Ch 8. Origin of Turbulence and Turbulent Shear Stress

Chapter 8 Origin of Turbulence and Turbulent Shear Stress

8.1 Introduction
8.1.1 Definition
* Hinze (1975): Turbulent fluid motion is an irregular condition of flow in which the
various quantities show a random variation with time and space coordinates, so that

statistically distinct average values can be discerned.

statistically distinct average values:  mean flow, primary motion
[ random fluctuations:  non-periodic, secondary motion,

instantaneously unsteady, varies w.r.t. time and space

u=u-+u'

.
]
i F i - [ TRl

Time. 1

Fluctuations of the velocity
component i with time at a specified
location in turbulent flow.
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« Types of turbulence

Wall turbulence: turbulence generated and continuously affected by actual physical

boundary such as solid walls

Free turbulence: absence of direct effect of walls, turbulent jet — AEH Il

8.1.2 Origin of turbulence

(1) Shear flow instability

=N ALY

e
S . —
/_\/\—/ =0
—i T ——-
/\/\/ £=025MT,
< -
e —»
% t=0.300/U,
-— -
—_ =
% =
- -—
- —
t=0.400/U,
- -—
] ] | l
0 1 2
x/h

Figure 12.18 Nonlinear numerical calculation of the evolution of a vortex sheet that has been given a

small sinusoidal displacement of wavelength A. The density difference across the interface is zero, and
Us, is the velocity difference across the sheet. J. S. Turner, Buoyancy Effects in Fluids, 1973 and reprinted

with the permission of Cambridge University Press.
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F1GURE 5.7. Vortex stretching, folding. sheetification.

[Reprinted with permission from J. Bell and D. Marcus,
Comm. Math. Phys. 147, 371-394 (1992).]
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(2) Boundary-wall-generated turbulence

~ wall turbulence

Figure 1.1. Large eddies in a turbulent boundary layer. The flow above the boundary
layer has a velocity U; the eddies have velocities u. The largest eddy size (f) is comparable
to the boundary-layer thickness (L;). The interface between the turbulence and the flow
above the boundary layer is guite sharp (Corrsin and Kistler, 1954).

(3) Free-shear-layer-generated turbulence

~ free turbulence
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Figure 13,13 Three types of wall-free twrbulent flows: (a) jet: (b) wake; and (c) shear layer.
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Outer
zone

Boundary
layer

a vertical slice of light. The Reynolds number is 3500 based
on the momentum thickness. The intermirttent nature of
the outer pare of the layer is evident. Photograph by Thomas
Corke, Y. Guezennec, and Hassan Nagib. o

157. Side view of a turbulent boundary layer. Here a
turbulent boundary layer develops naturally on a flat plate
3.3 m long suspended in a wind tunnel. Streaklines from a
smoke wire near the sharp leading edge are illuminated by

- RN
shows the flow patwern 5.8 m downstream, where the

158. Turbulent boundary layer on a wall. A fog of tiny
Reynolds number based on momentum thickness is about

oil droplets is introduced into the laminar boundary layer
on the test-section floor of a wind tunnel, and the layer 4000. Falco 1977

then tripped to become turbulent. A vertical sheet of light

|
92 I
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verteyx ri'rlg
!.

Turbulent
jet

102. Instability of an axisymmetric jet. A laminar edge of the jer develops axisymmetric oscillations, rolls up
stream of air flows from a circular rube at Reynolds into yortex rings, and then abrupdy becomes turbulent.
number 10,000 and is made visible by a smoke wire. The Photograph by Robert Drubka and Hassan Nagib

er directed downward

s approximarely 2300
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An Album of
Fluid Motion pp.aq-iol

169. Entrainment by a plane turbulent jet.
A time exposure shows the mean flow of a
plane jet of colored water issuing into ambient
water at 100 em/s. Tiny air bubbles mark the
streamlines of the slow motion induced in the
surrounding water. ONERA photograph, Werlé
1974

170. Entrainment by an axisymmetric tur-
bulent jet. A jer of colored turbulent warer
flows from a tube of 9 mm diamerter ar 200
em/s. According to boundary-layer theory the
streamlines shown by air bubbles in the water
outside the jer are paraboloids of revolution,
and parabolas in the plane case above.
ONERA photograph, Werlé 1974

. - i i tered 50 diameters
ol i ight tern, covering 40 diameters cen
ke of a cylinder. A sheet of laser lig . B o
1171:«:5 ;{::;E:::’-:‘::‘:aki ofa cc?r:ular cylinder at a Reynolds downstream. Phatograph by
number of 1770. Oil fog shows the instantaneous flow pat-
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152. Generation of turbulence by a grid. Smoke wires ber is 1500 based on the l-inch mesh size. Instability of the
show a uniform laminar stream passing through a !/, ¢-inch shear layers leads to turbulent flow downstream. Photo-
plate with Y%-inch square perforations. The Reynolds num- graph by Thomas Corke and Hassan Nagib

grid Curbulemee

153. Homogeneous turbulence behind a grid. Behind stream, it provides a useful approximation to the idealiza-
a finer grid than above, the merging unstable wakes tion of _isotropic turbulence. Photograph by Thomas Corke
quickly form a homogeneous field. As it decays down! and Hassan Nagib

Isotropic
turbulence
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8.1.3 Nature of turbulence
(1) Irregularity
~ randomness

~ need to use statistical methods to turbulence problems

~ Turbulent motion can also be described by Navier-Stokes Eq.

