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Linear Spaces

Definition: Field / is a set of scalars and over / , addition,
multiplication are defined such that they satisfy

) a+pel afelk Va,fe/
2) Commutative:
a+f=pF+a, aff=pa, Va,fef
3) Associative:
(a+B)+y=a+(B+y). (@B)y=a(Br). Va,p.ye/
4) Distributive: a(B+y)=af+ay). Va,B,ye/
5) Jldentityi.e., 0 # 1e/ such that
a+0=a, l-a=a, Yael
6) 3 Additive Inverse g e/ suchthat « + =0, Vae/
7) 3 Multiplicative Inverse y € /' such that ay =1, Vae/
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Linear Spaces

Example
- Binary Field {0,1} with operations of
addition: 0+0=1+1=0, 1+0=1;
multiplication: 0*1=0*0=0, 1*1=1.

- Positive Real is not Field because of no additive inverse

Linear Svstems Perception and Intelligence Laboratory
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Linear Spaces

Definition: Linear Space over a Field #: (X, /")

(X, /) consists of a set X of vectors, a Field 7, two
operations of vector addition and scalar multiplication satisfying

1) Vector addition: X, +x, € X, VX, X, € X

2) Commutative: X, +X, =X, +X;, VX, X, € X

3) Associative: (X; +X,)+X; =X, + (X, + X3), VX, X,,X; € X
4) 9 0e X suchthat x+0=x, VxeX

5) 39X e X suchthat x+Xx=0, VxeX

6) Scalar multiplication: axe X , Vxe X,Va e/

7) a(fX)=afix , Vxe X,Va,pfe/

8) a(X,+X,)=ax,+ax, , VX, X,e X, Va e/

9) (a+pB)Xx=ax+px , VxeX,Va,fel

10) 3 1€ / suchthat 1-x =%, VxeX

Linear Svstems Perception and Intelligence Laboratory
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Linear Spaces

Example

- (R, R), (C, ©C), (C, R) : Linear Space

- (R, C): Not Linear Space because it does not satisfy (6)

- Define R, [s] be real coefficient polynomial of s with order less
than n,
(R,[s], R), (R[sl, R[s]): Linear Space
(R,[s], R[s]): Not Linear Space

- (R",R): Linear Space, usually we use R"

Linear Svstems Perception and Intelligence Laboratory
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Linear Spaces

Example
X : Sol. Set of homogeneous differential eq.

X ={x|X+2%x+3x=0}
= x=ae "+ fe e X

= Linear Space

X ¢ Sol. Set of Nonhomogeneous differential eq.
X ={x|X+2x+3x=C}
= Xx=ae "+ pe " +v(t) e X,v(t):equal to all sol.s

= X+ X, X
= Not Linear Space

Linear Svstems Perception and Intelligence Laboratory
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Linear Spaces

Definition: Subspace
If (X, /) is Linear Space, (Y, /) is Linear Space, and Y < X
then (Y, /) is Subspace of (X, /).
Example
(R", R) is Subspace of (C", R)
(R%, R) is Subspace of (R®, R)
Note)
If Y < X, 2),3),7)-10) are satisfied, then
only if for LSY satisfy 1) & 4) - 6),
(Y, /) is Subspace of (X, /).
= Only check !!
ay,+a,y, €Y, Vy,y, €Y, Va,a,e/

Perception and Intelligence Laboratory
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Basis and Representation

Linear (Vector) Space
Vector has unique direction and magnitude

but many representations
X -

X

x>
Il

1
2
(2
1

Basis: Coordinate system for representation
Basis consists of a set of Linearly Independent Vectors

Perception and Intelligence Laboratory

Linear Systems 8 School of Electrical Engineering at SNU




Basis and Representation

Definition: Linearly Independent
A set of X, X,, ..., X, in (X, /) is linearly independent
if and only if ) " ax=0 implies &, =, = ... =a, =0,
otherwise, linearly dependent.

