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Chapter 8 Origin of Turbulence and Turbulent Shear Stress 

 

8.1 Introduction 

8.1.1 Definition 

• Hinze (1975):  Turbulent fluid motion is an irregular condition of flow in which the 

various quantities show a random variation with time and space coordinates, so that 

statistically distinct average values can be discerned. 

 

   statistically distinct average values:   mean flow, primary motion 

random fluctuations:   non-periodic, secondary motion,  

instantaneously unsteady, varies w.r.t. time and space 

 

'u u u= +
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• Types of turbulence  

Wall turbulence:  turbulence generated and continuously affected by actual physical 

boundary such as solid walls 

Free turbulence:  absence of direct effect of walls, turbulent jet → AEH II 

 

 

 8.1.2 Origin of turbulence  

(1) Shear flow instability 
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Smaller size 

vortex 
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(2) Boundary-wall-generated turbulence  

~ wall turbulence 

 

 

 

 

 

 

(3) Free-shear-layer-generated turbulence  

~ free turbulence  
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Boundary 
layer 

Outer 
zone 
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Turbulent 
jet 
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Isotropic 
turbulence 
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8.1.3 Nature of turbulence  

(1) Irregularity  

∼ randomness   

∼ need to use statistical methods to turbulence problems 

∼ Turbulent motion can also be described by Navier-Stokes Eq. 

[Cf] Coherent structure 

 

(2) Diffusivity  

∼ causes rapid mixing and increased rates of momentum, heat, and mass transfer  

∼ exhibit spreading of velocity fluctuations through surrounding fluid 

∼ the most important feature as far as practical applications are concerned; it increases    

heat transfer rates in machinery, it increases mass transfer in water 

 

(3) Large Reynolds numbers  

∼ occur at high Reynolds numbers 

∼ Turbulence originates as an instability of laminar flows if Re becomes too large. 

 

  pipe flow           Re 2,100c =  

  boundary layer       Re 600c
Uδ
ν

∗

= =  

  free shear flow       Re ~c low  

 

(4) Three-dimensional vorticity fluctuations  

∼ Turbulence is rotational and three-dimensional. 
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∼ high levels of fluctuating vorticity 

∼ need to use vorticity dynamics 

∼ tend to be isotropic 

[Cf] The 2-D flows like cyclones, random (irrotational) waves in the ocean are not turbulent 

motions. 

 

(5) Dissipations 

∼ dissipative  

∼ deformation work increases the internal energy of the fluid while dissipating kinetic 

energy of the turbulence  

∼ needs a continuous supply of energy to make up for viscous losses. 

∼ main energy supply comes from mean flow by interaction of shear stress and velocity 

gradient 

∼ If no energy is supplied, turbulence decays rapidly.  

[Re] Energy cascade 

main flow → large scale turbulence → small scale turbulence→ heat 

 

(6) Continuum  

∼ continuum phenomenon 

∼ governed by the equation of fluid mechanics: Navier-Stokes Eq. + Continuity Eq. 

∼ larger than any molecular length scale 
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(7) Flow feature 

∼ feature of fluid flows not fluid itself  

∼ Most of the dynamics of turbulence is the same in all fluids. 

∼ Major characteristics of turbulent flows are not controlled by the molecular properties of 

the fluid. 

 

 

8.1.4 Description of turbulence problems 

(1) Turbulence modeling 

• Time-averaged Navier-Stokes Eq. → Reynolds Equations 

→ No. of unknowns {mean values ( , , ,u v w p ) + Reynolds stress components 

( ', ' )ij i ju uσ ρ= − < > } > No. of equations 

→ Closure problem:   

∼ The gap (deficiency of equations) can be closed only with models and estimates based on 

intuition and experience. 

 

(2) Methods of analysis 

1) Phynomenological concepts of turbulence 

∼ based on a superficial resemblance between molecular motion and turbulent motion 

∼ crucial assumptions at a early stage in the analysis 

 

• Eddy viscosity model 

∼ turbulence-generated viscosity is modeled using analogy with molecular viscosity  

∼ characteristics of flow  



Ch 8. Origin of Turbulence and Turbulent Shear Stress  

8-12 

• Mixing length model 

∼ analogy with mean free path of molecules in the kinetic theory of gases 

  

2) Dimensional analysis  

∼ one of the most powerful tools  

∼ result in the relation between the dependent and independent variables 

[Ex] form of the spectrum of turbulent kinetic energy  

 

3) Asymptotic theory 

∼ based on asymptotic invariance 

∼ exploit asymptotic properties of turbulent flows as Re approaches infinity (or very   

high). 

[Ex)] Theory of turbulent boundary layers 

Reynolds-number similarity 

 

4) Deterministic approach 

Large Eddy Simulation (L.E.S) 

~ model only large fluctuations 

 

5) Stochastic approach  
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8.2 Sources of Turbulence 

8.2.1 Source of turbulence  

(1) Surfaces of flow discontinuity (velocity discontinuity) 

1) tip of sharp projections - a 

2) the trailing edges of air foils and guide vanes - c 

3) zones of boundary-layer separation - d 

 

 

 

 

At surfaces of flow discontinuity, 

→ tendency for waviness to develop by accident from external cause or from disturbance 

transported by the fluid. 

→ waviness tends to be unstable  

→ amplify (grow in amplitude) 

→ curl over 

→ break into separate eddies 
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(2) Shear flows where velocity gradient occurs w/o an abrupt discontinuity 

~ Shear flow is becoming unstable and degenerating into turbulence. 