[Cf] Coherent structure

(2) Diffusivity
~ causes rapid mixing and increased rates of momentum, heat, and mass transfer
~ exhibit spreading of velocity fluctuations through surrounding fluid

~ the most important feature as far as practical applications are concerned,; it increases

heat transfer rates in machinery, it increases mass transfer in water

(3) Large Reynolds numbers

~ occur at high Reynolds numbers

~ Turbulence originates as an instability of laminar flows if Re becomes too large.

pipe flow Re, =2,100
Uus®
boundary layer Re, =——=600
1%
free shear flow Re. ~ low

(4) Three-dimensional vorticity fluctuations

~ Turbulence is rotational and three-dimensional.
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~ high levels of fluctuating vorticity
~ need to use vorticity dynamics

~ tend to be isotropic

[Cf] The 2-D flows like cyclones, random (irrotational) waves in the ocean are not turbulent

motions.

(5) Dissipations

~ dissipative

~ deformation work increases the internal energy of the fluid while dissipating kinetic
energy of the turbulence

~ needs a continuous supply of energy to make up for viscous losses.

~ main energy supply comes from mean flow by interaction of shear stress and velocity
gradient

~ If no energy is supplied, turbulence decays rapidly.

[Re] Energy cascade

main flow — large scale turbulence — small scale turbulence— heat

(6) Continuum

~ continuum phenomenon
~ governed by the equation of fluid mechanics: Navier-Stokes Eq. + Continuity Eq.

~ larger than any molecular length scale
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(7) Flow feature

~ feature of fluid flows not fluid itself
~ Most of the dynamics of turbulence is the same in all fluids.

~ Major characteristics of turbulent flows are not controlled by the molecular properties of

the fluid.

8.1.4 Description of turbulence problems
(1) Turbulence modeling
* Time-averaged Navier-Stokes Eq. — Reynolds Equations

— No. of unknowns {mean values (U, V, W, p) + Reynolds stress components
(o =—p <U,', U;">)} > No. of equations

— Closure problem:
~ The gap (deficiency of equations) can be closed only with models and estimates based on

intuition and experience.

(2) Methods of analysis

1) Phynomenological concepts of turbulence

~ based on a superficial resemblance between molecular motion and turbulent motion

~ crucial assumptions at a early stage in the analysis

* Eddy viscosity model

~ turbulence-generated viscosity is modeled using analogy with molecular viscosity

~ characteristics of flow
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* Mixing length model

~ analogy with mean free path of molecules in the kinetic theory of gases

2) Dimensional analysis
~ one of the most powerful tools
~ result in the relation between the dependent and independent variables

[Ex] form of the spectrum of turbulent kinetic energy

3) Asymptotic theory

~ based on asymptotic invariance

~ exploit asymptotic properties of turbulent flows as Re approaches infinity (or very
high).

[Ex)] Theory of turbulent boundary layers

Reynolds-number similarity

4) Deterministic approach

Large Eddy Simulation (L.E.S)

~ model only large fluctuations

5) Stochastic approach
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8.2 Sources of Turbulence

8.2.1 Source of turbulence

(1) Surfaces of flow discontinuity (velocity discontinuity)
1) tip of sharp projections - a
2) the trailing edges of air foils and guide vanes - ¢

3) zones of boundary-layer separation - d

(b) (c) (d)

FIG. 11-1. Eddy formation at velocity discontinuity surfaces: (a) sharp projection; (b) bluff body; (c) trailing
edge; (d) boundary-layer separation.

At surfaces of flow discontinuity,

— tendency for waviness to develop by accident from external cause or from disturbance
transported by the fluid.

— waviness tends to be unstable

— amplify (grow in amplitude)

— curl over

— break into separate eddies
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Streamlines
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FIG. 11-3. Eddies arising from waves at a surface of discontinuity.

(2) Shear flows where velocity gradient occurs w/o an abrupt discontinuity
~ Shear flow is becoming unstable and degenerating into turbulence.

[Ex] Reynolds' experiment with a dye-streak in a glass tube

[Re] How turbulence arises in a flow

1) Presence of boundaries as obstacles creates vorticity inside a flow which was initially

irrotational (vorticity, w=VxUu ).
2) Vorticity produced in the proximity of the boundary will diffuse throughout the flow which
will become turbulent in the rotational regions.

3) Production of vorticity will then be increased due to vortex filaments stretching mechanism.

[Re] Grid turbulence = turbulence created behind a fixed grid in a wind tunnel
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8.2.2 Mechanisms of instability

* Tollmien-Schlichting's small perturbation theory

~ Disturbance are composed of oscillations of a range of frequencies which can be

selectively amplified by the hydrodynamic flow field.

