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10.1 Introduction 

10.1.1 The Role of turbulence models 

(1) Why we need turbulence models? 

▪ Turbulent flows of practical relevance  

→ highly random, unsteady, three-dimensional  

→ Turbulent motion (velocity distribution), heat and mass transfer processes are 

extremely difficult to describe and to predict theoretically. 

 

▪ Solution for turbulent flows 

1) Navier-Stokes equation (DNS) 

- Exact equations describing the turbulent motion are known.  

- Numerical procedures are available to solve N-S eqs. 

- Computer simulations of the full N-S equation are usually limited to flows where 

periodicity of the flow can be assumed and the boundaries are simple, usually rectangular. 

- Numerical grids used must be small enough to resolve the smallest significant eddy scale 

present in the flow, and the simulation must be carried out for a significantly long time that 

initial conditions have died out and significant features of the flow have evolved. 

→ Storage capacity and speed of present-day computers are still not sufficient to allow a 

solution for any practically relevant turbulent flows. 

 

2) Reynolds equation (RANS) 

- Average N-S equations to remove turbulent fluctuations completely  

-Describe the complete effect of turbulence on the average motion by using turbulence model 

 



Chapter 10 Turbulence Models and Their Applications  

10-3 

(2) Turbulence  

▪ Scale of turbulence 

- eddying motion with a wide spectrum of eddy sizes and a corresponding spectrum of 

fluctuation frequencies 

i) Large-scale eddies: 

- contain much of the kinetic energy and little of the vorticity 

- eddies tend to be anisotropic 

- The forms of the largest eddies (low-frequency fluctuations) are determined by the 

boundary conditions (size of the flow domain).  

- These large eddies gradually break down into smaller eddies. 

 

ii) Small eddies: 

- have little kinetic energy but much vorticity 

- The small eddies tend to be isotropic 

- The forms of the smallest eddies (highest-frequency fluctuations) are determined by the 

viscous forces. 

- several orders of magnitude smaller 

→ In numerical solution, to resolve the small-scale turbulent motion, 109 to 1012 grid points 

would be necessary to cover the flow domain in three dimensions. 

 

▪ Classification of turbulence  

i) anisotropic turbulence ~ general turbulence; it varies in intensity in direction  

 

ii) isotropic turbulence ~ smallest turbulence; independent of direction (orientation) 
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iii) nonhomogeneous turbulence 

 

iv) homogeneous turbulence ~ statistically independent of the location  
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Isotropic turbulence 
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(3) Turbulence models 

~ a set of equations (algebraic or differential) which determine the turbulent transport terms 

in the mean-flow equations and thus close the system of equations 

 

▪ Simulation of turbulence  

1)Time-averaging approaches (models) 

 

Name 

No. of 

turbulent 

transport eqs. 

Turbulence quantities  

transported 

Zero equation model 0 None  

One equation model  1 k (turbulent kinetic energy) 

Two equation model  2 k, ε (turbulent energy, dissipation rate) 

Stress/flux model  6 
i j

u u components (stress terms) 

Algebraic stress model  2 k, ε used to calculate 
i j

u u  

 

2) Space-averaged approaches 

→ Large Eddy Simulation (LES) 

- simulate the larger and more easily-resolvable scales of the motions while accepting the 

smaller scales will not be properly represented 
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[Re] Turbulence Modeling 

DNS:  direct numerical simulation of N-S eq. 

LES:  numerical resolution of only the large eddies 

RANS:  solution of Reynolds-Averaged N-S eq. 

      → effect of all turbulent motions accounted for by the turbulence model 

 

 

 LES  

- small-scale motion filtered out 

i
i

x y z

u dxdydzu
x y z∆ ∆ ∆

=
∆ ∆ ∆∫ ∫ ∫  

- 3D/2D LES 
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 Boundary Conditions 

- wall-resolved LES:  no slip (not for high Re) 

- High Re → wall model is needed 
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10.2 Mean Flow Equation and Closure Problem  

10.2.1 Reynolds averaged basic equation  

▪ Navier-Stokes eq. 

~ Eq. of motion for turbulent motion   

~ describes all the details of the turbulent fluctuating motion  

~ These details cannot presently be resolved by a numerical calculation procedure.  

~ Engineers are not interested in obtaining these details but interested in average 

quantities. 

 

▪ Definition of mean quantities by Reynolds 



2

12 1

1 t

ii t
U U dt

t t


                       (10.1a) 

  

2

12 1

1 t

t
dt

t t
  

                      (10.1b) 

 

where 
2 1

t t  = averaging time = scalar quantity (temperature, concentration) 

- Averaging time should be long compared with the time scale of the turbulent motion 

but small compared with that of the mean flow in transient (unsteady) problems.  

Example:  in stream 1 2
2 1

~ 10 ~ 10 sect t   

 

▪ Decomposition of instantaneous values  



i i i
U U u                                         (10.2a) 
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                                       (10.2b) 

mean   fluctuations 

 

Substitute (10.2) into time-dependent equations of continuity and N-S eqs. and average over 

time as indicated by (10.1) → mean flow equations  

 

Continuity: 0
U V W
x y z

  
  

  
                        (10.3) 

x-momentum: 
2 ( ) ( )U U VU WU

t x y z
   

  
   

            (10.4) 

          
21 P u uv uw

fV
x x y z

   
     

   
 

 

y-momentum: 
2( ) ( )V UV V WV

t x y z
   

  
   

            (10.5) 

21 P uv v vw
fU

y x y z
   

     
   

 

 

z-momentum: 
2( ) ( ) ( )W UW VW W

t x y z
   

  
   

         (10.6) 

21 P uw vw w
g

z x y z
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Scalar transport: 
( ) ( ) ( )U V W

t x y z
      

  
   

 

u v w
S

x y z
  



  
   

  
               (10.7) 

 

in which P = mean static pressure 

f = Coriolis parameter  

 = fluid density  

S
= volumetric source/sink term of scalar quantity   

 

Eqs. (10.3)~(10.7) do not form a closed set.  

 

▪ Non-linearity of the original N-S eq. and scalar transport eq. 