[Ex] Reynolds' experiment with a dye-streak in a glass tube 

 

[Re] How turbulence arises in a flow  

1) Presence of boundaries as obstacles creates vorticity inside a flow which was initially 

irrotational (vorticity, uω = ∇×
 

 ). 

2) Vorticity produced in the proximity of the boundary will diffuse throughout the flow which 

will become turbulent in the rotational regions. 

3) Production of vorticity will then be increased due to vortex filaments stretching mechanism. 

 

[Re] Grid turbulence = turbulence created behind a fixed grid in a wind tunnel 

convex side - low pressure 

 (high velocity) 

concave side - high pressure 

 (low velocity) 
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8.2.2 Mechanisms of instability 

• Tollmien-Schlichting's small perturbation theory 

∼ Disturbance are composed of oscillations of a range of frequencies which can be 

selectively amplified by the hydrodynamic flow field. 

 

Re Recrit< → all disturbances will be damped 

Re Recrit> → disturbances of certain frequencies will be amplified and others damped 

 

• Tollmien-Schlichting stability diagram 
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• Disturbances appear in spots  

∼ These spots grow as they are swept downstream.  

∼ spread and amplification of a spot disturbance into a turbulence patch 

∼ Mechanism of the initiation of spots of turbulence is related to what happens when the 

small disturbance, whose amplification is predicted by the small-perturbation theory, become 

large. 
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Pipe flow:  10-1~100 sec 

Channel/River flow:  100~101 

 

8.3 Velocities, Energies, and Continuity in Turbulence 

8.3.1 Reynolds decomposition 

(1) Velocity decomposition 

'u u u= +      

'v v v= +  

'w w w= +    (8.1) 

, ,u v w = instantaneous velocity 

, ,u v w = mean value = time-averaged value 

' , ' , 'u v w = fluctuating components 

0

1 T
u u dt

T
= ∫     (steady flow; 0u

t
∂

=
∂

)   (8.2) 

 

where T = long time compared to the time scale of the turbulence 

 

0

1' ' 0
T

u u dt
T

= ≡∫  (∵ fluctuations are both plus and minus)  (8.3) 

0

1 ( ) 0
T

u u dt u u
T

 − = − = 
 ∫  

 

(2) Pressure and stress decomposition 

'p p p= +  
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' 0p ≡  

'ij ij ijσ σ σ= +  

' 0ijσ ≡  

 

• Mean stress tensor  

2ij ij ijp Sσ δ µ= − +  

' ' 2 'ij ij ijp Sσ δ µ= − +  

 

in which ijS = mean strain rate
1
2

ji

j i

uu
x x

 ∂∂
≡ +  ∂ ∂ 

 

'ijS = strain-rate fluctuations
''1

2
ji

j i

uu
x x

 ∂∂
≡ +  ∂ ∂ 

 

 

(3) Turbulence Intensity 

→ root-mean-square (rms) = square root of variance = standard deviation average intensity 

of the turbulence = rms of u'  

  

1
22 2

0

1' '
T

TI u u dt
T

 = =  
 ∫       (8.4) 

 

• Relative Turbulence Intensity (RTI) =
2'u

u
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(4) Average kinetic energy of turbulence per unit mass  

∼ average KE of turbulence / mass 

2 2 2

2

1 ( ' ' ' )
2

1 ( )
2

u v w

intensity

= + +

= ∑
      (8.5) 

 

(5) Energy density, ( )fφ  

The kinetic energy is decomposed into an energy spectrum (density) vs. frequency. 

≡ limit of average kinetic energy per unit mass divided by the bandwidth f∆   

0

/( ) lim
f

average KE mass contained in f KEf
f f

φ
∆ →

∆ ∂
= =

∆ ∂
 

 

where f = ordinary frequency in cycles per second = 
2
ω
π

 

∴ average KE of turbulence / mass = 2 2 2

0

1( ) ( ' ' ' )
2

f df u v wφ
∞

= + +∫  

 

(6) Correlation between u', v', and w' 

exact correlation = one-to-one correlation 

zero correlation = completely independent  

 

0

01' ' ' '
0

T correlated
u v u v dt

uncorrelatedT
≠

=  =
∫    (8.6) 
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~ In a shear flow in an xy-plane, ' 'u v  is finite, and it is related to the magnitude of the 

turbulent shear stress ( ' 'u vt ρ= − ). 

 

[Re] Correlated variables 

1) Averages of products u  

 

( ')( ')

' ' '

i j i i j j

i j i j i j

u u u u u u

u u u u u u

= + +

= + + 'j iu u+

' 'i j i ju u u u= +

 

 

If ' ' 0 'i j iu u u≠ →  and 'ju are said to be correlated. 

If ' ' 0 'i j iu u u= →  and 'ju are uncorrelated. 

  

2) Correlation coefficient 

1/22 2

' '

( ' ' )

u u
i j

c
ij

u u
i j

=

⋅
 

in which  2 2' , 'i ju u = variances 

If 1ijc = ±   → perfect correlation  

[Re] Classification of turbulence 

1) General turbulence  
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u v w≠ ≠  

2 2 2' ' 'u v w≠ ≠  

' ' ' ' ' 'u v v w w u≠ ≠  

 

2) Homogeneous turbulence 

~ statistically independent of the location 

( ' ') ( ' ')i j a i j bu u u u=  

 

3) Isotropic turbulence  

~ statistically independent of the orientation and location of the coordinate axes 

2 2 2' ' 'u v w= = = constant 

' ' ' ' ' ' 0u v v w w u= = =  

 

∼ uncorrelated  

∼ not coherent structures  
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8.3.2 Measurement of turbulence 

∼ measure turbulent fluctuations  

(1) Hot-wire (hot-film) anemometer  

∼ Hot-film is usable in contaminated water.  