Re < Re_.. — all disturbances will be damped

crit

Re > Re,;, — disturbances of certain frequencies will be amplified and others damped

* Tollmien-Schlichting stability diagram

40— 1 T T T 1
! f= Disturbance —
P frequency
320 | =
Neutral stability
_ A (experimental) 7
240 t:\? =)
2{'—12' X 106 |- Q‘l‘ -
\ Ste
160k Stable B
B Unstable
80} Neutral stability -
| &iable (caleulated) |
{) [ | |I | | L 1 |
0 1200 2400 3600
Rerit R = U8

¥

less frequency function. Above Ry, disturbances of the frequencies falling within the neutral stability loop aré
unstable and will amplify. Disturbances of all other frequencies will be stable [2].

FIG. 11-4. Tollmien-Schlichting stability diagram for a laminar boundary layer. The ordinate is a dimension-
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* Disturbances appear in spots

~ These spots grow as they are swept downstream.

~ spread and amplification of a spot disturbance into a turbulence patch

~ Mechanism of the initiation of spots of turbulence is related to what happens when the

small disturbance, whose amplification is predicted by the small-perturbation theory, become

large.

[

(a)

=z

FIG. 11-5. Two-dimensional versus localized spot disturbance in a laminar boundary layer: (a) two-dimen-
sional wave amplification by Tollmien-Schlichting hypothesis; (b) observed spread and amplification of a
spot disturbance into a turbulence patch.
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8.3 Velocities, Energies, and Continuity in Turbulence
8.3.1 Reynolds decomposition

(1) Velocity decomposition

u=u-+u'

;

V=V+V' :
wW=w+w' (8.1) ThREH
Fluctuations oi the velociy
u , V’ W = instantaneous VeIOCIty component u .\.'.'|Il|1 time | 1 _\]1CL'iI!ICLi
location in turbulent flow.

u,V, W = mean value = time-averaged value

u',v',w'= fluctuating components

— T a
u= jo u dt (steady flow; = =0) (8.2)

1
=

Pipe flow: 107"~10° sec

Channel/River flow:  10°~10!

where T = long time compared to the time scale of the turbulence

.
U'==| u'dt=0 (. fluctuations are both plus and minus) (8.3)

(2) Pressure and stress decomposition

p=p+p'
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p'=0
opt =c7_ij+(7'iJ
o' =0

« Mean stress tensor
0y =—PS; +2uS;

o =—Pp'o;+2uS;’

OX;  OX

_ 1(ou, ou;
inwhich S;; = mean strain rate= —[—'+—’J

oX; 0%

' i : ou' ou;’
S, ' = strain-rate fluctuations= —| ——+—"

(3) Turbulence Intensity

— root-mean-square (rms) = square root of variance = standard deviation average intensity

of the turbulence = rms of u'

1

T =u? = { L jOTu'Zdt }2 (8.4)

T

12

* Relative Turbulence Intensity (RTI) =——
u

c
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(4) Average kinetic energy of turbulence per unit mass

~ average KE of turbulence / mass

= % (U?+v?+w?)
(8.5)
1 - N2
=3 > (intensity)

(5) Energy density, @(f)

The kinetic energy is decomposed into an energy spectrum (density) vs. frequency.

= limit of average kinetic energy per unit mass divided by the bandwidth Af

#(F) = lim average KE / mass contained in Af _ oKE
Af >0 Af of

0]
where f = ordinary frequency in cycles per second = —
T

o0 1
. average KE of turbulence / mass = IO g(f)df = E(u 2 rviiew?)

(6) Correlation between u', v', and w'
exact correlation = one-to-one correlation

zero correlation = completely independent

— 1T # 0 correlated
u'v' = —j u'v'dt
T Jo =0 uncorrelated (8.6)
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~ In a shear flow in an xy-plane, u'v' is finite, and it is related to the magnitude of the

turbulent shear stress (7 =—pu'v").

[Re] Correlated variables

1) Averages of products u

u;u; :(u_i+ui ')(u_j+uj')

If u'u;"#0— Uu;" and U, "are said to be correlated.

If u'u'=0-> u'

i U ;' and u; "are uncorrelated.

2) Correlation coefficient

u. u.
|
C__ = — —J
J 2 2.\1/2
(™ -u.™)
| J
inwhich U;'?, U " = variances

j
If ¢; = £1 — perfect correlation

[Re] Classification of turbulence

1) General turbulence
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u=+Vv+w

u? = v'? 2w

u'v' #v'w' = w'u'

2) Homogeneous turbulence

~ statistically independent of the location

(ui Iuj I)a :(ui lujl)b

3) Isotropic turbulence

~ statistically independent of the orientation and location of the coordinate axes

u'?> =v'? = w' = constant

u'vi=v'w'=w'u'=0

~ uncorrelated

~ not coherent structures

Isotropic Anisoltropic

Figure 13.6 Isotropic and anisotropic turbulent fields. Each dot represents a wy-pair at a certain ume.
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8.3.2 Measurement of turbulence

~ measure turbulent fluctuations

(1) Hot-wire (hot-film) anemometer
~ Hot-film is usable in contaminated water.
~ Change of temperature affects the electric current flow or voltage drop through wire. Fine

platinum wire (film) is heated electrically by a circuit that maintains voltage drop constant.