Definition: Dimension of Linear Space
Maximum number of linearly independent vectors in LS (X, /)

Example
- (R", R): n-dimensional vector space
- Functional linear space: the set of all real valued functions
(f(v),R), f(t)= Zioaiti

Basis: 1, t, t2, ... Dimension: infinite
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Basis and Representation

Definition: Basis
A set of linearly independent vectors (LIVs) of LS (X, /)
is basis if every vectors in X can be expressed as a unique
linear combination of these LIVs.

Theorem
In n-dim. LS, any set of n LIVs can be basis.

Note
Let e,e,, ...,e, € X be basis,
for x e X,
x=Y" &f (Linear Combination)
=[ € € ey en]ﬁ: Ep,
where B=[ B, B,, .. B.] €/, E=[e,¢e,, .., e]

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU
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Basis and Representation

Definition: Representation
S is called representation of x with respect to
the basis {e,e,, ..., €,}.

Example
In (R,[s].R),
for x =3s®+2s*-25+10,
if basis is {s°,s%,s,1}, if basis is {s* —s%,s* —s,5-1,1},
3 3]
2 5
x =[s*,s%,5,1] x =[s* —s?,s% —s,5—1,1]
_2 3
110 ] 13
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Basis and Representation

Change of Basis: Various forms of state variable description

x=[e,8, ...e]10=[8,8, .. §&lF (*)
Py
_ 1l P2 |_= _
e=[€,8&, ...g] =Ep, ,i1=1,2,..,n
_ _ __pnl
[e. &, ...e]=[Ep _E p,1=E[p, P, .. P,]
=[€&,¥&, . ]P
From (*) B
X:quézi . ]Pﬁ [e1 [ n]ﬂ
= p=Pp
I —th column of P = representation of e, w.r.t. {&} new basis
Similarly,
= =P 5=Qp

I —th column of Q = representation of & w.r.t. {e.}

Perception and Intelligence Laboratory
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Basis and Representation

Norms of Vectors

Any real valued function of X, || x|, is defined as a norm if it
has the following properties:

1. |[x|>0 Vx &||x|[=0 iff x=0

2. lex|Heal x|l Ya eR

3o X+ % i<l x [+ 1% ] V%%,
(Trangular inequality)

Ixlhi= 30 x|

Ixlli= ()% )2 =X

I X1L:=max| x|

Perception and Intelligence Laboratory
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Basis and Representation

Orthonormalization o
Othorgonal : XX =0ariz]
U0 if =

Othonormal : v, J=0 1fi=]
=l ifi=

Schmidt Orthonormalization procedure

LI vectors e ,e,,...,e.,
U =€

Uy =€, =D (0 e,)d Gy =,/ |lu, |

Perception and Intelligence Laboratory
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Linear Operators

Linear Operators, Linear Mappings, Linear Transformations
L:(X,/)—>(Y,/F)

Definition: A function L is Linear Operator if and only if
Ly X, +a,%,) =L (%) +a,L(X,) VX, X, € X, Vo, a, € F

Example: Convolution integral
y(® = [ 9t - )u(r)d

Perception and Intelligence Laboratory
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Funeral Rites During 2002 World Cup in Seoul

2 [ ZdAH
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Linear Operators

Matrix Representation of Linear Operators
{x}: Basis of X
{u.}: Basis of Y

Operator y = Lx
wy| oo
Represen. P =Ax
Let vy, =Lx
X; _L)Yi X ——y
CHRACH I A
e —2>a a —-p
A=[aa,,..,a,]

a; = rep. of y;(=Lx) wrt. {u}

Perception and Intelligence Laboratory
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Linear Operators

Matrix Representation of Linear Operators

Yi =[U Uy, ... u, 1
L[Xl,XZ""’Xm] :[yl,yZ""’ ym]
:[ul,u2""’um][ai,aZ""’am]
:[ul,u2""’um]A
From y=Lx, L:Unique
[uU,,...u, 18 = L[X X, X ]
=[uU,,...,u, JAx
Hence S = Aa, A:Many depending on {x.},{u.}