~ Change of temperature affects the electric current flow or voltage drop through wire. Fine 

platinum wire (film) is heated electrically by a circuit that maintains voltage drop constant. 

~ When inserted into the stream, the cooling, which is a function of the velocity, can be 

detected as variations in voltage.  

~ Use two or more wires at one point in the flow to make simultaneous measurements of 

different velocity components.  

→ After subtracting mean value, rms-values, correlations, and energy spectra can be 

computed using fluctuation. 

→ These operations can be performed electronically 

  

 

(2) Laser Doppler Velocimeter (LDV) 

~ Doppler effects 

~ An laser (ultrasonic) beam transmitted into the fluid will be reflected by impurities or 

bubbles in the fluid to a receiving sensor at a different frequency. 
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→ The transmitted and reflected signals are then compared by electronic means to calculate 

the Doppler shift which is proportional to the velocity. 

~ non-intrusive sensing (immersible LDA) 

~ sampling frequency = 20,000 Hz 

 

 

 (3) Acoustic Doppler Velocimeter (ADV)       

~ use Doppler effects 

~ intrusive sensing 

~ sampling frequency = 25-50 Hz 

 

 

 

 

(4) Particle Image Velocimetry (PIV) 

~ use Laser and CCD camera 

~ measure flow field at once 

~ sampling frequency = 30 Hz 
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PIV system 

 

 

 

 

Velocity of particle A: 0x
xu as t
t

∆
= ∆ →
∆

 

   0y
yu as t
t

∆
= ∆ →
∆
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LDV:  single point measurement 

 

 

 

PIV:  field measurement 

 

 

    

  

a) Image   b)Velocity   c)Turbulence Intensity 

Fig. 1 Jet Characteristics Measured by PIV (Seo et al., 2002) 
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[Re] Reynolds rules of averages:  Schlichting (1979) Boundary-Layer Theory 

 

Let f and g are two dependent variables whose time mean values are to be found. s is any 

one of the independent variables  x, y, z, t.  

 

f f

f g f g

f g f g

=

+ = +

⋅ = ⋅

 

since time averaging is carried out by integrating over a long

period of time,which commutes with differentiation with respect

to another independant variable

f f
s s


∂ ∂ = →

∂ ∂ 



 

f ds f ds=∫ ∫  

 

8.3.3 Continuity for turbulent motion  

Continuity equation for incompressible fluid 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

      (A) 

 

Substitute velocity decomposition into (A) 

( ') ( ') ( ') 0u u v v w w
x y z

∂ + ∂ + ∂ +
+ + =

∂ ∂ ∂
    (8.7) 

' ' ' 0u v w u v w
x y z x y z
∂ ∂ ∂ ∂ ∂ ∂

+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

   (B) 
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Take time-averages of each term of (B) 

'u v w u
x y z x
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂

'v
y

∂
+

∂
'w

z
∂

+
∂

0=  

' ( ') 0u u
x x

 ∂ ∂
= = ∂ ∂ 

  

 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

      (8.8) 

 

Substitute (8.8) into (B) 

 

' ' ' 0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                 (8.9) 

 

→ Both mean-motion components and the superposed turbulent-motion components must 

satisfy the continuity equation.  

→ Continuity must be satisfied for both turbulent and laminar motions. 

 

[Re] Continuity Eq. for compressible fluid  

 

0i

i

u
t x

ρρ ∂∂
+ =

∂ ∂
 

{ }( ')( ')( ') 0i i

i

u u

t x

ρ ρρ ρ ∂ + +∂ +
+ =

∂ ∂
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Time averaging yields 

{( ')( ')}( ') 0i i

i

u u
t x

ρ ρρ ρ ∂ + +∂ +
+ =

∂ ∂
 

'
t t
ρ ρ∂ ∂
+

∂ ∂
( 'i i

i

u u
x

ρ ρ∂
+ +
∂

'iuρ+ ' ') 0iuρ+ =  

( ' ') 0i i
i

u u
t x
ρ ρ ρ∂ ∂
+ + =

∂ ∂
 

    ( ' ') ( ' ') ( ' ') 0u v w u v w
t x y z x y z
ρ ρ ρ ρ ρ ρ ρ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
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8.4 Turbulent Shear Stress and Eddy Viscosities 

8.4.1 Fall of pressure drop due to shear stress  

shear stress = resistance to motion 

→ dissipate flow energy → fall of pressure drop along a pipe → head loss (
'

L
lh

R
t
γ

= ) 

laminar flow;  
( )

z
d p h V

dz
γ+
∝   

turbulent flow:  
( )

∝ n
z

d p h V
dz
γ+

  ( 2n ≈ )  

where zV  = average velocity  

 

 

 

8.4.2 Shear stress resisting to motion 

(1) Boussinesq's eddy viscosity concept 

   total
du du
dy dy

t µ η= +      (8.10) 

 

 
laminar 
flow 

turbulent 
flow 
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where 

u = mean local velocity (time - averaged) 

μ = dynamic molecular viscosity → property of the fluid 

η = dynamic eddy viscosity that depends on the state of the turbulent motion  

(
ηε
ρ

= = kinematic eddy viscosity) 

du
dy

µ  - apparent stress computed from the velocity gradient of mean motion. 