    
2

, , , ; , ,
u uv uw uc vc wc
x y z x y z

                 


 

 

→ introduce unknown correlations between fluctuating velocities and between velocity and 

scalar fluctuations in the averaging processes 

2 2( , , , ; .,)u v uv u etc  

 

2 .u etc  = rate of transport of momentum = turbulent Reynolds stresses 

.u etc   = rate of transport of heat or mass = turbulent heat or mass fluxes  
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▪ In Eqs. (10.3)~(10.7), viscous stresses and molecular heat or mass fluxes are neglected 

because they are much smaller than their turbulent counterparts except in the viscous 

sublayer very near walls.  

 

▪ Eqs. (10.3)~(10.7) can be solved for average dependent variables when the turbulence 

correlation can be determined in some way.  

→ task of the turbulence models  

 

▪ Level of a turbulence model 

~ depends on the relative importance of the turbulent transport terms 

→ For the turbulent jet motion, simulation of turbulence is important.  

→ For the horizontal motion in large shallow water bodies, refined turbulence modeling is 

not important because the inertial term in the momentum equations are balanced mainly by 

the pressure gradient and/or buoyancy terms. 

→ The simulation of turbulence in heat and mass transport models is always important 

because the scalar transport equation does not contain any pressure gradient and/or buoyancy 

terms. 
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10.3 Specialized Model Equations  

10.3.1 Three-dimensional lake circulation and transport models 

→ Quasi-3D model 

▪ In most shallow water situations and especially in calculating wind-driven lake circulation 

as well as continental shelf and open coast transport, vertical momentum equation can be 

reduced by the hydrostatic pressure approximation. 

p
g

z



 


     (a) 

 

Simplifies the calculation of the pressure field  

Only horizontal two-dimensional pressure distribution must be calculated from the 

differential equations 

The vertical variation of pressure follows Eq. (a). 
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▪ Two ways of determining the horizontal variation of pressure 

→ Two ways of surface approximation  

1) Assume atmospheric pressure at the water surface  

→ calculate surface elevation ζ with kinematic boundary condition at the surface 

 

0U V W
t x y
    
   

  
                    (10.8) 

 

With this kinematic condition, the continuity equation can be integrated over the depth H to 

yield an equation governing the surface elevation ζ. 

 

2) Use rigid-lid approximation  

- assume that the surface is covered by a frictionless lid 

- allows no surface deformations but permits variations of the surface pressure  

→ properly accounts for the pressure-gradient terms in the momentum equations, but an error 

is made in the continuity equations. 

→ is valid when the relative surface elevation / h is small  

→ suppresses surface waves and therefore permits longer time steps in a numerical solutions  

→ Bennett (1974) , J. Physical Oceanography, 4(3), 400-414 

Haq and Lick (1975), J. Geophysical Res, 180, 431-437 
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10.3.2 Two-dimension depth-averaged models 

▪ For shallow water situations 

~ vertical variation of flow quantities is small 

~ horizontal distribution of vertically averaged quantities is determined 

 

1
h

U U dz
H




                                    (10.9a) 

1
h

dz
H




                                     (10.9b) 

in which   H = total water depth = h   

h = location of bed below still water level  

 = surface elevation 

 

Average Eqs. (10.3)-(10.7) over depth  

 

continuity:  
( ) ( )

0
HU HV

t x y
  
  

  
      (10.10) 

 

x-momentum:   
2( ) ( ) ( )HU HU HVU

gH
t x y x

   
   

   
 

2

( )( )1 1

1 1
( ) ( )( )

xyxx sx bx

h h

HH

x y

U U dz U U V V dz
x y

 

  
  

 
  

 
  

 

 
    

  
 

      dispersion stress     (10.11) 

Turbulent shear stress 
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y-momentum:   
2( ) ( ) ( )HV HUV HV

gH
t x y y

   
   

   
 

     2

( ) ( )1 1

1 1
( )( ) ( )

(10.12)

yx yy sy by

h h

H H

x y

U U V V dz V V dz
x y

 

   

  

 
  

  
  

 

 
    

    

 

Scalar transport:   

( )( )( ) ( ) ( ) 1 1 yx
HJHJH HU HV

t x y x y 

     
   

    
 

1 1
( )( ) ( )( )s

h h

q
U U dz V V dz

x y

 
 

   

 
      

    

    Shear flow dispersion   (10.13) 

where 
ij
 = depth-averaged turbulent stress ( uv ) acting in 

i
x -direction on a face 

perpendicular to
j

x ; 
b
 = bottom shear stress; 

s
 = surface shear stress;

i
J  = depth-averaged 

flux of ( )u or v      in direction
i

x ; 
s

q = heat flux through surface  

 

①Buoyancy effects  

~ cannot be represented in a depth-averaged model because the hydrodynamic model, (10.10) 

~ (10.12), is not coupled to the scalar transport model, (10.13). 

 

② Turbulent stresses and diffusion terms 

Turbulent diffusion 
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▪ Vertical turbulent transport has been eliminated by the depth-averaging and appear only as 

bottom stresses, 
b
 as well surface stresses, 

s
 and as surface flux, 

s
q . 

 

▪ Horizontal momentum transport by the turbulent motion 

~ represented by 
ij
  

~ These terms are often neglected in large water body calculations. 

~ A turbulence model is needed when terms are important. 

 

▪ Horizontal mass or heat transport by the turbulent motion 

~ represented by 
i

J  

~ A turbulence model is always needed. 