Perception and Intelligence Laboratory
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Linear Operators

Basis Changes
X——Yy (= Lx)

Operator
Repl: basis [ ... €] a —— f (= Aa)
Plfe el
Rep2: basis [g,... €] a —2p (= Az)
a,: rep.of Le, w.rt {e}

g rep.of Lg w.rt {g}
p; :rep. of e w.rt {g}
g :rep.of & w.rt {e}

Linear Systems Perception and Intelligence Laboratory
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Linear Operators

Similarity Transform
a=Pa, B=Pp=PAa=PAP'a
B =Aa
= A=PAP'=Q'AQ
Note: A& A are similar if there exists a nonsingular P

Linear Systems Perception and Intelligence Laboratory
e 20 School of Electrical Engineering at SNU




Linear Operators

Example
3 -1 0
A=|-2 1 0 b=
4 1

Let new basis be
{b, Ab, A’b}: Linearly independent

Q=[b Ab A’b]
00 17 AQ = QA
J— _ 1 _ N
A=Q7AQ= (1) 2 —;5 [Ag, ... Ag,]=I[q, - q,]A
a : rep.of Ag w.rt. {g}
o Syt 21 Sehoa o Eorionl Enmmecning ot S
Homework

HW21: Problem 3.1 in Text

Should submit the report within one week after finishing

the lecture of this chapter

HW?2
(2 1 0 O] 0]
0 210 0 _
Given A= b= b
0 020 1
0 0 0 1] 1]

o

1

What are the representations of A with respect to the basis
{b, Ab, A’b, A’b} and the basis {b, Ab, A%b, A0}, respectively?

Drive using the definition of representation.

Linear Systems 22

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU




Linear Operators

Linear Algebraic Equations
Ax=y A(/", N>V F)

Definition: Range Space
R(A)={all y for which there is at least one x such that y=Ax}

Theorem:
R(A) is Subspace of (/™ /)

Perception and Intelligence Laboratory
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Linear Operators

Example
A X, |
X n
y = % =Ax=[a,..a] * =Y x4
_ym_ _Xn_

=y is spaned from {a.}
= Dim. of R(A) is equal to number of LI vectors in {&a}
= Dim. of R(A) = Rank of A<m

Perception and Intelligence Laboratory

Linear Systems 24 School of Electrical Engineering at SNU




Linear Operators

Definition: Null Space
N(A)={all x for which Ax=0}, dim. of N(A) =n- dim. of R(A)

Example

If dim.of R(A)=n

Ax=0=x=0, N(A)={x|Ax=0}={0}: not vector space
Hence dim. of N(A) =0

If dim.of R(A)=k <n, 3x=0suchthat Ax=0

1 0 0 0} x 0 0
0 1 0 Of|x 0
‘1= N(A={ [
0 0 0 0O} X 0 X,
0 0 0 0]/ | [0 | X |
dim. of N(A)=n-k
= dim. of R(A)+dim. of N(A) =n
2 e e

Linear Operators

Theorem
Let A /" — /™ cf) (", F)
1. for given y, there exists x such that
Ax=y Iff p(A)=p(AY])
2. forally e /", there exists x such that
Ax =y iff p(A)=m (indefiniteness, m<n)

Linear Svstems Perception and Intelligence Laboratory
e 26 School of Electrical Engineering at SNU




Linear Operators

Theorem
Let x, be a solution of Ax=y
k =n—p(A):nullity
then
X=X, + oV, +aV, ..+ V,

is a solution of AX=Y
where {v.} isa basis of N(A)

Pf.
AX, =Y

AX=AX, + D AV, =y

Linear Systems Perception and Intelligence Laboratory
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Linear Operators

Theorem
Ax=1y, A: square

1. If Ais nonsingular, x= A"y, Ax=0=x=0
2. Iff Ais singular, Ax =0 has nonzero sol's.
Number of LI sol's is nullity of A.