du
dy

η  - additional apparent stress associated with the turbulence  

 

For laminar flow,   0η =   

For turbulent flow,  η µ    →   turb lamt t>   

 

(2) Physical model of momentum transport (exchange)  

∼ momentum transport by turbulent velocity fluctuation 
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Step 1:  lower-velocity fluid parcel in layer 1 fluctuates with a v'-velocity into  

   layer 2 

Step 2:  its velocity in the direction of the stream is less than mean velocity of the  

   layer 2 by an amount -u' 

Step 3:  drag of the faster moving surroundings accelerates the fluid element and  

   increases its momentum 

Step 4:  The mass flux crossing from layer 1 to layer 2  

  = ' massv
time area

ρ  
 × 

 

Step 5:  Flow-direction momentum change = mass × velocity  

  = ' ( ') ' 'v u u vρ ρ× − = −  

Step 6:  Average over a time period  

= ' 'u vρ−  

= effective resistance to motion 

= effective shearing stress 

 

(3) Reynolds stress 

= ' 'u vρ−         (8.11) 

 = time rate change of momentum per unit area  

 = effective resistance to motion  

 ~ actually acceleration terms  

 ~ instantaneous viscous stresses due to turbulent motion = 
du
dy

η   
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' 'total yx
du u v
dy

t µ ρ t
 

= − = 
 
↑ 

     (8.12) 

shear stress           shear stress due to  

due to transverse      transverse momentum transport of 

molecular momentum  macroscopic fluid particles by  

transport             turbulent motion 

 

 

For fully developed turbulence, 

2' 'yx z
du u v V
dy

t η ρ 
≅ ≈ − ∝ 

 
    (8.13) 

 

[Re] Reynolds stress = ' 'u vρ−  

~ If u' and v' are uncorrelated, there would be no turbulent momentum transport. 

~ usually not zero (correlated) 

~ may exchange momentum of mean motion 

~ exchanges momentum between turbulence and mean flow 

 

[Re] Effective addition to the normal pressure intensity acting in the flow direction 

= 2' ' 'u u uρ ρ− = −        (8.14) 

 

[Re] Momentum transport 

Eq. (3.2):  
( ) 1d mv d mvK

dt area dy vol
∆ ∆ =  

 
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Newton's 2nd law of motion  

 

( )dv d mvF ma m
dt dt

= = =                            (A) 

( ) 1F d mv
area dt area

=                                     (B) 

 

Assume only shear stresses exist,  

Then LHS of (B) = τ 

Combine (3. 2) & (B)  

du
dy

t η=                                   (C) 

 

By the way, for the turbulent motion 

RHS of (B) = time rate change of momentum per unit area = ' 'u vρ−   

' 'u vρ t∴ − =         (D) 

 

Combine (C) and (D) 

' 't
duu v
dy

t ρ η= − =                            (E) 
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[Re] Shear stress for turbulent jet 

 

 

 

 

Case I:  0du
dy

>  → positive t  

1) 1 1y yδ− →   

mass flux  = 'vρ   

velocity change  = 'u−  

∴ momentum change = ( ') ( ') ' 'v u u vρ ρ× − = −   

' 'u vt ρ= −  → + momentum change → positive 

2) 1 1y yδ+ →  

mass flax  = ( ')vρ −   

velocity change = 'u  

∴ momentum change = ( ') ( ') ' 'v u u vρ ρ− × = −  

' 'u vt ρ= −  → + momentum change → positive 

τ  
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Case II:  0du
dy

<  → negative t  

1) 1 1' 'y yδ− →  

mass flax = 'vρ  

velocity change = 'u+   

∴ momentum change = ( ') ( ') ' 'v u u vρ ρ× =   

' 'u vt ρ= −  → - momentum change → negative 

 

2) 1 1' 'y yδ+ →  

mass flux = ( ')vρ −  

velocity change = 'u−  

∴ momentum change = ( ') ( ') ' 'v u u vρ ρ− × − =  

' 'u vt ρ= −  → - momentum change → negative 
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8.5 Reynolds Equations for Incompressible Fluids 

8.5.1 Reynolds Equation  

Navier-Stokes Eq. = equations of motion of a viscous fluid 

~ applicable to both turbulent and non-turbulent flows 

~ very difficult to obtain exact solution because of complexity of turbulence 

~ Alternative is to consider the pattern of the mean turbulent motion even through we   

 cannot establish the true details of fluctuations. 

→ average Navier-Stokes Eq. over time to derive Reynolds Eq. 

 

N-S Eq. in x-dir.:  

yxx zx
x

pu u u uu v w g
t x y z x y z

t tρ ρ
∂  ∂ ∂∂ ∂ ∂ ∂

+ + + = − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
      (8.15) 

 

Continuity Eq. for incompressible fluid:  

0u v wu u u
x y z

ρ  ∂ ∂ ∂
+ + = ∂ ∂ ∂ 

              (A) 

 

Add (A) to (11.15), then LHS becomes 

LHS =
2

2u u u v u w u u uv uwu v u w u
t x y y z z t x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + + = + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

 

Whole equation is 

2
yxx zx

x
pu u uv uw g

t x y z x y z
t tρ ρ
∂  ∂ ∂∂ ∂ ∂ ∂

+ + + = − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
  (8.16) 
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Decomposition: 

'u u u= +  

'v v v= +  

'w w w= +  

'x x xp p p= +                                      (8.17) 

  

Substitute (8.17) into (8.16), and average over time  

2( ') ( ') ( ')( ') ( ')( ')