~ When inserted into the stream, the cooling, which is a function of the velocity, can be

detected as variations in voltage.

~ Use two or more wires at one point in the flow to make simultaneous measurements of
different velocity components.

— After subtracting mean value, rms-values, correlations, and energy spectra can be
computed using fluctuation.

— These operations can be performed electronically

platimum film semsor ( Achowme| ~ & 3p000,000)
2-D

(2) Laser Doppler Velocimeter (LDV)

~ Doppler effects

~ An laser (ultrasonic) beam transmitted into the fluid will be reflected by impurities or
bubbles in the fluid to a receiving sensor at a different frequency.
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— The transmitted and reflected signals are then compared by electronic means to calculate

the Doppler shift which is proportional to the velocity.
~ non-intrusive sensing (immersible LDA)

~ sampling frequency = 20,000 Hz

Laser

Fluid , |
14 —— Anelyzer

Lense. Dopper L !
Sl 2 3

(3) Acoustic Doppler Velocimeter (ADV)
~ use Doppler effects
~ intrusive sensing

~ sampling frequency = 25-50 Hz

"o

(4) Particle Image Velocimetry (PIV)
~ use Laser and CCD camera
~ measure flow field at once

~ sampling frequency = 30 Hz
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PIV system

Laser Power Supplies

PIV Laser &
Light Sheet Optics

Synchronizer

Computer for image acquisition
& system control

Flowplane

At - time between two pulses
AX - particle displacement mn x

direction
Ay - particle displacement iny
. . —
direction
—

AX
Velocity of particle A: U, = A asAt—0

u, :ﬂ asAt—0
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LDV: single point measurement

e ||| [TTTTIIE,

PIV: field measurement

V Mean mfs

M o

1.20
1.06
0.50
0.75
0.80
0.45

0.20
l 015
0.00

Y {mm)
Y mm

X {mm)

a) Image b)Velocity c)Turbulence Intensity

Fig. 1 Jet Characteristics Measured by PIV (Seo et al., 2002)
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[Re] Reynolds rules of averages:  Schlichting (1979) Boundary-Layer Theory

Let f and g are two dependent variables whose time mean values are to be found. s is any

one of the independent variables x,y, z, t.

=T

frg=f+g

fg=Tg

o since time averaging is carried out by integrating over a long

Z—fs :ﬂ — | period of time,which commutes with differentiation with respect
to another independant variable

_[f—ds _ _[ fds

8.3.3 Continuity for turbulent motion

Continuity equation for incompressible fluid

ou ovoow

—+—+—=0 (A)
OX oy oz

Substitute velocity decomposition into (A)

o(u+u') +a(hv') +a(\Tv+w') _

0 (8.7)
OX oy 0z

ou ov Ow ou' ov' ow'
+—+—+—+ =

—+— 0 (B)
OXx oy o0z ox oy oz
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Take time-averages of each term of (B)

6u8v8way/ /a\y‘
axayéz/éx/éy/?z

Lou’_ow) _,
T ox o ox

PRCALA, (8.8)

Substitute (8.8) into (B)

ou' ov' ow'

+—+ =0 (8.9)
ox oy oz

— Both mean-motion components and the superposed turbulent-motion components must
satisfy the continuity equation.

— Continuity must be satisfied for both turbulent and laminar motions.

[Re] Continuity Eq. for compressible fluid

ap N opY; _
ot OX
A(p+p') +5{(E+p')(u_i+ui ')} _
ot OX.
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Time averaging yields

o(p+p) , Hlp+p ) +u)}_
ot X,

ot ot ox !

op

—+—(puUi+ p'u.)=0

p i(p p'u)

0 P PLL PR 2 (o) +=- (o) 42 (p W) =0
ot ox oy 0z  OX oy 0z
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8.4 Turbulent Shear Stress and Eddy Viscosities
8.4.1 Fall of pressure drop due to shear stress

shear stress = resistance to motion

7'l
— dissipate flow energy — fall of pressure drop along a pipe — head loss (h, = —R)
v

d(p+7h) o

laminar flow;
dz

turbulent flow: d(p+7h) o V' (n=2)

dz

where V, =average velocity

'SIO['}Q =2 At~ — 1w’
 E—
Turbulent | ‘/
d(p+7Th) Uy -
5T dz _ e,
u! v
! C
z Slope=1
Laminar -
log V. —Velocity
FIG. 11-6. Pressure gradient with laminar and  FIG. 11-7. Momentum transport by turbulent
turbulent flow in a conduit, velocity fluctuation.

