


### Theory of Radiative Recombination

Semiclassical model of radiative recombination based on equilibrium generation and recombination

- van Roosbroeck-Shockley model
  - → Calculation of the spontaneous radiative recombination rate under equilibrium and non-equilibrium conditions
- Einstein model
  - → Calculation of the spontaneous and stimulated transitions in a two-level atom

445.664 (Intro. LED) / Euijoon Yoon

2

# The van Roosbroeck-Shockley Mode

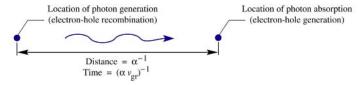



Fig. 3.1. Illustration of distance and elapsed time between a photon generation and absorption event.

- $\alpha(v)$  absorption coefficient [cm<sup>-1</sup>]
- $\alpha(\nu)^{\text{-}1}$   $\,$  mean distance that a photon travels before being absorbed
- $\upsilon_{\text{gr}}$  group velocity of photons propagating in the semiconductor
- τ(v) time that it takes for a photon to be absorbed =  $(α υ_{qr})^{-1}$
- ν frequency of a generated photon

445.664 (Intro. LED) / Euijoon Yoon

3

# Photon Absorption Probability

group velocity of photons

$$v_{gr} = \frac{d\omega}{dk} = \frac{dv}{d(1/\lambda)} = c\frac{dv}{d(\overline{n}v)}$$

 $\omega = 2\pi v$  angular frequency

 $k\left(=\frac{2\pi}{\lambda}\right)$  wave vector

 $\overline{n} \left( = \frac{c}{\lambda \nu} \right)$  refractive index

inverse photon lifetime

$$\frac{1}{\tau(\nu)} = \alpha(\nu) \, v_{gr} = \alpha(\nu) \, c \frac{d\nu}{d(\overline{n} \, \nu)}$$

→ photon absorption probability per unit time

445.664 (Intro. LED) / Euijoon Yoon

4

# **Density of Photons**

$$\overline{n} = \frac{c}{\lambda v} \implies \lambda = \frac{c}{\overline{n} v}$$

$$d\lambda = -\frac{c}{(\overline{n} v)^2} \frac{d(\overline{n} v)}{dv} dv$$

Density of photons per unit volume (equilibrium conditions) by Planck's black body radiation formula

$$N(\lambda) d\lambda = \frac{8\pi}{\lambda^4} \frac{1}{e^{h\nu/kT} - 1} d\lambda$$

$$N(\nu) d\nu = \frac{8\pi v^2 \overline{n}^2}{c^3} \frac{d(\overline{n}v)}{dv} \frac{1}{e^{hv/kT} - 1} dv$$

445.664 (Intro. LED) / Euijoon Yoon

5

# The van Roosbroeck-Shockley Equation

Phonon absorption rate per unit volume

= Absorption probability × Photon density

Absorption rate per unit volume in the frequency interval v and v + dv

$$R_0(\nu) d\nu = \frac{N(\nu) d\nu}{\tau(\nu)}$$

$$= \left(\frac{8\pi v^2 \overline{n}^2}{c^3} \frac{d(\overline{n}v)}{dv} \frac{1}{e^{h\nu/kT} - 1} d\nu\right) \cdot \left(\alpha(\nu) c \frac{d\nu}{d(\overline{n}\nu)}\right)$$

$$= \frac{8\pi v^2 \overline{n}^2}{c^2} \frac{\alpha(\nu)}{e^{h\nu/kT} - 1} d\nu$$

Absorption rate per unit volume

$$R_0 = \int_0^\infty R_0(\nu) \, d\nu = \int_0^\infty \frac{8\pi \, v^2 \, \overline{n}^2}{c^2} \frac{\alpha(\nu)}{e^{h\nu/kT} - 1} \, d\nu$$

van Roosbroeck-Shockley Equation

445.664 (Intro. LED) / Euijoon Yoon

<u>3</u>

**Absorption coefficient** 

$$\alpha = \alpha_0 \sqrt{\frac{E - E_g}{E_g}}$$

 $\alpha = \alpha_0 \sqrt{\frac{E - E_g}{E_g}}$   $E_g$  band gap energy of the semiconductor  $\alpha_0$  absorption coefficient at  $hv = 2E_g$ 

Neglecting the frequency dependence of the refractive index Using the absorption coefficient at the band edge ( $\alpha = \alpha_0$ )

$$x = hv/kT = E/kT$$

$$x_g = E_g/kT$$

$$dx = (h/kT)dv$$

$$R_0 = 8\pi c \overline{n}^2 \alpha \sqrt{\frac{kT}{E_g}} \left(\frac{kT}{ch}\right)^3 \int_{x_g}^{\infty} \frac{x^2 \sqrt{x - x_g}}{e^x - 1} dx$$