( ') yxx x zx
x

u u u u u u v v u u w w
t x y z

p pg
x y z

ρ

t tρ

 ∂ + ∂ + ∂ + + ∂ + + + + + ∂ ∂ ∂ ∂  

∂∂ + ∂
= − + +

∂ ∂ ∂

 

 

Rearrange according to the Reynolds average rule  

( ') 'u u u u
t t t

∂ + ∂ ∂
= +

∂ ∂ ∂
u
t

∂
=
∂

 

2 2 2
2 2( ') '( 2 ' ' )u u u uu uu u

x x x x
∂ + ∂ ∂ ∂

= + + = +
∂ ∂ ∂ ∂

 

( ')( ') ( 'u u v v u v uv
y y

∂ + + ∂
= +

∂ ∂
'u v+

' '' ') u v u vu v
y y

∂ ∂
+ = +

∂ ∂
 

( ')( ') ( 'u u w w u w u w
z z

∂ + + ∂
= +

∂ ∂
'u w+

' '' ') u w u wu w
z z

∂ ∂
+ = +

∂ ∂
 

2

2' ' ' ' '

yxx zx
x

u u u v u w pg
t x y z x y z

u u v u w
x y z

t tρ ρ

ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂
∴ + + + = − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
− + +  ∂ ∂ ∂ 
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Subtract Continuity Eq. of mean motion ( 0u v wu u u
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
) 

2

2' ' ' ' 'yxx zx
x

u u u v u w u v wu u u
t x y z x y z

p u u v u wg
x y z x y z

ρ

t tρ ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 ∂∂ ∂ ∂ ∂ ∂
= − + + − + +  ∂ ∂ ∂ ∂ ∂ ∂ 

 

2' ' ' ' 'yxx zx
x

u u u uu v w
t x y z

p u u v u wg
x y z x y z

ρ

t tρ ρ

 ∂ ∂ ∂ ∂
∴ + + + ∂ ∂ ∂ ∂ 

 ∂∂ ∂ ∂ ∂ ∂
= − + + − + +  ∂ ∂ ∂ ∂ ∂ ∂ 

   (8.18) 

 

  

  

~  

 

y-direction:  

2' ' ' ' '

xy y zy
y

pv v v vu v w g
t x y z x y z

v u v v w
x y z

t t
ρ ρ

ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
− + +  ∂ ∂ ∂ 

 

 

z-direction: 

2' ' ' ' '

yzxz z
z

w w w w pu v w g
t x y z x y z

w u w v w
x y z

ttρ ρ

ρ

∂  ∂∂ ∂ ∂ ∂ ∂
+ + + = + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
− + +  ∂ ∂ ∂ 

 

•turbulence acceleration terms 

•mean transport of fluctuating momentum 
by turbulent velocity fluctuations 
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Rearrange (8.18) 

( )2' ( ' ') ( ' ')x x yx zx

u u u uu v w
t x y z

g p u u v u w
x y z

ρ

ρ ρ t ρ t ρ

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

∂ ∂ ∂
= + − − + − + −

∂ ∂ ∂

 

  

 

 

 

 

Introduce Newtonian stress relations:  Eqs. 5.29 & 5.30  

22
3x

up q
x

σ µ µ∂
= − + − ∇⋅

∂



 

22
3y

vp q
y

σ µ µ∂
= − + − ∇⋅

∂



 

22
3z

wp q
z

σ µ µ∂
= − + − ∇⋅

∂



 

yx xy
v u
x y

t t µ  ∂ ∂
= = + ∂ ∂ 

 

yz zy
w v
y z

t t µ  ∂ ∂
= = + ∂ ∂ 

 

zx xz
u w
z x

t t µ ∂ ∂ = = + ∂ ∂ 
 

 

Substitute velocity decomposition, Eqs (8.17) into Eqs. (5.29) & (5.30) and average over time 

for incompressible fluid ( 0q∇⋅ =


) 

Sum of apparent stress of the mean 
motion and additional apparent stress due 
to turbulent fluctuations 
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1) x-direction: 

( )( ') 2 2x x
u u up p p p

x x
σ µ µ∂ + ∂

= − = − + + = − +
∂ ∂

'
 

( ') ( ')
yx

v v u u v u
x y x y

t µ µ
   ∂ + ∂ + ∂ ∂

= + = +   ∂ ∂ ∂ ∂  
 

( ') ( ')
zx

u u w w u w
z x z x

t µ µ
 ∂ + ∂ + ∂ ∂ = + = +   ∂ ∂ ∂ ∂  

   (8.20 a) 

 

(2) y-direction: 

2y
vp p
y

µ ∂− = − +
∂

 

xy
v u
x y

t µ  ∂ ∂
= + ∂ ∂ 

 

zy
w v
y z

t µ
 ∂ ∂

= + ∂ ∂ 
      (8.20 b) 

 

(3) z-direction: 

2z
wp p
z

µ ∂− = − +
∂

 

xz
u w
z x

t µ ∂ ∂ = + ∂ ∂ 
 

yz
w v
y z

t µ
 ∂ ∂

= + ∂ ∂ 
      (8.20 c) 
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Substitute Eq. (8.20) into Eq. (8.18) 

2

2

' ' ' ' '

x

u u u uu v w
t x y z

u v u u wg p
x x y x y z z x

u u v u w
x y z

ρ

ρ µ µ µ µ µ

ρ

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = − − + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 ∂ ∂ ∂
− + +  ∂ ∂ ∂ 

 