 

③ Dispersion terms 

~ have same physical effects as turbulent terms but do not represent turbulent transport 

~ due to vertical non-uniformities (variations) of various quantities 

~ consequence of the depth-averaging process 

~ are very important in unsteady condition and require accurate modeling (Fischer et al., 

1979) 

 

[Re 1] Dispersion stress model  

For open flows in which vertical variations of the velocity components are significant, such 

as modeling of the secondary currents in channels, models should be incorporated in order to 

represent the dispersion stress terms. 
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i) Moment of momentum approach 

~ use additional equations of moment of momentum equations 

~ should solve additional transport equations 

 
ˆ 4ˆ 43 2ˆ

2
j i iji i m iz

k bi
j k j

q uu q zu
t x h x h h x h h

τ τ
τ

ρ ρ ρ
  ∂ ∂∂ ∂  + + = − +    ∂ ∂ ∂ ∂      

 

 

where ˆiu  = velocities at the water surface in excess of mean velocity in the x-, y-directions 

 

ii) Dispersion stress approach 

~ Dispersion stress terms associated with the integration of the products of the fluctuating 

velocity components are directly calculated by incorporating vertical profiles of both 

longitudinal and transverse velocities 

~ For the vertical profiles of both longitudinal and transverse velocities, several equations can 

be adopted (Rozovskii, 1961; Kikkawa et al., 1976; de Vriend, 1977; Odgaard, 1986). 

 

Use de Vriend equation, then, the first term ( 11S ) indicates the integration of the products of 

the discrepancy between the mean and the vertically varying velocity distribution in x-

direction 

( ) ( )
12 2

11 1 1 1 10

2

2 2 2
1 1 1 1 1 2

1 ( ) ( )

                                           2

H h

H
S u z u dz u u d

h

g g
u hu U FF h U FF

C C

ζ ζ

κ κ

+
= − = −

 
= − +  

 

∫ ∫

 

where  

( ) ( )
1

1 0
1 ln sFF f dζ ζ ζ= +∫        

( )
1 2

2 0 sFF f dζ ζ= ∫  
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( ) 1 22 ( ) ( ) 2 1 ( )s m
g g

f F F f
C C

ζ ζ ζ ζ
κ κ

 
= + − −  

   

( )( ) 1 1 lnm
g

f
C

ζ ζ
κ

= + +
 

( )
1

1 0

ln
1

F dζζ ζ
ζ

=
−∫

       

( )
21

2 0

ln
1

F dζζ ζ
ζ

=
−∫

 

 

The second term ( 12S ) indicates the integration of the products of the discrepancy in x-, and y-

directions 

( )( )

( )

1

12 21 1 1 2 20
2

2
1 2 1 1 2 2 1 1 2 2

( ) ( )

              

S S u u u u d

g g
u u h u U u U FF h U U FF

C C

ζ ζ ζ

κ κ

= = − −

 
= − + +  

 

∫
  

 

The third term ( 22S ) indicates the integration of the products of the discrepancy y-direction 

( )
2

1 2 2 2 2
22 2 2 2 2 2 1 2 20

( ) 2
g g

S u u d u hu U FF h U FF
C C

ζ ζ
κ κ

 
= − = − +  

 
∫   

 

iii) Gradient model → find existing theory 

In analogy to eddy viscosity concept (Boussinesq, 1877), assume that the dispersion stresses 

are proportional to the mean velocity gradients 

' ' 1
( )( ) ji

i j i i j j dh
j i

UU
U U U U U U dz

H x x






             
                    

 

where 
d
  = dispersion viscosity coefficient  



Chapter 10 Turbulence Models and Their Applications  

10-20 

[Re 2] Shear flow dispersion  

In direct analogy to the turbulent diffusion, mass transport by dispersion is assumed to be 

proportional to the gradient of the transported quantity,  

' ' 1
( )( )

i i i dh
i

U U U dz
H x






     

                                  

    

where 
d

 = dispersive diffusivity of heat or mass  

→ dispersion mixing coefficient  
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10.3.3 Two-dimensional vertical plane and width-averaged models 

Examples: 

- long-wave-affected mixing of water masses with different densities  

- salt wedges in seiche  

- tide-affected estuaries  

- separation regions behind obstacles, sizable vertical motion  

 

Define width-averaged quantities  

2

1

( , )

( , )

1
( , )

y x z

y x z
U U dy

B x z
                              (10.14a) 

2

1

( , )

( , )

1
( , )

y x z

y x z
dy

B x z
                               (10.14b) 

 

in which B = channel width (local width of the flow)  

 

(1) Models for the vertical structure are obtained by width-averaging the original three 

dimensional eqs.  

continuity:  ( ) ( ) 0BU BW
x z
 

 
 

                     (10.15) 

 

x-momentum:  2

0

( ) ( ) ( ) d
pB

BU BU BWU gB
t x z x x
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2 2

1 1

0 0 0

2

0 0

1 1
( ) ( )

1 1
( ) ( )( )

(10.16)

wx
xx xz

y y

y y

B B
x z

U U dy U U W W dy
x z

dispersion


 

  


 

 
  

 

 
    

  

 

 

z-momentum: 2

0

( ) ( ) ( ) d
pB

BW BUW BW
t x z z

  
    

   
 

2 2

1 1

0

0 0 0 0

2

0 0

1 1
( ) ( )

1 1
( )( ) ( )

(10.17)

wz
xz zz

y y

y y

B B B
x z

U U W W dy W W dy
x z

dispersion

  
  

   

 
 

  
   

 

 
    

  

 

 

scalar transport : 
( ) ( ) ( )B BU BW

t x z
     

 
  

 

2 2

1 1

0 0 0

0 0

1 ( ) 1 ( )

1 1
( )( ) ( )( )

(10.18)

x xs

y y

y y

Bq BJ BJ
x z

U U dy W W dy
x z

dispersion
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where 
0

 = reference density  

d
p =dynamic pressure  

~ pressure due to motion and buoyancy forces  

= static pressure - reference hydrostatic pressure  

 

(2) kinematic free surface condition  

0U W
t x
  
  

 
                              (10.19) 

 

(3) dispersion terms  

  ~ due to lateral non-uniformities of the flow quantities 

 

(4) Further simplification  

  Replace z-momentum Eq. by hydrostatic pressure assumption 

0
( )d

p
g

z
 


 


                                  (10.20) 

 

Replace d
p

x




 in x-momentum Eq. as 

0
( )d

z

p
g dz

x x


 

 
 

                            (10.21) 

 

Integrate continuity Eq. (10.15) over the depth and combine with Eq. (10.19) 

1
0

h
s

BUdz
t B x




 
 

                           (10.22) 
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10.4 Turbulence-Closure Models  

○ Turbulence model 

~ represent the turbulence correlations 2, ,u uv u etc. in the mean-flow equations in a way 

that these equations are closed by relating the turbulence correlations to the averaged 

dependent variables 

 

○ Hypotheses must be introduced for the behavior of these correlations which are based on 

empirical information.  

