}+\mu^{\prime}\right)}}{\partial y}\right\}=\mu\left(\frac{\partial \bar{v}}{\partial x}+\frac{\partial \bar{u}}{\partial y}\right) \\
& \bar{\tau}_{z x}=\mu\left\{\frac{\partial \overline{\left(\bar{u}+y^{\prime}\right)}}{\partial z}+\frac{\partial \overline{\left(\bar{w}+y^{\prime}\right)}}{\partial x}\right\}=\mu\left(\frac{\partial \bar{u}}{\partial z}+\frac{\partial \bar{w}}{\partial x}\right) \tag{8.20a}
\end{align*}
$$

(2) y-direction:

$$
\begin{align*}
& -\bar{p}_{y}=-\bar{p}+2 \mu \frac{\partial \bar{v}}{\partial y} \\
& \bar{\tau}_{x y}=\mu\left(\frac{\partial \bar{v}}{\partial x}+\frac{\partial \bar{u}}{\partial y}\right) \\
& \bar{\tau}_{z y}=\mu\left(\frac{\partial \bar{w}}{\partial y}+\frac{\partial \bar{v}}{\partial z}\right) \tag{8.20b}
\end{align*}
$$

(3) z-direction:

$$
\begin{align*}
& -\bar{p}_{z}=-\bar{p}+2 \mu \frac{\partial \bar{w}}{\partial z} \\
& \bar{\tau}_{x z}=\mu\left(\frac{\partial \bar{u}}{\partial z}+\frac{\partial \bar{w}}{\partial x}\right) \\
& \bar{\tau}_{y z}=\mu\left(\frac{\partial \bar{w}}{\partial y}+\frac{\partial \bar{v}}{\partial z}\right) \tag{8.20c}
\end{align*}
$$

Substitute Eq. (8.20) into Eq. (8.18)

$$
\begin{aligned}
& \rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}\right) \\
&= \rho g_{x}-\frac{\partial}{\partial x}\left(\bar{p}-2 \mu \frac{\partial \bar{u}}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial \bar{v}}{\partial x}+\mu \frac{\partial \bar{u}}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial \bar{u}}{\partial z}+\mu \frac{\partial \bar{w}}{\partial x}\right) \\
&-\rho\left(\frac{\partial \overline{u^{\prime 2}}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right) \\
&= \rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\mu\left(2 \frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2} \bar{v}}{\partial y \partial x}+\frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{\partial^{2} \bar{u}}{\partial z^{2}}+\frac{\partial^{2} \bar{w}}{\partial z \partial x}\right) \\
&-\rho\left(\frac{\partial u^{\prime 2}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right) \\
&= \rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\mu\left(\frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{\partial^{2} \bar{u}}{\partial z^{2}}\right)+\mu\left(\frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2} \bar{v}}{\partial y \partial x}+\frac{\partial^{2} \bar{w}}{\partial z \partial x}\right) \\
& \quad=\mu \nabla^{2} \bar{u} \\
&-\rho\left(\frac{\partial u^{\prime 2}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right)
\end{aligned}
$$

By the way,
(I) $=\frac{\partial}{\partial x}\left(\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}\right)=0(\because$ Continuity Eq. for incompressible fluid $)$

Therefore, substituting this relation yields
x-dir.:

$$
\begin{align*}
& \rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}\right) \\
& \quad=\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\mu \nabla^{2} \bar{u}-\rho\left(\frac{\partial \overline{u^{\prime 2}}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right) \tag{8.22a}
\end{align*}
$$

y-dir.:

$$
\begin{align*}
& \rho\left(\frac{\partial \bar{v}}{\partial t}+\bar{u} \frac{\partial \bar{v}}{\partial x}+\bar{v} \frac{\partial \bar{v}}{\partial y}+\bar{w} \frac{\partial \bar{v}}{\partial z}\right) \\
& \quad=\rho g_{y}-\frac{\partial \bar{p}}{\partial y}+\mu \nabla^{2} \bar{v}-\rho\left(\frac{\partial \overline{v^{\prime} u^{\prime}}}{\partial x}+\frac{\partial \overline{v^{\prime 2}}}{\partial y}+\frac{\partial \overline{v^{\prime} w^{\prime}}}{\partial z}\right) \tag{8.22b}
\end{align*}
$$

z-dir.:

$$
\begin{align*}
& \rho\left(\frac{\partial \bar{w}}{\partial t}+\bar{u} \frac{\partial \bar{w}}{\partial x}+\bar{v} \frac{\partial \bar{w}}{\partial y}+\bar{w} \frac{\partial \bar{w}}{\partial z}\right) \\
& \quad=\rho g_{z}-\frac{\partial \bar{p}}{\partial z}+\mu \nabla^{2} \bar{w}-\rho\left(\frac{\partial \overline{w^{\prime} u^{\prime}}}{\partial x}+\frac{\partial \overline{w^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{w^{\prime 2}}}{\partial z}\right) \tag{8.22c}
\end{align*}
$$