8.4.2 Shear stress resisting to motion

(1) Boussinesq's eddy viscosity concept
du du

=U—+n—- 8.10
otal ludy 77dy ( )

Ty

N

turbulent

laminar
flow

flow
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where

U = mean local velocity (time - averaged)
p = dynamic molecular viscosity — property of the fluid

n = dynamic eddy viscosity that depends on the state of the turbulent motion

(& =—=kinematic eddy viscosity)

/A
o,

u . . .
M — - apparent stress computed from the velocity gradient of mean motion.

du iy : :
n— - additional apparent stress associated with the turbulence

dy

For laminar flow, 7 =0

Forturbulentflow, n>u — 7,4 > T

(2) Physical model of momentum transport (exchange)

~ momentum transport by turbulent velocity fluctuation

Curbylet  Momentum  exchange
S L I P

e&low resistance

Muz SRR )

~ shear stress
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Step 1: lower-velocity fluid parcel in layer 1 fluctuates with a v'-velocity into
layer 2

Step 2: its velocity in the direction of the stream is less than mean velocity of the
layer 2 by an amount -u’

Step 3: drag of the faster moving surroundings accelerates the fluid element and

increases its momentum

Step 4:  The mass flux crossing from layer 1 to layer 2

, mass
= pV —_—
fime xarea

Step 5:  Flow-direction momentum change = mass x velocity
- leX(—u'):—pulvl

Step 6: Average over a time period

= —pu'v

= effective resistance to motion

= effective shearing stress

(3) Reynolds stress

= —puv (8.11)
= time rate change of momentum per unit area
= effective resistance to motion

~ actually acceleration terms

) ) . u
~ instantaneous viscous stresses due to turbulent motion = 77—

dy
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T = dir u'v' = r
total /u dy ,0 yX (8. 12)
0 DN
shear stress shear stress due to
due to transverse transverse momentum transport of

molecular momentum  macroscopic fluid particles by

transport turbulent motion

For fully developed turbulence,

l

Ty = 77(3_3} ~ _pu|vl oc sz (8.13)

[Re]|Reynolds stress = —pu 'V

~ If u' and v' are uncorrelated, there would be no turbulent momentum transport.
~ usually not zero (correlated)
~ may exchange momentum of mean motion

~ exchanges momentum between turbulence and mean flow

[Re] Effective addition to the normal pressure intensity acting in the flow direction

= — pu'u' = — pu” (8.14)

[Re] Momentum transport

Eq. (3.2): =K Yol

dt area dy

d(Amv) 1 d (Amvj
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Newton's 2nd law of motion

F =ma= md—V:d(mV)
dt dt
Fd(mv) 1

area dt area

Assume only shear stresses exist,
Then LHS of (B) =«

Combine (3. 2) & (B)

By the way, for the turbulent motion

RHS of (B) = time rate change of momentum per unit area =

. —pu'v'=r

Combine (C) and (D)

Tt = —,OU'V' = nd—y

8-33
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[Re] Shear stress for turbulent jet

du
o 5o
w Z(O U"U/>O _\L

%)o t70 Vo o=
- 7u’u’

du .
Case I: d_ > 0 — positive 7
y

1) Ya -6 > Y1
mass flux = pv'

velocity change = —U

. momentum change = (pv') x (-Uu') = —pu'v’

T=—puU'v’ — +momentum change — positive

2) Yy, +6 >y,
mass flax = p(-Vv)
velocity change = +u'

. momentum change = (—pv') x (U) =—pu'v’
T=—pU'vV' — +momentum change — positive
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du .
Case Il: d—<0 — negative T
y

Dy, -0y
mass flax = pVv'

velocity change = + U’

. momentum change = (pVv')x(u')=pu'v’

T=-—pU'V' — - momentum change — negative

2 ¥y +6 -y,
mass flux=p (-Vv")

velocity change = —U

. momentum change = (—pv')x(-u') = pu'v

T=-—pU'V' — - momentum change — negative
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

8.5 Reynolds Equations for Incompressible Fluids
8.5.1 Reynolds Equation
Navier-Stokes Eq. = equations of motion of a viscous fluid
~ applicable to both turbulent and non-turbulent flows

~ very difficult to obtain exact solution because of complexity of turbulence

~ Alternative is to consider the pattern of the mean turbulent motion even through we
cannot establish the true details of fluctuations.

— average Navier-Stokes Eq. over time to derive Reynolds Eqg.

N-S Eqg. in x-dir.:
ou du ou _ou op, Or, Or,
pl —+tU—+V—+W— [=pQ, — + + (8.15)
ot ox oy 0z oX oy 0z
Continuity Eq. for incompressible fluid:
yo, ua—u+u@+u@ =0 (A)
ox oy 0z

ou ou ou  ov ou Ow) du odu® duv  ouw
> + + + TR

LHS=—+2u—+
ot ox oy oz

Whole equation is

ou ou® ouv  ouw op, Or, Or
Pl ot o = pg, -

+—L (8.16)
oXx oy 0z ox oy 0z
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

Decomposition:

u=1u+u'

V=V+V'

wW=WwW+w'

P, = Pt P’ (8.17)