→ Turbulence models always contain empirical constants and functions. 

→ Turbulence models do not describe the details of the turbulent fluctuations but only the 

average effects of these terms on the mean quantities.  

 

○ Parameterization of turbulence  

~ core of turbulence modeling  

~ local state of turbulence and turbulence correlations are assumed to be characterized by 

only a few parameters. 

→ Two important parameters are velocity scale and length scale.  

 

○ Three steps of parameterization 

1) choose parameters 

2) establish relation between turbulence correlation and chosen parameters 

3) determine distribution of these parameters over the flow field. 
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[Re] Friction coefficient and Mixing coefficient 

For 1D flow models, parameterization of turbulence and its effects has been achieved by the 

use of friction coefficients (Chow, 1956) or mixing coefficients (Fischer et el., 1979). 

← In 1D calculations, the flow is assumed to be fully mixed by the turbulence over any cross 

section so that the only further effect that turbulence can have is to exert wall friction, which 

can be accounted for adequately by the use of friction coefficients. 

 

But for multi-dimensional flow models, turbulence has been parameterized by constant or 

mixing-length-controlled eddy viscosities and diffusivities. 
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10.4.1 Basic concepts 

(1) Eddy viscosity concept 

(1) Boussinesq (1877) introduced eddy viscosity, 
t
 assuming that, in analogy to the 

viscous stresses in laminar flow, the turbulent stresses are proportional to the mean 

velocity gradients. 

 

2
3

ji
i j t ij

j i

UU
u u k

x x
 
           

                    (10.23) 

 

where k = turbulent kinetic energy per unit mass; 
ij
 = Kronecker delta  

ij
 = 1 for i j and = 0 for i j  

2 2 21
( )

2
k u v w                                 (10.24) 

 

- This eddy viscosity concept is based on the close analogy between laminar and turbulent 

stresses, and has often been criticized as physically unsound. 

- This concept has often been found to work well in practice because 
t
 can be determined to 

good approximation in many flows. 

 

- Eq. (10.23) alone does not constitute a turbulence model. 

- It provides the frame-work for constructing the turbulence model. 

- The turbulence model is to determine the distribution of 
t
 . 
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▪ Eddy viscosity, 
t
  

~ not a fluid property, and depends on state of the turbulence 

~ may vary considerably over the flow field  

~ is proportional to a velocity scaleV̂ , and a length scale L 

∝ ˆ
t

VL                                            (10.25) 

 

→ it is actually the distribution of the velocity and length scales that can be approximated 

reasonably well in many flows. 

 

(2) Eddy diffusivity concept 

In direct analogy to the turbulent momentum transport, the turbulent heat or mass 

transport is assumed to be proportional to the gradient of the transported quantity,  

i t
i

u
x




  


                                    (10.26) 

 

where 
t

 = eddy (turbulent) diffusivity of heat or mass  

 

▪ Eddy diffusivity, 
t

   

~ is not a fluid property, like the eddy viscosity, and depends on state of the turbulence. 

~ depends in general on the direction of the heat or mass flux. 

 

▪ Relation between eddy viscosity and eddy diffusivity  

→ use turbulent Prandtl (heat) or Schmidt number (mass), 
t
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t
t

t




                                           (10.27) 

where 
t

 ~ is assumed to be constant, is usually less than unity
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10.4.2 Types of turbulence models 

1) Classification based on the use of eddy viscosity concept 

Classification of turbulence model would be according to whether the models use the eddy 

viscosity concept. 

①  Eddy viscosity model 

② Non- eddy viscosity model: Bradshaw et al.'s Model 

 

2) Classification based on the use of transport equations 

①  No transport model 

∙ These models do not involve transport equations for turbulence quantities 

∙ These models assume that the turbulence is dissipated by viscous action at the point where 

it is generated by shear 

→ There is no transport of turbulence over the flow field. 

 

②  Transport model 

∙ These models employ transport equations for quantities characterizing the turbulence in 

order to account for the transport of turbulence in space and time. 

∙ These models are adequate in cases where the status of turbulence at a point is influenced 

by the turbulence generation somewhere else in the flow or by the generation at previous 

times (history effects). 

∙ These equations, similar to the mass/heat transport equation, contain terms representing 

both advective transport by mean motion and the diffusive transport by the turbulent motion 
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3) Classification based on the number of transport equations 

It is customary to classify turbulence models according to the number of transport equations 

used for turbulence parameters.  

 

① Zero-Equation Models 

- Constant eddy viscosity (diffusivity) model 

- Mixing-length model  

- Free-shear-layer model 

 

② One-Equation Models 

- k equation model 

- Bradshaw et al.'s model: non-eddy viscosity model 

 

③ Two-Equation Models  

- k-ε model 

- k-l model 

 

③ Turbulent Stress/Flux-Equation Models 

- Reynolds-stress equations 

- Algebraic stress/flux models 

 

~ employ transport equations for the individual stresses 
i j

u u  

~ non-eddy viscosity model 
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10.4.3 Zero-equation models 

~ do not involve transport equations for turbulence quantities 

~ assume that the turbulence is dissipated by viscous action at the point where it is generated 

by shear 

~ there is no transport of turbulence over the flow field 

~ employ the eddy viscosity concept 

~ specify the eddy viscosity from experiments, by trial and error, through empirical formulae, 

by relating it to the mean-velocity distribution 

 

(1) Constant eddy viscosity (diffusivity) concept 

~ simplest turbulence model 

~ used for large water bodies in which the turbulence terms in the momentum equations are 

unimportant 

~ use constant eddy viscosity (diffusivity) over the whole flow field  

~ The constant eddy diffusivity model is appropriate only for far-field situations where the 

turbulence is governed by the natural water body and not by local man-made disturbances 

such as water intake or discharges. 