\rightarrow Reynolds Equations (temporal mean eq. of motion)
\rightarrow Navier-Stokes form for incompressible fluid
[Re] No. of Equations $=4$
No. of Unknowns: $4+\underline{9}$ (turbulence fluctuating terms)
$\rightarrow 9$ products of $\overline{u^{\prime}{ }_{i} u^{\prime}{ }_{j}}$
\rightarrow one-point double correlation of velocity fluctuation

[Re]

1) Reynolds Equation of motion \rightarrow solve for mean motion

2) Navier-Stokes Eq. \rightarrow apply to instantaneous motion

$$
\frac{\partial u_{i}}{\partial t}+u_{j} \frac{\partial u_{i}}{\partial x_{j}}=X_{i}-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+\frac{\mu}{\rho} \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}
$$

8.5.2 Closure Model

Assumptions are needed to close the gap between No. of equations and No. unknowns.
\rightarrow Turbulence modeling: Ch. 10

■ Boussinesq's eddy viscosity model

$$
\begin{aligned}
& -\overline{u^{\prime 2}}=\varepsilon_{x} \frac{\partial \bar{u}}{\partial x} \\
& \overline{-u^{\prime} v^{\prime}}=\varepsilon_{y} \frac{\partial \bar{u}}{\partial y} \\
& -\overline{u^{\prime} w^{\prime}}=\varepsilon_{z} \frac{\partial \bar{u}}{\partial z}
\end{aligned}
$$

Reynolds Equation in x-dir.:

$$
\left.\begin{array}{l}
\rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}\right) \\
=\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\mu\left(\frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2} \bar{u}}{\partial y^{2}}+\overline{\partial^{2} u}\right. \\
\partial z^{2}
\end{array}\right)-\rho\left(\frac{\partial \overline{u^{\prime 2}}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}\right) .
$$

(B)

Substitute (A) and $\frac{\mu}{\rho}=v$ into (B)

$$
\begin{aligned}
& \rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}\right) \\
& =\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\rho\left[\frac{\partial}{\partial x}\left\{(v+\varepsilon, x) \frac{\partial \bar{u}}{\partial x}\right\}+\frac{\partial}{\partial y}\left\{\left(v+\varepsilon_{y}\right) \frac{\partial \bar{u}}{\partial y}\right\}+\frac{\partial}{\partial z}\left\{\left(v+\varepsilon_{z}\right) \frac{\partial \bar{u}}{\partial z}\right\}\right] \\
& =\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\rho(v+\varepsilon)\left(\frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{\partial^{2} \bar{u}}{\partial z^{2}}\right) \\
& =\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\rho(v+\varepsilon) \nabla^{2} \bar{u} \\
& =\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+(\mu+\eta) \nabla^{2} \bar{u}
\end{aligned}
$$

where $\boldsymbol{v}=$ kinematic molecular viscosity; $\boldsymbol{\varepsilon}=\underline{\text { kinematic eddy viscosity; } \mu=\text { dynamic } ; ~}$ molecular viscosity; $\eta=$ dynamic eddy viscosity

8.5.3 Examples

(1) Turbulent flow between parallel plates

Apply Reynolds equations to steady uniform motion in the x -direction between parallel horizon walls

$$
\begin{aligned}
& \frac{\partial(~)}{\partial t}=0 \quad \leftarrow \text { steady motion } \\
& \frac{\partial(v e l)}{\partial x}=0 \leftarrow \text { uniform motion } \quad\left(\begin{array}{l}
\frac{\partial u}{\partial x}=0 \\
\frac{\partial u^{\prime}}{\partial x}=0 \\
\frac{\partial(~)}{\partial z}=0, w=0 \leftarrow 2 \text {-D motion } \\
\bar{v}=\frac{1}{T} \int_{0}^{T} v d t=0 \leftarrow \text { unidirectional mean flow } \\
v^{\prime} \neq 0
\end{array}\right.
\end{aligned}
$$