2 2 2 2 2

2 2 2

2

2

' ' ' ' '

x
p u v u u wg
x x y x y z z x

u u v u w
x y z

ρ µ

ρ

 ∂ ∂ ∂ ∂ ∂ ∂
= − + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
− + +  ∂ ∂ ∂ 

 

2 2 2 2 2 2

2 2 2 2

2

2

( )

' ' ' ' '

x
p u u u u v wg
x x y z x y x z x

u

u u v u w
x y z

ρ µ µ

µ

ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

= ∇ Ι

 ∂ ∂ ∂
− + +  ∂ ∂ ∂ 

  

 

By the way,  

(I)  = 0u v w
x x y z
 ∂ ∂ ∂ ∂

+ + = ∂ ∂ ∂ ∂ 
 (∵ Continuity Eq. for incompressible fluid) 

 

Therefore, substituting this relation yields 
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x-dir.: 

2
2 ' ' ' ' '

x

u u u uu v w
t x y z

p u u v u wg u
x x y z

ρ

ρ µ ρ

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
= − + ∇ − + +  ∂ ∂ ∂ ∂ 

  (8.22 a) 

y-dir.: 

2
2 ' ' ' ' '

y

v v v vu v w
t x y z

p v u v v wg v
y x y z

ρ

ρ µ ρ

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
= − + ∇ − + +  ∂ ∂ ∂ ∂ 

   (8.22 b) 

z-dir.: 

2
2 ' ' ' ' '

z

w w w wu v w
t x y z

p w u w v wg w
z x y z

ρ

ρ µ ρ

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
= − + ∇ − + +  ∂ ∂ ∂ ∂ 

  (8.22 c) 

 

→ Reynolds Equations (temporal mean eq. of motion) 

→ Navier-Stokes form for incompressible fluid  

 

[Re] No. of Equations = 4 

No. of Unknowns: 4 + 9 (turbulence fluctuating terms) 

→ 9 products of ' 'i ju u  

→ one-point double correlation of velocity fluctuation 
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[Re] 

1) Reynolds Equation of motion → solve for mean motion  

21( ' ' )i i i
j i j i

j j i j j

u u upu u u X
t x x x x x

µ
ρ ρ

∂ ∂ ∂∂ ∂
+ + = − +

∂ ∂ ∂ ∂ ∂ ∂
 

time rate of                                body  
change of                                 force 
momentum   rate of convection  

of the momentum        force due 
to mean 

 pressure  
rate of diffusion                        rate of molecular 
of momentum                           diffusion of  
by turbulence                          momentum 

  by viscosity  
 

2) Navier-Stokes Eq. → apply to instantaneous motion 

21i i i
j i

j i j j

u u p uu X
t x x x x

µ
ρ ρ

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂ ∂
 

 

8.5.2 Closure Model 

Assumptions are needed to close the gap between No. of equations and No. unknowns. 

→ Turbulence modeling:  Ch. 10 

■ Boussinesq's eddy viscosity model 

2'

' '

' '

x

y

z

uu
x

uu v
y

uu w
z

ε

ε

ε

∂
− =

∂

∂
− =

∂

∂
− =

∂

      (A) 

 

' ' uu v
y
∂

− ∝
∂
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Reynolds Equation in x-dir.: 

2 2 2 2

2 2 2
' ' ' ' '

x

u u u uu v w
t x y z

p u u u u u v u wg
x x y z x y z

ρ

ρ µ ρ

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + + − + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

2' ' ' ' 'x
p u u ug u u v u w
x x x y y z z

µ µ µρ ρ
ρ ρ ρ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + − + − + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

       (B) 

Substitute (A) and 
µ ν
ρ
=  into (B) 

( ) ( ) ( )x x y z

u u u uu v w
t x y z

p u u ug
x x x y y z z

ρ

ρ ρ ν ε ν ε ν ε

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

 ∂  ∂ ∂ ∂ ∂ ∂ ∂    = − + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

2 2 2

2 2 2( )x
p u u ug
x x y z

ρ ρ ν ε
 ∂ ∂ ∂ ∂

= − + + + + ∂ ∂ ∂ ∂ 
 

2

2

( )

( )

x

x

pg u
x
pg u
x

ρ ρ ν ε

ρ µ η

∂
= − + + ∇

∂
∂

= − + + ∇
∂

 

 

where ν = kinematic molecular viscosity; ε = kinematic eddy viscosity; µ = dynamic 

molecular viscosity; η = dynamic eddy viscosity 

 

x y zε ε ε ε= = =  
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8.5.3 Examples 

(1) Turbulent flow between parallel plates 

Apply Reynolds equations to steady uniform motion in the x-direction between parallel 

horizon walls 

 

 

 

 

 

 

( ) 0
t

∂
=

∂
 ← steady motion 

( ) 0vel
x

∂
=

∂
 ← uniform motion  

0

' 0

u
x
u
x

∂ = ∂
∂ =
∂

 

( ) 0, 0w
z

∂
= =

∂
 ← 2-D motion  

0

1 0
T

v vdt
T

= =∫ ← unidirectional mean flow 

' 0v ≠  

 

Incorporate these assumptions into Eqs. (8.22) 

: ux
t

ρ ∂
∂

uu
x

∂
+

∂
v+

u w
y
∂

+
∂

u
z

 ∂
 ∂ 
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2

2 '
x

p ug u
x x

ρ µ ρ∂ ∂
= − + ∇ −

∂ ∂
' ' ' 'u v u w
y z

∂ ∂
+ +

∂ ∂

 
 
 
 

 