 

[Re] Exceptions 

· Open channel flow:  
t
 has a nearly parabolic distribution with depth 

 *( ) 1t
z zdu
d d

ν κ  = −  
 

· Plane jet:  
t
 increases with the one-half power of the distance from the origin 
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▪ Depth-averaged viscosity/diffusivity 

- Constant eddy viscosity (diffusivity) concept has its greatest importance in depth average 

calculation where only horizontal transport is considered. 

- Constant eddy viscosity model is used in depth-averaged model in which vertical 

momentum transport is not important, and heat and mass transfer cannot be separated from 

dispersion effect due to vertical non-uniformity 

 

[Re] The vertical transport of momentum is represented by the bottom shear. 

 

▪ When turbulences are mainly bed-generated, as in the channel flow, the depth-mean 

diffusivity for the horizontal transport is given as 

*C hu   

where h = water depth; u* = friction velocity;  

C = empirical constant ~ 0.135 for wide laboratory channels 

 

[Re] Mixing coefficients for 3D model 

( ) ( ) ( )x y z
c c c c c c cu v w
t x y z x x y y z z

ε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

 

Turbulent diffusion coefficients 

*0.15x l duε ε= =  

*0.15y t duε ε= =  

*0.067z v duε ε= =  
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▪ Mixing coefficients for 2D model 

Depth-averaged 2D model is 

2 2

2 2L T
c c c c cu v D D
t x z x z

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
 

 

The depth-mean diffusivities account for both turbulent transport and the dispersive transport 

due to vertical non-uniformities of velocity. 

→ Mixing coefficients = dispersion coefficient + turbulent diffusion coefficients 

 

L lD D ε= +


 

*5.93 40l lD du ε= ≈  

*0.15l duε =  

 

T t tD D ε= +  

0.463 0.299
0.733

* *0.029t
n

D u W S
du u d

   =    
     

* 0.3 ~ 0.6tD
du

=  

*0.15t duε =  
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▪ Mixing coefficients in numerical model 

· In numerical calculations of large water bodies, additional processes are represented by the 

diffusivity. 

 

1) Sub-grid advection 

Owing to computer limitations, the numerical grid of the numerical calculations cannot be 

made so fine as to obtain grid-independent solutions. 

→ All advective motions smaller than the mesh size, such as in small recirculation zones, 

cannot be resolved. Thus, their contribution to the transport must be accounted for by the 

diffusivity. 

 

2) Numerical diffusion 

The approximation of the differential equations by difference equations introduces errors 

which act to smooth out variations of the dependent variables and thus effectively increase 

the diffusivity. 

→ This numerical diffusion is larger for coarser grids. 

 

· An effective diffusivity accounts for turbulent transport, numerical diffusion, sub-grid scale 

motions, and dispersion (in the case of depth-average calculations). 

→ The choice of a suitable mixing coefficient ( MTD ) is usually not a turbulence model 

problem but a matter of numerical model calibration. 

For 2D model,  

 MT t t sgm ndD D ε ε ε= + + −
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(2) Mixing-length model  

▪ Application: 

For near-field problems involving discharge jets, wakes, and the vicinity of banks and 

structures, assumption of a constant eddy viscosity is not sufficient.  

→ distribution of 
t
 over the flow field should be determined 

 

▪ Prandtl's mixing-length hypothesis (Prandtl, 1925) 

Prandtl assumed that eddy viscosity 
t
 is proportional to a mean representation of the 

fluctuating velocity V̂ and a mixing-length lm. 

ˆ
t m

V l                                        (A) 

 

Considering shear layers with only one significant turbulent stress (uv ) and velocity gradient 

/U z  , he postulated   

ˆ
m

U
V l

z





                                    (B) 

 

Combine (A) and (B) 

2
t m

Ul
z

 


                                     (10.28) 

 

→ The eddy viscosity is related directly to the local mean velocity gradient. 

→ Therefore, the mixing length hypothesis involves a single parameter that needs empirical 

specification; the mixing length 
m
l . 
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▪ Mixing length  

i) Boundary-layer flows along walls: 

① Near-wall region 

m
l z  

where = von Korman constant (≈0.4) 

 

② Outer region 

m
l   

where δ = boundary layer thickness 

 

ii) Free shear flows:  mixing layers, jets, wakes 

m
l b  

where b = local shear-layer width 

 

 

Plane mixing 

layer 

Plane 

jet 

Round  

jet 

Radial 

jet 

Plane 

wake 

m
l

b
 0.07 0.09 0.075 0.125 0.16 
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▪ Effect of Buoyancy  

~ Buoyancy forces acting on stratified fluid layers have a strong effect on the vertical 

turbulent transport of momentum and heat or mass 

→ eddy viscosity relations for vertical transport must be modified by introducing a 

Richardson number correction  

 

Munk-Anderson (1948) relation  

0.5
0

( ) (1 10 )
tz tz i

R                                    (10.29a) 

    1.5

0
1 3.3tz tz i

R


                                        (10.29b) 

0

1
1 , 0m

i i
m

l
R R

l
      (stable stratification)              (10.30a) 

 
0

1/4

/ 2
, 01m m ii

l l RR


   (unstable stratification)      (10.30b) 

 

where
1 2

7, 14    

Subscript 0 refers to values during unstratified conditions ( 0
i

R  )  

Define gradient local Richardson number 
i

R as  

2

/
i

g z
R

U
z



 

 
     

                               (10.31) 

 

~ ratio of gravity to inertial forces 
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▪ Limitation of mixing length model 

1) The mixing length model has been applied mainly to two-dimensional shear-flows with 

only one significant velocity gradient. 

 

2)Mixing-length distribution is empirical and rather problem-dependent.  

→ model lacks universality 

 

3) Close link of eddy viscosity (diffusivity) with velocity gradient, i.e. 0
t
   when 

0i

i

U

x





, implies that this model is based on the assumption of local equilibrium of 

turbulence. 

 

[Re] Local equilibrium of turbulence 

~ Turbulence is locally dissipated by viscous action at the same rate as it is produced by shear. 

→ Transport and history effects are neglected (turbulence generation at previous times). 

→ This model is not suitable when these effects are important as is the case in rapidly 

developing flows, recirculating flows and also in unsteady flows. 