Incorporate these assumptions into Eqs. (8.22)

$$
x: \rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\not b \frac{\partial \bar{u}}{\partial y}+\not \not \equiv \frac{\partial \bar{u}}{\partial z}\right)
$$

$$
\begin{align*}
& \quad=\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\mu \nabla^{2} \bar{u}-\rho\left(\frac{\partial \overline{u^{\prime}}}{\partial x}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\frac{\partial \overline{u^{\prime} /^{\prime}}}{\partial z}\right) \\
& \therefore 0=\rho g_{x}-\frac{\partial \bar{p}}{\partial x}+\mu \frac{\partial^{2} \bar{u}}{\partial y^{2}}-\rho \frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y} \\
& =-\rho g \frac{\partial h}{\partial x}-\frac{\partial \bar{p}}{\partial x}+\mu \frac{\partial^{2} \bar{u}}{\partial y^{2}}-\rho \frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y} \tag{A}
\end{align*}
$$

$$
y: \rho\left(\frac{\partial \bar{y}}{\partial t}+\bar{u} \frac{\partial \bar{y}}{\partial x}+\not b \frac{\partial \bar{v}}{\partial y}+\not b \frac{\partial \bar{v}}{\partial z}\right)
$$

$$
\begin{aligned}
& \quad g_{y}=-g \frac{\partial h}{\partial y} \\
& \quad \rho g_{y}-\frac{\partial \bar{p}}{\partial y}+\mu \nabla^{2} \not \vec{p}-\rho\left(\frac{\partial \overline{v^{\prime} \not \mu^{\prime}}}{\partial x}+\frac{\partial \overline{v^{\prime 2}}}{\partial y}+\frac{\partial \overline{v^{\prime} \not v^{\prime}}}{\partial z}\right) \\
& \therefore 0=\rho g_{y}-\frac{\partial \bar{p}}{\partial y}-\rho \frac{\partial \overline{v^{\prime 2}}}{\partial y}
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial}{\partial y}(\bar{p}+\gamma h)+\rho \frac{\partial \overline{v^{\prime 2}}}{\partial y}=0 \tag{8.25}
\end{equation*}
$$

Integrate (8.25)

$$
\begin{equation*}
\bar{p}+\gamma h+\rho \overline{v^{\prime 2}}=\text { const } \text {. } \tag{8.26}
\end{equation*}
$$

\rightarrow In turbulent flow, static pressure distribution in planes perpendicular to flow direction differs from the hydrostatic pressure by $\rho \overline{v^{\prime 2}}$

Rearrange (A)

$$
\begin{align*}
& \qquad \frac{\partial}{\partial x}(\bar{p}+\gamma h)=-\rho \frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}+\mu \frac{\partial^{2} \bar{u}}{\partial y^{2}}=\frac{\partial}{\partial y}\left(-\rho \overline{u^{\prime} v^{\prime}}+\mu \overline{\partial \bar{u}} \frac{\partial y}{\partial y}\right) \tag{D}\\
& \begin{array}{l}
\text { neglect since turbulence contribution } \\
\text { to shear is dominant }
\end{array}
\end{align*}
$$

Integrate (D) w.r.t. y (measured from centerline between the plate)

$$
\frac{d}{d x}(\bar{p}+\gamma h) y=-\rho \overline{u^{\prime} v^{\prime}}=\tau
$$

$$
\tau_{\text {tur }}=-\rho \overline{u^{\prime} v^{\prime}} \propto y
$$

$\rightarrow \tau$ distribution is linear with distance from the wall for both laminar and turbulent flows.

(2) Equations for a turbulent boundary layer

Apply Prandtl's 2-D boundary-layer equations

$$
\begin{align*}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}} \tag{8.7a}\\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{8.7b}\\
& \rightarrow u \frac{\partial u}{\partial x}+u \frac{\partial v}{\partial y}=0
\end{align*}
$$

Add Continuity Eq. and Eq. (8.7a)

$$
\begin{align*}
\frac{\partial u}{\partial t}+ & \frac{2 u \frac{\partial u}{\partial x}}{\downarrow}+\left(v \frac{\partial u}{\partial y}+u \frac{\partial v}{\partial y}\right) \tag{A}\\
\downarrow & \frac{(}{\downarrow} \frac{\partial p}{\partial x}+\frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}} \\
\frac{\partial u^{2}}{\partial x} & \frac{\partial u v}{\partial y}
\end{align*}
$$