2

2

2

2

' '0

' '

x
p u u vg
x y y

h p u u vg
x x y y

ρ µ ρ

ρ µ ρ

∂ ∂ ∂
∴ = − + −

∂ ∂ ∂

∂ ∂ ∂ ∂
= − − + −

∂ ∂ ∂ ∂

          (A) 

 

    : vy
t

ρ ∂
∂

vu
x
∂

+
∂

v+
v w
y
∂

+
∂

v
z

 ∂
 ∂ 

 

2
y

pg v
y

ρ µ∂
= − + ∇

∂
' 'v u
x

ρ ∂
−

∂

2' ' 'v v w
y z

∂ ∂
+ +

∂ ∂

 
  
 

 

2'0 y
p vg
y y

ρ ρ∂ ∂
∴ = − −

∂ ∂
                            

2'( ) 0vp h
y y

γ ρ∂ ∂
+ + =

∂ ∂
                             (8.25) 

 

Integrate (8.25)       

2' .p h v constγ ρ+ + =       (8.26) 

 

→ In turbulent flow, static pressure distribution in planes perpendicular to flow direction 

differs from the hydrostatic pressure by 2'vρ  

 

Rearrange (A)   

y
hg g
y
∂

= −
∂
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2

2
' '( ) ' 'u v u up h u v

x y y y y
γ ρ µ ρ µ

 ∂ ∂ ∂ ∂ ∂
+ =− + = − + ∂ ∂ ∂ ∂ ∂ 

              (D) 

 

 

Integrate (D) w.r.t. y (measured from centerline between the plate) 

( ) ' 'd p h y u v
dx

γ ρ t+ = − =  

 

' 'tur u v yt ρ= − ∝  

 

→ τ distribution is linear with distance from the wall for both laminar and turbulent flows. 

 

 

 

 

neglect since turbulence contribution 
to shear is dominant 

Near wall, viscous shear is 
dominant. 
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(2) Equations for a turbulent boundary layer  

 

Apply Prandtl's 2-D boundary-layer equations  

2

2

1u u u p uu v
t x y x y

µ
ρ ρ

∂ ∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂ ∂
            (8.7a) 

0

0

u v
x y

u vu u
x y

∂ ∂
+ =

∂ ∂
∂ ∂

→ + =
∂ ∂

                   (8.7b) 

 

Add Continuity Eq. and Eq. (8.7a) 

 

2

2

2

12u u u v p uu v u
t x y y x y

u uv
x y

µ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + ∂ ∂ ∂ ∂ ∂ ∂ 

↓ ↓
∂ ∂
∂ ∂

         (A) 

 

Substitute velocity decomposition into (A) and average over time  

( ')u u u
t dt

∂ + ∂
=

∂
 

 
2 2 2( ') 'u u u u

x dx x
∂ + ∂ ∂

= +
∂ ∂

 

 
( ')( ') ' 'u u v v u v u v

y y y
∂ + + ∂ ∂

= +
∂ ∂ ∂

 

 
1 1( ') pp p

x xρ ρ
∂ ∂

− + = −
∂ ∂
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2 2

2 2( ') uu u
y y

µ µ
ρ ρ

∂ ∂
+ =

∂ ∂
 

 

Thus, (A) becomes 

 
2 2 2

2

1 ' ' 'u u u v p u u u v
t x y x y x y

µ
ρ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂
∴ + + = − + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
  (B) 

 

Subtract Continuity eq. from (B) 

2 2

2

1 ' ' 'u u u p u u u vu v
t x y x y x y

µ
ρ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

2 2

2
' ' 'u u u p u u u vu v

t x y x x y y
ρ ρ µ ρ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = − − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

→ x-eq. 

Adopt similar equation as Eq. (8.25) for y-eq.   

20 ( ' )p v
y

ρ∂
= − +

∂
 

 

Continuity eq.:   

0u v
x y

∂ ∂
+ =

∂ ∂
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8.6 Mixing Length and Similarity Hypotheses in Shear flow  

In order to close the turbulent problem, theoretical assumptions are needed for the calculation 

of turbulent flows (Schlichting, 1979). 

→We need to have empirical hypotheses to establish a relationship between the Reynolds 

stresses produced by the mixing motion and the mean values of the velocity components 

 

8.6.1 Boussinesq's eddy viscosity model 

For laminar flow;  

l
du
dy

t µ=  

 

For turbulent flow, use analogy with laminar flow; 

 ' 't
duu v
dy

t ρ η= − =        (8.30) 

 

where  η  = apparent (virtual) eddy viscosity  

→ turbulent mixing coefficient 

∼ not a property of the fluid 

∼ depends on u ; uη ∝   
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8.6.2 Prandtl's mixing length theory  

∼ express the momentum shear stresses in terms of mean velocity  

■ Assumptions  

1) Average distance traversed by a fluctuating fluid element before it acquired the velocity of 

new region is related to an average (absolute) magnitude of the fluctuating velocity.  

'l v∝  

' duv l
dy

∝        (8.31a) 

where ( )l l y=  =  mixing length 

 

2) Two orthogonal fluctuating velocities are proportional to each other.  

' ' duu v l
dy

∝ ∝       (8.31b) 

 

Substituting (8.31) into (8.13) leads to 

2' ' du duu v l
dy dy

t ρ ρ= − =                            (8.32) 

 

Therefore, combining (8.30) and (8.32), dynamic eddy viscosity can be expressed as 

2 dul
dy

η ρ=                                    (8.33) 
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→ Prandtl's formulation has a restricted usefulness because it is not possible to predict 

mixing length function for flows in general.  