 

▪ Mixing length model for general flows 

1
2

2 ji i
t m

j i j

UU U
l

x x x


              
     (10.32) 

 

~ very difficult to specify the distribution of 
m
l  in complex flow  



Chapter 10 Turbulence Models and Their Applications  

10-39 

∙ 
m
l in general duct flows (Buleev, 1962)  

1 1
m D
l d

 
   

 

where δ = distance of the point at which 
m
l is to be determined from wall along direction Ω; 

D = integration domain (= cross section of the duct) 

 

▪ Heat and mass transfer  

The mixing-length hypothesis is also used in heat and mass transfer calculations.  

 

21t
t m

t t

Ul
z


 

  


      (10.33) 

 

where 
t

 = turbulent Prandtl (Schmidt) number  

 0.9 in near-wall flows 

0.5 in plane jets and mixing layers 

0.7 in round jets 

 

∙ Buoyancy effect on tσ  

→ Munk-Anderson formula  

0

1.5

0.5

(1 3.33 )

(1 10 )
t i

t i

R

R
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∙ Shortcomings of mixing-length model for heat and mass transport 

i) 
t
 and 

t
 vanish whenever the velocity gradient is zero. 

[Ex] For pipes and channels,  

In reality, ⓐ
max

centerline 0.8( )
t t
    

However, ⓐ0 centerline 0
t t

U
z




    


 

 

ii) The mixing-length model implies that turbulence is in a state of local equilibrium. 

→ Thus, this model is unable to account for transport of turbulence quantities.  

 



Chapter 10 Turbulence Models and Their Applications  

10-41 

(3) Prandtl's free-shear-layer model 

 

Prandtl (1942) proposed a simpler model applicable only to free shear layers (mixing layers, 

jets, wakes). 

m
l   

max min
V̂ U U   

 

max mint
C U U        (10.34) 

 

Table 10.1 Values of empirical constant C 

Plane mixing 

layers 

Plane 

jet 

Round 

jet 

Radial 

jet 

Plane 

wake 

0.01 0.014 0.01 0.019 0.026 
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10.4.4 One-equation models 

- This model accounts for transport or history effects (time-rate change) of turbulence 

quantities by solving differential transport equations. 

 

- One-equation models determine the fluctuating velocity scale from a transport equation 

rather than the direct link between this scale and the mean velocity gradients. 

 

(1) k-Equation Model 

Velocity fluctuations are to be characterized by k where k is the turbulent kinetic energy 

per unit mass defined as  

2 2 21
( )

2
k u v w    

 

∙ Eddy viscosity 
t
  

ˆ
t

V L   

'
t

c kL     → Kolmogorov-Prandtl equation    (10.35) 

in which 'c = empirical constant.  

 

∙ Turbulent Kinetic Energy (TKE) equation  

~ Exact form can be derived from the Navier-Stokes equation. 

~ Exact equation contains certain higher-order correlations which must be approximated by 

models in order to achieve a closure of the equations. 
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For high Reynolds number, this equation reads 

2
ij j

i i ji
i i i

Uk k u u pU u uu
t x x x

                    
 

rate of      advective        diffusive transport         production by  

change      transport             due to velocity and          turbulent shear 

of k        due to mean         pressure fluctuations        stress = P  

motion  

 

i i
i i

j j

u u
g u

x x
  

 
 

 
   

 (10.36) 

buoyant production   viscous dissipation 

/ destruction   into heat = ε 

due to buoyancy 

force = G 

 

P = transfer of kinetic energy from the mean motion to the turbulent motion (large scale 

eddies) 

G = exchange between the turbulent kinetic energy k and potential energy 

~ negative for stable stratification (k is reduced, turbulence is damped while potential 

energy of the system increases)  

~ positive for unstable stratification (k is produced at the expense of the potential 

energy) 

ε  = transfers kinetic energy into internal energy of the fluid ~ negative (sink) 

Mean velocity 

new unknown correlations 
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∙ Concepts used for k-equation model 

①Energy cascade  

~ Kinetic energy extracted from mean motion is first fed into large scale turbulent motion.  

→ This energy is then passed on to smaller and smaller eddies by vortex stretching (vortex 

trail, vortex street) until viscous force become active and dissipate the energy.  

 

②Anisotropy vs. Isotropy 

~ Large-scale turbulences are anisotropic, whereas small-scale turbulences are isotropic. 

Because of interaction between large-scale turbulent motion and mean flow, the large-scale 

turbulent motion depends strongly on the boundary conditions. 

→ large-scale turbulence is anisotropic 

 

During the energy cascade process, energy is passed on to smaller eddies by vortex stretching.  

→ The direction sensitivity is diminished.  

→ small-scale turbulence tend to be isotropic 

 

▪ Modeled form of the k-equation 

~ The exact k-equation contains new unknown correlations. 

→ To obtain a closed set of equations, model assumptions must be introduced for these terms. 

 

i) Diffusion term 

~ In analogy to the diffusion expression for the scalar quantity ϕ, the diffusion flux of k is 

assumed proportional to the gradient k. 
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2
tj j

i
k i

u u kpu
x




         
 

in which 
k

 = empirical diffusion constant. 

 

ii) Reynolds stress 

ji
i j t

j i

UU
u u

x x

           

 

 

iii) heat (mass) flux 

t
i

t i

u
x







 


 

in which tσ = turbulent Prandtl or Schmidt number 

 

iv) viscous dissipation 

3/2

D

k
c

L
   

in which 
D

c = empirical constant.  

 

Substituting i) ~ iv) into exact k-equation yields 

3/2
jt i i t

i t i D
i i k i j i j t i

UU Uk k k k
U g c

t x x x x x x x L

 
 

 

                             
 

          (10.37) 

~ This model is restricted to high Reynolds number flows; ' 0.08 1
D k

c c and    
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~ For low Reynolds number flows, a viscous diffusion term should be accounted for and 

empirical constants are functions of the turbulent Reynolds number,Re /
f

kL  . 

 

▪ Special case of local equilibrium 

~ Turbulence is said to be in local equilibrium when the rate of change, advection and 

diffusion terms in Eq. (10.37) are zero.  