Substitute (8.17) into (8.16), and average over time

p{a(U+u') LO@+u) AEEHV) | 8(U+u')(v‘v+w‘)}
ot OX oy 0z

8(p_x+ px')+az-yx +?zx
OX oy 0z

= pg, -

Rearrange according to the Reynolds average rule

ou+u) _ou oy _om
o ot Jot ot

_ / _
— n2 — —2 12

M:i(uz_}_z_ '+u'2):8L_|_au
OX OX OX OX

8(U+ua'§/(v+v') _ %(UV+W+W+U'V') _ afwaralé;lv'

o(U+u)(w+w" 0, —— — , — ouw ou'w'
= —(UW+ + +u'w') = +
0z az( y/w/ W ) 0z 0z

(oo ow? UV oUW op, 07y 07,
Lopl —+ + + = pP09,— + +
ot ox oy 0z oXx oy oz

ou? au'v' au'w'
- + +
OX oy 0z
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

- . ou _ovV _OW
Subtract Continuity Eq. of mean motion (U—+U0—+U0—=0)
OX oy 0z

ou ou? ouv ouw _0u _OV _ow
Pl —+ + + —|U—+U—+U—
ot ox oy 0z

- (8.18)

op, O0r, 0T, ou” ou'v' ou'w'

Sad . SV + + +
ox oy 0z OX oy 0z

_/

«turbulence acceleration terms

emean transport of fluctuating momentum
by turbulent velocity fluctuations

y-direction:
N N N N 07, P, 0T,
pl—+U—+V—+W— | =pQ, + - +
oo ox oy oz Yooox ey oz
U Ve VW
- + +
OX oy 0z
z-direction:

oW _OW _OW _OW or,, 07, op,
pl—+U—+V—+W— | = pgQ, + + —
z OX oy 0z

ow'u' ow'v' aﬁ
- + +
OX oy 0z




Ch 8. Origin of Turbulence and Turbulent Shear Stress

Rearrange (8.18)

Sum of apparent stress of the mean
motion and additional apparent stress due
to turbulent fluctuations

Introduce Newtonian stress relations: EQs. 5.29 & 5.30

-

ou 2
o, =—p+2u———uv-
X p ﬂax 3ﬂ q

w0y T o Ty
w =ty T o T
L (8u+awj
= w = H 0Z OX

Substitute velocity decomposition, Eqgs (8.17) into Egs. (5.29) & (5.30) and average over time

for incompressible fluid (V - E] =0)
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

1) x-direction:

——p _—7Zp+ )+2ﬂ8(u+ 2y—

e ~(zx+zw

_ 8(U+y‘§ a(v—v+\9/§ B (a_u @j
zx_:u{ 9{ + @/ }—ﬂ 8Z+(9X (8.20 @)

(2) y-direction:

— _ ov
—Py =—p+2ﬂg
_ ov ou

= +

- (8x 6yj
- OW oV

y = M| —+— 8.20Db
Ty ,U(ay GZJ ( )

(3) z-direction:

_ _ oW
P, =-P+2u—
0z

’[_' — (6_U+@
o = H 0z Ox

(8.20 ¢)

T = @4_@
yz H 8y 62
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

Substitute Eq. (8.20) into Eq. (8.18)

— g _i(b_z 8—U)+i @4_ a_U +£( 8_U_|_ @j
PO o o oy o ﬂay a2\ oz T ox

[8u_'2 ou'v' aW]
—p + +

OX oy 0z

op (azu o om o azv—vJ

= ——+u| 2 + + + +
PO TH ok Tayax  oyF a2 auox

(au_'2 ou'v' aW]
—p + +

OX oy 0z

_ 5y G 62U+82U+62U s 82U+ 62V+82v_v
PO Mo Toyr a2 ) o T ayox  zox
= uVu (I)
ou”? au'v' au'w'
-p + +
OX oy 0z
By the way,
mn = i 8_u+@+@ =0 (. Continuity Eq. for incompressible fluid)
ox\ox oy oz

Therefore, substituting this relation yields
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

x-dir.:
ou _ou _ou _Ju
pl —+U—+V—+W—
ot OX oy 0z
. (8.22a)
p . ou? ou'v' ou'w'
=Py~ tuVU-p + +
OX OX oy 0z
y-dir.:
N _ON _ovV _oV
pl —+U—+V—+W—
ot OX oy 0z
L (8.22 b)
p . ov'u' ov?  ov'w!
=pg, ——+uVyV-p + +
Yooy OX oy 0z
z-dir.:
OW _OW _OW __OW
pl—+U—+V—+W—
ot OX oy 0z
- (8.22c)
op - ow'u' ow'v' ow"
=pQ,——+uVW-p + +
0z OX oy 0z

— Reynolds Equations (temporal mean eq. of motion)

— Navier-Stokes form for incompressible fluid

[Re] No. of Equations = 4

No. of Unknowns: 4 + 9 (turbulence fluctuating terms)

— 9 products of U’ U’

— one-point double correlation of velocity fluctuation
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

[Re]

1) Reynolds Equation of motion — solve for mean motion

— — 2
% + UJ% + i(u'iu'j) — Xi _ i@ + ﬁﬂ
ot OX; OX; p OX. p OX;0X;
? A T A
time rate of body
change of force
momentum  rate of convection
of the momentum force due
to mean
pressure
rate of diffusion rate of molecular
of momentum diffusion of
by turbulence momentum
by viscosity

2) Navier-Stokes Eq. — apply to instantaneous motion

2
%'FU]-%: Xi _lap +ﬁ 0 ui
ot OX; pOX  p OX;0X,

8.5.2 Closure Model

Assumptions are needed to close the gap between No. of equations and No. unknowns.