 

■ Near wall 

  

 

 

 

 

 

 

l yκ=       (A) 

 

Where κ  = von Karman constant 

Substitute (A) into (8. 32) 

2 2 du duy
dy dy

t ρκ=       (8.34) 

 

 

[Re] Prandtl's mixing-length theory (Schlichting, 1979) 

Consider simplest case of parallel flow in which the velocity varies only from streamline to 

streamline. 
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→ 
( )

0
u u y
v w
=

 = =
  

 

Shearing stress is given as 

' ' 'xy t
duu v
dy

t t ρ η= = − =  

 

○ Simplified mechanism of the motion 

 

 

 

1) Fluid particles move in lump both in longitudinal and in the transverse direction. 

2) If a lump of fluid is displaced from a layer at 1( )y l− to a new layer 1y  , then, the 

difference in velocities is expressed as (use Taylor series and neglect high-order terms) 

1

1 1 1( ) ( ) ; ' 0
y y

duu u y u y l l v
dy =

 
∆ = − − ≈ > 

 
 

 

where l = Prandtl's mixing length (mixture length) 
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For a lump of fluid which arrives at 1y from the laminar at 1y l+  

1

2 1 1( ) ( ) ; ' 0
y y

duu u y l u y l v
dy =

 
∆ = + − ≈ < 

 
 

 

3) These velocity differences 1 2( , )u u∆ ∆ caused by the transverse motion can be regarded as 

the turbulent velocity fluctuation at 1y   

1

1 2
1 ( )'
2 y

duu u lu
dy

 
= ∆ + ∆ =  

 
                  (2) 

 

○ Physical interpretation of the mixing length  l. 

= distance in the transverse direction which must be covered by an agglomeration of fluid 

particles travelling with its mean velocity in order to make the difference between it's velocity 

and the velocity in the new laminar equal to the mean transverse fluctuation in turbulent flow. 

 

4) Transverse velocity fluctuation 'v originates in two ways. 
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5) Transverse component 'v is same order of magnitude as 'u . 

' ' duv const u const l
dy

= ⋅ = ⋅                      (3) 

 

6) Fluid lumps which arrive at layer 1y with a positive value of v’ (upwards from layer) give 

rise mostly to a negative u’. 

' ' 0u v∴ <  

' ' ' 'u v c u v= −                                    (4) 

where 0 < c < 1 

 

Combine Eqs. 2-4  

2' ' du duu v constant l
dy dy

= − ⋅ −  

 

Include constant into l (mixing length)  

2' ' du duu v l
dy dy

= −                                 (5) 

 

Therefore, shear stress is given as 

2' ' du duu v l
dy dy

t ρ ρ= − =                                   (6) 

 

→ Prandtl's mixing-length hypothesis  
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8.6.3 Von Karman's similarity hypothesis 

○Assumptions  

∼Turbulent fluctuations are similar at all point of the field of flow (similarity rule). 

→ Turbulent fluctuations differ from point to point only by time and length scale factors. 

Velocity is characteristics of the turbulent fluctuating motion.  

 

For 2-D mean flow in the x - direction, a necessary condition to secure compatibility between 

the similarity hypothesis and the vorticity transport equation is 

2 2

/
/

du dyl
d u dy

  

 2 2
/
/

du dyl
d u dy

κ=                                         (A) 

 

where κ  = empirical dimensionless constant 

 

Substituting (A) into (8.32) gives 

4
2

2 2 2

( / )
( / )

du dy
d u dy

t ρκ=                                      (8.35) 

   

→ Von Karman's similarity rule 
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[Re] Prandtl's velocity-distribution law 

For wall turbulence (immediate neighborhood of the wall) 

2
2 2 duy

dy
t ρκ

 
=  

 
       (1) 

 

*1du u
dy y y

t
κ ρ κ

= =                                 (2) 

where *u t
ρ= = shear velocity; κ  = von Karman const ≈ 0.4 

  

Integrate (2) w.r.t. y 

* lnuu y C
κ

= +                                       (3) 

→ Prandtl's velocity distribution law 

 

Apply Prandtl's velocity distribution law to whole region 

maxu u at y h= =  

*
max lnuu h C

κ
= +                                  (4) 

 

Subtract (3) from (4) to eliminate constant of integration 

max

*

1 lnu u h
u yκ
−

=                                    (5) 

→ Prandtl's universal velocity-defect law 
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Homework Assignment # 5 

Due: 1 week from today 

 

8-1. The velocity data listed in Table were obtained at a point in a turbulent flow of sea water. 

1) Compute the energy of turbulence per unit volume. 

2) Determine the mean velocity in the x -direction u  and verify that 'u =0. 

3) Determine the magnitude of the three independent turbulent shear stresses in Eq. (8-21). 

 

time, 

sec 

u  

cm/s 

'u  

cm/s 

'v  

cm/s 

'w  

cm/s 

0.0 89.92 -4.57 1.52 0.91 

0.1 95.10 0.61 0.00 -0.30 

0.2 103.02 8.53 -3.66 -2.13 

0.3 99.67 5.18 -1.22 -0.61 

0.4 92.05 -2.44 -0.61 0.30 

0.5 87.78 -6.71 2.44 0.91 

0.6 92.96 -1.52 0.91 -0.61 

0.7 90.83 -3.66 1.83 0.61 

0.8 96.01 1.52 0.61 0.91 

0.9 93.57 -0.91 0.30 -0.61 

1.0 98.45 3.96 -1.52 -1.22 

 

 