→ Then, production of k is equal to dissipation.  

For non-buoyant shear layers, 

2 3/2

t D

kU c
Lz


     

 

 

1/3
2

1/2
t

D

LUk
cz


        

  (1) 

Substitute (1) into Kolmogorov-Prandtl expression [ '
t u

c kL  ] 

1
3 2

2'
t

D

c UL
c z


        
 

Set 
m
l = mixing length =

1
3 4'

D

c
L

c
     

,  

Then  

2
t m

Ul
z

 


   

→ mixing-length model 
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▪ Length-scale determination  

~ Because the length scale L appears both in Kolmogorov-Prandtl equation and in dissipation 

term of the k-equation, this must be specified empirically.  

~ In most models, L is determined from simple empirical relations similar to those for the 

mixing length, lm. 

→ Launder and Spalding (1972) for estuary; Smith and Takhar (1977) for open-channel 

 

▪ Bobyleva et al. (1965) 's length scale formula  

~ similar to von Kaman's formula  

/
L

z





 
 

 

where = von Karman's const. 

1
2k

L
   = turbulence parameter 

 

~ applicable to flows where turbulent transport is mainly in vertical direction 

 

When the turbulence is in local equilibrium in the shear layer, 

1
2k U

L z





 

2 2

/

/m

U z
L l

U z


 
 

 
  → von Karman's formula 
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(2) Bradshaw et al.'s Model  

→ uv -equation model 

~ This model does not employ the eddy viscosity concept. 

~ It solves a transport equation for the shear stressuv . 

 

For 2D wall boundary layers, relation between k (normal stess) and uv  (shear stress) is 

given as 

1
0.3

uv
a const

k
    (experiment) 

 

Convert k-equation to uv -equation for steady flows 

3/2
11 1
2

max( )

advection diffusion production dissipation

uv uv
a a U uv

U V uvGuv uvx y y y L

 
            

(10.38) 

 

in which 

1
2

max

12

uv yG f
U 

           
 

2

yL f 


    
 → empirical  

→ For the diffusion flux of uv , the gradient-diffusion concept is not employed. Instead the 

diffusion flux is assumed to proportional to a bulk velocity, 
1
2

max( )uv . 
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▪ Transport of heat and mass  

- Find eddy viscosity (
t
 ) or the shear stress (

i j
u u ) using one-equation model. 

t
t

t




   

- Use gradient-diffusion concept to calculate heat and mass transfer by turbulence 

i t
i

u
x




  


 

 

- Solve scalar transport equation  
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▪ Assessment of one-equation models 

• Advantage 

① One-equation models can account for advective and diffusive transport and for history 

effects on the turbulent velocity scale.  

→ One-equation model is superior to the mixing-length model when these effects are 

important  

Examples:  non-equilibrium shear layers with rapidly changing free stream conditions, 

abrupt changes in the boundary conditions, shear layers in estuary with velocity reversal, heat 

and mass exchange in area with vanishing velocity gradients 

 

② Buoyancy term appears automatically in the k-equation model. 

 

• Disadvantage  

① The application is restricted to shear-layer situation not applicable to more complex flows. 

②The empirical formulas for calculating length scale in general flows so far been tested 

insufficiently. 

→ For calculating general flows, the trend has been to move on to two-equation models 

which determine the length scale from a transport equation. 
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10.4.5 Two-equation models 

(1) Types of two-equation models 

Length scale L characterizing the size of the large, energy-containing eddies is also subject to 

transport processes in a similar manner to the kinetic energy k. 

 

① Eddies generated by a grid are advected downstream so that their size at any station 

depends on their initial size. → history effect 

② Dissipation destroys the small eddies and thus effectively increases the eddy size.  

③ Vortex stretching connected with the energy cascade reduces the eddy size. 

→ The balance of all these processes can be expressed in a transport model for L. 

 

▪ Length scale equations  

i) Length scale transport equation 

The general form is given as 

m nZ k l    

 

Length scale transport equation of which the exact form can be derived from Navier-Stokes 

eq. is given as 

1 2

rate of advection diffusion production destruction
change

i z z
i i z i

Z Z Z kkL ZU c P c Z S
t x x k Lx

                
      

          (10.39) 

where 
1 2

, ,
z z z

c c = empirical constants  
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P = production of kinetic energy i
i j

j

u
u u

x

        
 

S = secondary source term which is important near walls 

 

∙ Mellor-Yamada (1982) model 

Velocity scale – q 

Length scale - L 

ii) Energy dissipation rate  

Use energy dissipation rate as a combination of length scale and energy 

3/2k
L

    Chou (1945), Davidov (1961), Jones & Launder (1972) 

 

~ The use of the  –equation has been criticized because the process of dissipation is 

associated with the small-scale turbulence while it is the length scale L characterizing the 

large-scale, energy-containing eddies that needs to be determined. 

~ However, the amount of energy dissipated is controlled by the energy fed from the large-

scale motion through the spectrum to the small-scale motion. 

→   may be considered a parameter characterizing the large-scale motion. 

 

[Re] Other scales 

Dissipation rate: kL     Rotta (1968) 

Frequency: 
1
2k L     Kolmogorov (1941) 

Turbulence vorticity: 2/k L     Spalding (1971), Saffman (1970) 
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(2) Standard k  model 

The basic assumption is that the local state of turbulence is characterized by the two 

parameters k and  . 

  model works better near walls than other equations.  

The  -equation does not require a near-wall correction term S. 

The model employs the eddy viscosity/diffusivity concept. 

2

t

k
c


                                               (10.40) 

t
t

t




          (10.41) 

 

[Re] Derivation 

'
t

c kL                                         (a) 

3/2 3/2

D D

k k
c L c

L



                               (b) 

 

Substitute (b) into (a)  

3/2 2

' 'D
t D

c k k
c k c c 

 
   

 

Set '
D

c c c   

Then 

2

t

k
c


                                               



Chapter 10 Turbulence Models and Their Applications  

10-54 

Exact  -equation can be derived from N-S equations for fluctuating vorticity.  