— Turbulence modeling: Ch. 10

m Boussinesq's eddy viscosity model

e ou
* OX
e B
. _ au
—u'v'=¢, — oy A
oy (A)
aw=g X
0z
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

Reynolds Equation in x-dir.:

op  (éw o du ou? ou'v' ou'w'
+ + — + +
OX ox*  oy* or° oXx oy oz

A M
Pl

P
OX

+p(v+&)VT

=PY—

op _
=0, ~ Pt (u+ )V
OX

where v = kinematic molecular viscosity; & = kinematic eddy viscosity; = dynamic

molecular viscosity; 7= dynamic eddy viscosity
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

8.5.3 Examples

(1) Turbulent flow between parallel plates

Apply Reynolds equations to steady uniform motion in the x-direction between parallel

horizon walls
w =0 « steady motion
ot
o(vel) =0
=0 <« uniform motion OX
OX ou'
Mo
OX

i) =0, w=0 <« 2-D motion
0z

I S
V= ?J‘o vdt =0 « unidirectional mean flow

v'#0
Incorporate these assumptions into Egs. (8.22)
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

P x| oy

aﬁ+ﬂV2U—p£87+au A 8tg/v(J
z

(A)

d d
—(P+yh)+p——=0 (8.25)
oy oy

Integrate (8.25)

p+yh+ ,ov_'2 = const. (8.26)

— In turbulent flow, static pressure distribution in planes perpendicular to flow direction

differs from the hydrostatic pressure by pV 2

Rearrange (A)
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

2 (5 phy=— ouv' o
x P rM=—p=mmtuy

(D)

neglect since turbulence contribution
to shear is dominant

Integrate (D) w.r.t. y (measured from centerline between the plate)

d = !
d—(p+7/h)y= —puv' =t
X

— t distribution is linear with distance from the wall for both laminar and turbulent flows.

Near wall, viscous shear is
dominant.
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

(2) Equations for a turbulent boundary layer

Apply Prandtl's 2-D boundary-layer equations

2
au uau+ ou_ 1op ya

- (8.7a)
ot ox 6y yo, ax p oy*
Z_U+@ =0
X
% (8.7b)
ou ov
—> U—+Uu—=0
ox oy
Add Continuity Eg. and Eq. (8.73)
2
8_u+2ua_u+ Va_u+uﬂ __lap ﬁa_tzj
ot OX ay oy pox  poy
s \’ (A)
ol w
OX oy

Substitute velocity decomposition into (A) and average over time

o@@+u)  auw
ot dt
oT+u)  ou +8u_'2
OX dx OX

oUu+u)(v+v) ouv ou'v'

oy a oy
10 sy 1
pax(p+|0)— S ox
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

Thus, (A) becomes

ou
L—+

=

ow UV _ 13p wdU_ou? ouv
ox oy

pox poy* ox oy ®

Subtract Continuity eq. from (B)

ou

—+
ot

_ou _ou
U—+V—

_ 1P pdU_au? v

poOX poy> ox oy

x oy

g

ou _ou _ou o ou? o ou'v
— 4+ U—+V—|=——- U
ot OX oy

-p

+
x T M gy

— X-ed.

Adopt similar equation as Eq. (8.25) for y-eq.

0,_. —2
O0=——(p+pv")

oy
Continuity eq.:
8_U+ 5\_V — O
ox oy

8-50



Ch 8. Origin of Turbulence and Turbulent Shear Stress

8.6 Mixing Length and Similarity Hypotheses in Shear flow

In order to close the turbulent problem, theoretical assumptions are needed for the calculation
of turbulent flows (Schlichting, 1979).
—We need to have empirical hypotheses to establish a relationship between the Reynolds

stresses produced by the mixing motion and the mean values of the velocity components

8.6.1 Boussinesq's eddy viscosity model

For laminar flow;

For turbulent flow, use analogy with laminar flow;

— du
T, =—puvVv :77@ (8.30)

where 7 = apparent (virtual) eddy viscosity

— turbulent mixing coefficient

~ not a property of the fluid

~ dependson U; n < U
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

8.6.2 Prandtl's mixing length theory
~ express the momentum shear stresses in terms of mean velocity
m Assumptions

1) Average distance traversed by a fluctuating fluid element before it acquired the velocity of

new region is related to an average (absolute) maanitude of the fluctuating velocity.

| oc| V' |
du
v | o< 1| — (8.31a)
dy
where | = I(y) = mixing length
2) Two orthogonal fluctuating velocities are proportional to each other
T T du
u'| o |vt|ec I — (8.31b)
dy
Substituting (8.31) into (8.13) leads to
— du | du
r=—pu'v'=pl*| — | — (8.32)
dy | dy