Substitute velocity decomposition into (A) and average over time

$$
\begin{aligned}
& \frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)}}{\partial t}=\frac{\partial \bar{u}}{d t} \\
& \frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)^{2}}}{\partial x}=\frac{\partial \bar{u}^{2}}{d x}+\frac{\partial \overline{u^{\prime 2}}}{\partial x} \\
& \frac{\overline{\partial\left(\bar{u}+u^{\prime}\right)\left(\bar{v}+v^{\prime}\right)}}{\partial y}=\frac{\partial \bar{u} \bar{v}}{\partial y}+\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y} \\
& -\frac{1}{\rho} \frac{\partial}{\partial x} \overline{\left(\bar{p}+p^{\prime}\right)}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}
\end{aligned}
$$

$$
\frac{\mu}{\rho} \frac{\partial^{2}}{\partial y^{2}}\left(\bar{u}+u^{\prime}\right)=\frac{\mu}{\rho} \frac{\partial^{2} \bar{u}}{\partial y^{2}}
$$

Thus, (A) becomes

$$
\begin{equation*}
\therefore \frac{\partial \bar{u}}{\partial t}+\frac{\partial \bar{u}^{2}}{\partial x}+\frac{\partial \bar{u} \bar{v}}{\partial y}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}+\frac{\mu}{\rho} \frac{\partial^{2} \bar{u}}{\partial y^{2}}-\frac{\partial \overline{u^{\prime 2}}}{\partial x}-\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y} \tag{B}
\end{equation*}
$$

Subtract Continuity eq. from (B)

$$
\frac{\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}+\frac{\mu}{\rho} \frac{\partial^{2} \bar{u}}{\partial y^{2}}-\frac{\partial \overline{u^{\prime 2}}}{\partial x}-\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}}{\rho\left(\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}\right)=-\frac{\partial \bar{p}}{\partial x}-\rho \overline{\frac{\partial u^{\prime 2}}{\partial x}+\mu \frac{\partial^{2} \bar{u}}{\partial y^{2}}-\rho \frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}}}
$$

$\rightarrow x$-eq.

Adopt similar equation as Eq. (8.25) for y-eq.

$$
0=-\frac{\partial}{\partial y}\left(\bar{p}+\rho \overline{v^{\prime 2}}\right)
$$

Continuity eq.:

$$
\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}=0
$$

8.6 Mixing Length and Similarity Hypotheses in Shear flow

In order to close the turbulent problem, theoretical assumptions are needed for the calculation of turbulent flows (Schlichting, 1979).
\rightarrow We need to have empirical hypotheses to establish a relationship between the Reynolds stresses produced by the mixing motion and the mean values of the velocity components

8.6.1 Boussinesq's eddy viscosity model

For laminar flow;

$$
\tau_{l}=\mu \frac{d \bar{u}}{d y}
$$

For turbulent flow, use analogy with laminar flow;

$$
\begin{equation*}
\tau_{t}=-\rho \overline{u^{\prime} v^{\prime}}=\eta \frac{d \bar{u}}{d y} \tag{8.30}
\end{equation*}
$$

where $\quad \eta$ = apparent (virtual) eddy viscosity
\rightarrow turbulent mixing coefficient
~ not a property of the fluid
\sim depends on $\bar{u} ; \eta \propto \bar{u}$

8.6.2 Prandtl's mixing length theory

~ express the momentum shear stresses in terms of mean velocity

- Assumptions

1) Average distance traversed by a fluctuating fluid element before it acquired the velocity of new region is related to an average (absolute) magnitude of the fluctuating velocity.

$$
\begin{align*}
& l \propto\left|v^{\prime}\right| \\
& \overline{\left|v^{\prime}\right|} \propto l\left|\frac{d \bar{u}}{d y}\right| \tag{8.31a}
\end{align*}
$$

where $l=l(y)=$ mixing length
2) Two orthogonal fluctuating velocities are proportional to each other.

$$
\begin{equation*}
\overline{\left|u^{\prime}\right|} \propto \overline{\left|v^{\prime}\right|} \propto l\left|\frac{d \bar{u}}{d y}\right| \tag{8.31b}
\end{equation*}
$$

Substituting (8.31) into (8.13) leads to

$$
\begin{equation*}
\tau=-\rho \overline{u^{\prime} v^{\prime}}=\rho l^{2}\left|\frac{d \bar{u}}{d y}\right| \frac{d \bar{u}}{d y} \tag{8.32}
\end{equation*}
$$

Therefore, combining (8.30) and (8.32), dynamic eddy viscosity can be expressed as

$$
\begin{equation*}
\eta=\rho l^{2}\left|\frac{d \bar{u}}{d y}\right| \tag{8.33}
\end{equation*}
$$

\rightarrow Prandtl's formulation has a restricted usefulness because it is not possible to predict
mixing length function for flows in general.