→ rate of change + advection = diffusion + generation of vorticity due to vortex stretching + 

viscous destruction of vorticity  

→ need model assumptions for diffusion, generation, and destruction terms (diffusion is 

modeled with gradient assumption). 

 

▪ Modeled ε -equation 

2

1 3 2
( )

rate of advection diffusion generation-destruction
change

t
i

ii i

U c P c G c
xt x x k k  



    


                
 

          (10.42) 

where P = stress production of kinetic energy k; 

G = buoyancy production of kinetic energy k 

 

▪ Complete k  model 

jt i i t
i t i

i i k i i j j t i

UU Uk k k
U g

t x x x x x x x

 
  

 

                             
(10.43)         

 
2

1 23
t

i
i i i

U c cP c G
t x x x k k 



    


               
          (10.44) 

 

Table 10.3 Values of constants in the k  model 

cµ  1c ε  2c ε  kσ  εσ  3c ε  

0.09 1.44 1.92 1.0 1.3 1 ( 0G > ), 0-0.2 ( 0G < ) 
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(3) k   model for depth-averaged equations 

▪ Main equations for depth-averaged shallow water model 

Continuity:   

( ) ( )
0

HU HV
t x y
  
  

  
      (10.45) 

 

x-momentum:    

2 ( )( )( ) ( ) ( ) 1 1 xyxx sx bx
HHHU HU HVU

gH
t x y x x y

  
  

    
      

     

21 1
( ) ( )( )

h h
U U dz U U V V dz

x y

 
 

  

 
    

     (10.46) 

   Shear flow dispersion      

  

y-momentum:    

2 ( ) ( )( ) ( ) ( ) 1 1yx yy sy by
H HHV HUV HV

gH
t x y y x y

   
  

     
      

     

 21 1
( )( ) ( )

h h
U U V V dz V V dz

x y

 
 

  

 
    

     (10.47) 

 

Scalar transport:    

( )( )( ) ( ) ( ) 1 1 yx s
HJHJ qH HU HV

t x y x y  

     
    

    

 
1 1

( )( ) ( )( )
h h

U U dz V V dz
x y

 
 

  

 
     

    (10.48) 

 

Turbulent shear stress 
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▪ Turbulence model 

Assumptions; 

ij
 ~ depth-averaged turbulent stress ( uv ) acting in 

i
x -direction on a face perpendicular 

to
j

x  

 
2
3

ij ji
t ij

j i

UU
k

x x


 



          


    (10.49) 

 

i
J  ~ depth-averaged flux of ( )u or v      in direction

i
x  

  i
t

i

J

x


 


       (10.50) 

with 

2

t

k
c










                                          (10.51) 

t
t

t




 


        (10.52) 

where ,k    are depth-averaged values 

 

The variation of ,k   is determined from the following transport equations 

t t
h kV

k k

k k k k
U V P P

x y x x y y

 


 

                              

   

 

 (10.53)         

2

1 2
t t

h V
U V c P P c

x y x x y y k k  
 

      
 

                              

 

     

 

   (10.54) 
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where 

2 2 2

2 2h t

U V U VP
x y y x


                                            

    (10.55) 

→ production of kdue to interaction of the turbulent stresses with the horizontal mean 

velocity gradients 

3
*

kV k

U
P c

h
         (10.56) 

4
*
2V

U
P c

h          (10.57) 

 2 2
* f

U c U V         (10.58) 

1
k

f

c
c

         (10.59) 

2 2
3/4 3/4*

1
3.6

f ft

c c
c c c

c ce

 
  


      (10.60) 

cf  = friction coefficient 

 

▪ 
kV

P , 
V

P   

~ All terms originating from nonuniformity of vertical profiles are assumed to be absorbed by 

the additional source terms, 
kV

P , 
V

P . 

~ stems from the significant vertical velocity gradients near the bottom 

~ relatively large turbulence shear stresses in the near-bottom region produce turbulence 

~ depends strongly on the bottom roughness, via the friction velocity, 
*

U  
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▪ *e  

*

*

te
U h


  

For wide laboratory flume, *e = 0.15 

For real rivers, *e = 0.60 (Fischer et al., 1979) 

→ The diffusivity obtained in real rivers accounts not only for turbulent transport but also for 

dispersive transport due to vertical non-uniformities of scalar quantities and velocity 

components. 

When significant secondary motions in cross-sectional planes are present, relatively small 

non-uniformities of temperature or concentration may cause relatively large dispersion 

contribution to the  -Eq. 

In natural rivers, secondary motions may arise from large-scale irregularities in the river bed 

and from rivers bends. 

 

t
 = 0.5



Chapter 10 Turbulence Models and Their Applications  

10-59 

▪ Assessment of two-equation models 

i) Advantage 

①  Two-equation models account for the transport of the turbulent velocity scale and 

the length scale. 

② Two-equation models are the simplest ones that promise success for those flows for 

which the length scale cannot be prescribed empirically in an easy way.  

Examples: separated flows, complex shear layers 

③ With efficient solution procedure, the additional solution of the length scale equation 

is not computationally expensive. 

④ The k  model is one of the most widely tested and successfully applied 

turbulence models. 

⑤ The depth-averaged version has been applied with success in a number of different 

calculations of the flow field and pollutant transport processes. 

→ This model was found to be particularly suitable for situations involving the 

interaction of turbulence generated both at the river bed and by the shear layers of 

discharging jets. 

 

ii) Limitation of k  model 

①  k  model uses the same eddy viscosity/diffusivity for all Reynolds stress and 

heat or mass flux components. 

→ The standard k   model assumes an isotropic eddy viscosity/diffusivity and 

hence constructs a direct relation to one velocity scale k . 

But in certain flow situations the assumption of an isotropic eddy viscosity is too 
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crude. 

②  It cannot produce the turbulence driven secondary motions in straight open channels. 

→ It does not allow any directional influences on the stresses and fluxes, for example, 

those due to buoyancy forces.  

 

③  In order to allow for the non-isotropic nature of the eddy viscosity/diffusivity, the 

k   model should be refined by introducing a so called algebraic stress/flux 

model to replace the simple combined relations, Eq. (10.23) and Eq. (10.41). 

  

 