Therefore, combining (8.30) and (8.32), dynamic eddy viscosity can be expressed as

n=pl*

du
—_— 8.33
dy ‘ &%)
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

— Prandtl's formulation has a restricted usefulness because it is not possible to predict

mixing length function for flows in general.

m Near wall

( distance From
wall )

| = «xy (A)

Where x = von Karman constant

Substitute (A) into (8. 32)

duo

dy

do
dy

2

T =pK’y (8.34)

[Re] Prandtl's mixing-length theory (Schlichting, 1979)
Consider simplest case of parallel flow in which the velocity varies only from streamline to

streamline.
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

Shearing stress is given as

Ty =T :—pu'v':nw

o Simplified mechanism of the motion

1) Fluid particles move in lump both in longitudinal and in the transverse direction.
2) If a lump of fluid is displaced from a layer at (Y, —I)to anew layery, , then, the

difference in velocities is expressed as (use Taylor series and neglect high-order terms)

Au =U(y)-u(y,-1I) = I(d—Uj ;v >0
dy ,

=Y

where | = Prandtl's mixing length (mixture length)
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

For a lump of fluid which arrives at y, from the laminar at y, +1

Au, =U(y, +1)-u(y,) = I(g—Uj v <0
YJy

=Y1

3) These velocity differences (Au,,Au,)caused by the transverse motion can be regarded as

the turbulent velocity fluctuation at y,

— 1

wl=1

(|, |+ Au, [y =1 [3_3] @
Y1

o Physical interpretation of the mixing length 1.

= distance in the transverse direction which must be covered by an agglomeration of fluid

particles travelling with its mean velocity in order to make the difference between it's velocity

and the velocity in the new laminar equal to the mean transverse fluctuation in turbulent flow.

4) Transverse velocity fluctuation V'originates in two ways.

mﬂ i - Collsiom. I . 0 -Paﬁer-P‘wd

+ st - o . L .

%" :! A I*X: o slower
meve

afpat -
¢ -~ & tv(

(G
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Ch 8. Origin of Turbulence and Turbulent Shear Stress

5) Transverse component v'is same order of magnitude asu'.

| =const- |u’| =const-ld—U 3)
dy

6) Fluid lumps which arrive at layer 'y, with a positive value of v’ (upwards from layer) give

rise mostly to a negative u’.
~u'vi <0

V= —cfu[[v] @)

where0<c<1

Combine Egs. 2-4

du

dy

— du
u'v'=—constant- —1? | —
y

Include constant into | (mixing length)

u'v'=—1? d_u d_u (5)
dy | dy
Therefore, shear stress is given as
— du |du
- _ u |V| — |2 == 6
T=—p P dy | dy (6)

— Prandtl's mixing-length hypothesis
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8.6.3 Von Karman's similarity hypothesis

oAssumptions

~Turbulent fluctuations are similar at all point of the field of flow (similarity rule).

— Turbulent fluctuations differ from point to point only by time and length scale factors.

Velocity is characteristics of the turbulent fluctuating motion.

For 2-D mean flow in the x - direction, a necessary condition to secure compatibility between

the similarity hypothesis and the vorticity transport equation is

~ du/dy
d20 / dy?

du / dy

_— A
d2a / dy? *)

:K“

where x = empirical dimensionless constant

Substituting (A) into (8.32) gives

5 (du/dy)*

— Von Karman's similarity rule
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[Re] Prandtl's velocity-distribution law

For wall turbulence (immediate neighborhood of the wall)

N2
r=px2y2[d—”] €y
dy

d_U:i z :u* (2)
dy xy\ p «y

where U, = ,%) = shear velocity; x = von Karman const =~ 0.4

Integrate (2) w.r.t.y

Uz&lny+C (3)
K

— Prandtl's velocity distribution law

Apply Prandtl's velocity distribution law to whole region

u=u, aty=h

0 =%Inh+C @)

max
K

Subtract (3) from (4) to eliminate constant of integration

U =0 _ 1)y 0 (5)
U. Ky

— Prandtl’s universal velocity-defect law
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Homework Assignment # 5

Due: 1 week from today

8-1. The velocity data listed in Table were obtained at a point in a turbulent flow of sea water.

1) Compute the energy of turbulence per unit volume.

2) Determine the mean velocity in the X -direction u and verify that u' =0.

3) Determine the magnitude of the three independent turbulent shear stresses in Eq. (8-21).

time, u u v W
sec cm/s cm/s cm/s cm/s
0.0 89.92 -4.57 1.52 0.91
0.1 95.10 0.61 0.00 -0.30
0.2 103.02 8.53 -3.66 -2.13
0.3 99.67 5.18 -1.22 -0.61
0.4 92.05 -2.44 -0.61 0.30
0.5 87.78 -6.71 2.44 0.91
0.6 92.96 -1.52 0.91 -0.61
0.7 90.83 -3.66 1.83 0.61
0.8 96.01 1.52 0.61 0.91
0.9 93.57 -0.91 0.30 -0.61
1.0 98.45 3.96 -1.52 -1.22
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