- Near wall

$$
\begin{equation*}
l=\kappa y \tag{A}
\end{equation*}
$$

Where $\kappa=$ vol Carman constant
Substitute (A) into (8. 32)

$$
\begin{equation*}
\tau=\rho \kappa^{2} y^{2}\left|\frac{d \bar{u}}{d y}\right| \frac{d \bar{u}}{d y} \tag{8.34}
\end{equation*}
$$

[Re] Prandtl's mixing-length theory (Schlichting, 1979)
Consider simplest case of parallel flow in which the velocity varies only from streamline to streamline.

$$
\rightarrow\left(\begin{array}{l}
\bar{u}=\bar{u}(y) \\
\bar{v}=\bar{w}=0
\end{array}\right.
$$

Shearing stress is given as

$$
\tau_{x y}^{\prime}=\tau_{t}=-\rho \overline{u^{\prime} v^{\prime}}=\eta \frac{d \bar{u}}{d y}
$$

- Simplified mechanism of the motion

1) Fluid particles move in lump both in longitudinal and in the transverse direction.
2) If a lump of fluid is displaced from a layer at $\left(y_{1}-l\right)$ to a new layer y_{1}, then, the difference in velocities is expressed as (use Taylor series and neglect high-order terms)

$$
\Delta u_{1}=\bar{u}\left(y_{1}\right)-\bar{u}\left(y_{1}-l\right) \approx l\left(\frac{d \bar{u}}{d y}\right)_{y=y_{1}} \quad ; v^{\prime}>0
$$

where $l=$ Prandtl's mixing length (mixture length)

For a lump of fluid which arrives at y_{1} from the laminar at $y_{1}+l$

$$
\Delta u_{2}=\bar{u}\left(y_{1}+l\right)-\bar{u}\left(y_{1}\right) \approx l\left(\frac{d \bar{u}}{d y}\right)_{y=y_{1}} \quad ; v^{\prime}<0
$$

3) These velocity differences ($\Delta u_{1}, \Delta u_{2}$) caused by the transverse motion can be regarded as the turbulent velocity fluctuation at y_{1}

$$
\begin{equation*}
\overline{\left|u^{\prime}\right|}=\frac{1}{2}\left(\left|\Delta u_{1}\right|+\left|\Delta u_{2}\right|\right)=l\left|\left(\frac{d \bar{u}}{d y}\right)_{y_{1}}\right| \tag{2}
\end{equation*}
$$

- Physical interpretation of the mixing length l.
$=$ distance in the transverse direction which must be covered by an agglomeration of fluid particles travelling with its mean velocity in order to make the difference between it's velocity and the velocity in the new laminar equal to the mean transverse fluctuation in turbulent flow.

4) Transverse velocity fluctuation v 'originates in two ways.

5) Transverse component v^{\prime} is same order of magnitude as u^{\prime}.

$$
\begin{equation*}
\overline{\left|v^{\prime}\right|}=\text { const } \cdot \overline{\left|u^{\prime}\right|}=\text { const } \cdot l \frac{d \bar{u}}{d y} \tag{3}
\end{equation*}
$$

6) Fluid lumps which arrive at layer y_{1} with a positive value of v^{\prime} (upwards from layer) give rise mostly to a negative u '.

$$
\begin{align*}
& \therefore u^{\prime} v^{\prime}<0 \\
& \overline{u^{\prime} v^{\prime}}=-c \overline{\left|u^{\prime}\right|} \overline{\left|v^{\prime}\right|} \tag{4}
\end{align*}
$$

where $0<\mathrm{c}<1$

Combine Eqs. 2-4

$$
\overline{u^{\prime} v^{\prime}}=- \text { constant } \cdot-l^{2}\left|\frac{d \bar{u}}{d y}\right| \frac{d \bar{u}}{d y}
$$