The simplified van Roosbroeck-Shockley Equation

445.664 (Intro. LED) / Euijoon Yoon

Under equilibrium conditions,

photon absorption rate  $(R_0)$  = photon emission rate carrier generation rate = carrier recombination rate (R)

Equilibrium carrier recombination rate

$$R = B n p = B n_i^2 = R_0$$

**B** bimolecular coefficient

| Material | $E_{\rm g}$ | $\alpha_0$           | $\overline{n}$ | $R_0$                                | $n_{\rm i}$          | В                                   | $\tau_{\text{spont}}$  |
|----------|-------------|----------------------|----------------|--------------------------------------|----------------------|-------------------------------------|------------------------|
|          | (eV)        | ( cm <sup>-1</sup> ) | (-)            | ( cm <sup>-3</sup> s <sup>-1</sup> ) | ( cm <sup>-3</sup> ) | ( cm <sup>3</sup> s <sup>-1</sup> ) | (s)                    |
| GaAs     | 1.42        | $2 \times 10^{4}$    | 3.3            | $7.9 \times 10^{2}$                  | 2 × 10 <sup>6</sup>  | $2.0 \times 10^{-10}$               | 5.1 × 10 <sup>-9</sup> |
| InP      | 1.35        | $2 \times 10^{4}$    | 3.4            | $1.2 \times 10^{4}$                  | $1 \times 10^{7}$    | $1.2 \times 10^{-10}$               | 8.5 × 10 <sup>-9</sup> |
| GaN      | 3.4         | $2 \times 10^{5}$    | 2.5            | 8.9 × 10 <sup>-30</sup> ·            | $2 \times 10^{-10}$  | $2.2 \times 10^{-10}$               | 4.5 × 10 <sup>-9</sup> |
| GaP      | 2.26        | $2 \times 10^{3}$    | 3.0            | $1.0 \times 10^{-12}$                | $1.6 \times 10^{0}$  | $3.9 \times 10^{-13}$               | $2.6 \times 10^{-6}$   |
| Si       | 1.12        | $1 \times 10^{3}$    | 3.4            | $3.3 \times 10^{6}$                  | 1 × 10 <sup>10</sup> | $3.2 \times 10^{-14}$               | $3.0 \times 10^{-5}$   |
| Ge       | 0.66        | $1 \times 10^{3}$    | 4.0            | $1.1 \times 10^{14}$                 | $2 \times 10^{13}$   | 2.8 × 10 <sup>-13</sup>             | 35 × 10 <sup>-6</sup>  |

Direct band gap  $B = 10^{-9} \sim 10^{-11} \text{ cm}^3/\text{s}$ 

Indirect band gap  $B = 10^{-13} \sim 10^{-15} \text{ cm}^3/\text{s}$ 

Table 3.1. Bimolecular recombination coefficient at 300 K for different semiconductors as calculated from the energy gap, absorption coefficient, and refractive index at the bandgap energy. The spontaneous lifetime is given by  $B^{-1}N_{\rm D,A}^{-1}$  and it is calculated for a majority carrier concentration of  $10^{18}$  cm<sup>-3</sup>.

445.664 (Intro. LED) / Euijoon Yoon

8

#### **Einstein Model**

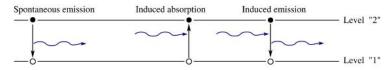



Fig. 3.2. Spontaneous emission, induced absorption, and induced emission events in the two-level atom model.

- A Spontaneous transition rate
- **B** Induced (stimulated) transition rate  $\infty$  photon density,  $\rho(\nu)$

#### Probability per unit time

downward transition (2  $\rightarrow$  1) upward transition (1  $\rightarrow$  2)

Induced emission spontaneous emission  $W_{2\to 1} = \mathcal{B}_{2\to 1} \rho(v) + \mathcal{A}$ 

 $W_{1\rightarrow 2} = B_{1\rightarrow 2} \rho(v)$ Induced absorption

Einstein showed that

- 1.  $B = B_{2\rightarrow 1} = B_{1\rightarrow 2}$   $\Rightarrow$  Stimulated absorption and stimulated emission are complementary processes.
- 2.  $A/B = 8\pi \overline{n}^3 h v^3 / c^3 = \text{constant in an isotropic medium}$

445.664 (Intro. LED) / Euijoon Yoon