Include constant into l (mixing length)

$$
\begin{equation*}
\overline{u^{\prime} v^{\prime}}=-l^{2}\left|\frac{d \bar{u}}{d y}\right| \frac{d \bar{u}}{d y} \tag{5}
\end{equation*}
$$

Therefore, shear stress is given as

$$
\begin{equation*}
\tau=-\rho \overline{u^{\prime} v^{\prime}}=\rho l^{2}\left|\frac{d \bar{u}}{d y}\right| \frac{d \bar{u}}{d y} \tag{6}
\end{equation*}
$$

\rightarrow Prandtl's mixing-length hypothesis

8.6.3 Von Karman's similarity hypothesis

- Assumptions
\sim Turbulent fluctuations are similar at all point of the field of flow (similarity rule).
\rightarrow Turbulent fluctuations differ from point to point only by time and length scale factors.
Velocity is characteristics of the turbulent fluctuating motion.

For 2-D mean flow in the x - direction, a necessary condition to secure compatibility between the similarity hypothesis and the vorticity transport equation is

$$
\begin{align*}
& l \sim \frac{d \bar{u} / d y}{d^{2} \bar{u} / d y^{2}} \\
& l=\kappa\left|\frac{d \bar{u} / d y}{d^{2} \bar{u} / d y^{2}}\right| \tag{A}
\end{align*}
$$

where $\kappa=$ empirical dimensionless constant

Substituting (A) into (8.32) gives

$$
\begin{equation*}
\tau=\rho \kappa^{2} \frac{(d \bar{u} / d y)^{4}}{\left(d^{2} \bar{u} / d y^{2}\right)^{2}} \tag{8.35}
\end{equation*}
$$

\rightarrow Von Karman's similarity rule

[Re] Prandtl's velocity-distribution law

For wall turbulence (immediate neighborhood of the wall)

$$
\begin{equation*}
\tau=\rho \kappa^{2} y^{2}\left(\frac{d \bar{u}}{d y}\right)^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \bar{u}}{d y}=\frac{1}{\kappa y} \sqrt{\frac{\tau}{\rho}}=\frac{u_{*}}{\kappa y} \tag{2}
\end{equation*}
$$

where $u_{*}=\sqrt{\tau / \rho}=$ shear velocity; $\kappa=$ von Karman const ≈ 0.4

Integrate (2) w.r.t. y

$$
\begin{equation*}
\bar{u}=\frac{u_{*}}{\kappa} \ln y+C \tag{3}
\end{equation*}
$$

$\rightarrow \underline{\text { Prandtl's velocity distribution law }}$

Apply Prandtl's velocity distribution law to whole region

$$
\begin{align*}
& \bar{u}=\bar{u}_{\max } \text { at } y=h \\
& \bar{u}_{\max }=\frac{u_{*}}{\kappa} \ln h+C \tag{4}
\end{align*}
$$

Subtract (3) from (4) to eliminate constant of integration

$$
\begin{equation*}
\frac{\bar{u}_{\max }-\bar{u}}{u_{*}}=\frac{1}{\kappa} \ln \frac{h}{y} \tag{5}
\end{equation*}
$$

\rightarrow Prandtl's universal velocity-defect law

Homework Assignment \# 5

Due: 1 week from today

8-1. The velocity data listed in Table were obtained at a point in a turbulent flow of sea water.

1) Compute the energy of turbulence per unit volume.
2) Determine the mean velocity in the x-direction \bar{u} and verify that $\overline{u^{\prime}}=0$.
3) Determine the magnitude of the three independent turbulent shear stresses in Eq. (8-21).

time, sec	u $\mathrm{~cm} / \mathrm{s}$	u^{\prime} cm / s	v^{\prime} cm / s	w^{\prime} cm / s
0.0	89.92	-4.57	1.52	0.91
0.1	95.10	0.61	0.00	-0.30
0.2	103.02	8.53	-3.66	-2.13
0.3	99.67	5.18	-1.22	-0.61
0.4	92.05	-2.44	-0.61	0.30
0.5	87.78	-6.71	2.44	0.91
0.6	92.96	-1.52	0.91	-0.61
0.7	90.83	-3.66	1.83	0.61
0.8	96.01	1.52	0.61	0.91
0.9	93.57	-0.91	0.30	-0.61
1.0	98.45	3.96	-1.52	-1.22