Linear Systems Perception and Intelligence Laboratory
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Similarity Transform

Characteristic Polynomial

Eigenvalue 4

Eigenvector x (non zero)

3 x such that Ax = Ax

= (A-A1)x=0= nullity of (A—A41) >1

= (A-Al) issingular = A(A) =det(A-11)=0
A(A) is called characteristic polynomial of A

Example
Companion form

0 0 0 —a,

1 0 0 —a,
A(L) = A" +a 1’ +a,A% +a, 1 +a

01 0 -a| AW=A T ral vl v,

0 0 1 —a]

Linear Systems 59 Perception and Intelligence Laboratory
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Similarity Transform

Similarity Transform to Jordan form
case 1: distinct eigenvalues

Theorem
Let 4, i=1,...,n, be distinct eigenvalues,
then eigenvectors v, i=1,...,n, are linearly independent.
{v,} can be basis.

Perception and Intelligence Laboratory
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Similarity Transform

Similarity Transform to Jordan form
case 1: distinct eigenvalues

{n} x—"ov g : rep. of v, w.r.t. {n}
QT Pl l v, =[n, ... n..n,1g; =
v x5y Q=[V, ... v,..v,] = A=QAQ = PAP"*

a :rep. of Av, w.r.t. {v.}

0 A
AV, =Av. =[v, .. v.v.]| T |= A=
i Vi 1 oo ViV
A A
0 A
P 56, 57, 58 B R n
Linear Systems 31 Perception and Intelligence Laboratory
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Similarity Transform

Example

A=

o — O

00
0 2| — A()=det(Al-A)=(1-2)(A+1)A
11

-2 0
(A-2l)g, =11 -2 2 q1 =0—>q,=

0 L
1 00 0 ] 2
(A+Dg,=/1 1 2|9,=0—>q,=|-2|,Aq;=0—>0,=| 1
01 2 1] -1
2 2 0 0
=1 -2 1 } =Q'AQ=|0 -1 0
1 1 0 0 O
Linear Systems Perception and Intelligence Laboratory

School of Electrical Engineering at SNU




Similarity Transform

Similarity Transform to Jordan form
case 2: not all distinct eigenvalues

Definition: Generalized eigenvector v of grade k iff
(A-=AD*v=0and (A-A1)“'v=0

Example
A 1 1 0 11
A=|0 A 1| =>@A-aD)=[0 0 1
0 0 4 0 0O
0 0 1 0 0O
= ((A-A1)2=]0 0 0|=(A-A1)®*=|0 0 0
0 0O 0 0O
=v=[0 0 1]T is generalized eigenvector of grade 3.
s Systeme - Perception and Intelligence Laboratory

School of Electrical Engineering at SNU

Similarity Transform

Derivation of Basis
V, =V
Vi, =(A=Al)v=(A-Al)y,
Vo, = (A=A1)°v=(A-Al)v,_,

v, = (A= A1)t = (A= A1)y,
{v.} = Chain of generalized eigenvectors

g, : rep.of Ay, w.r.t. {v.}

(A_/“,A)x: i}'j{,f +V., Jordan Block
0 A1 0 0

=[v, .v., V. V]l S A= 0410

A ! 00 .. 1

0] 0 0 0 2]

Perception and Intelligence Laboratory
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Similarity Transform

How to find generalized eigenvectors?

det(sl - A) = (s -4 )(s—A,)(s— 4,)° =0
s=A4, 4,, 4,(8 multiple roots)

(A-41)x, =0= x, can be basis

(A-4,1)x, =0= X, can be basis

8 generalized eigenvectors for A,

p(A-2,1)° =10, v, =0 Ju=0such tshat
p(A=1)' =7, vy=3, U wV, Eﬁ—ﬂg:}lu;ﬁg

2 _ U=
p(A—ﬂ3|)3 =4 V=0 UL WoVs  rpereis élﬂachains {u,,u,,u,,u,}
pPA=Z1)" =3, vy =1, U, 3 two w(or v) = 0 and such that
p(A=41) =2, v, =8, u, (A= A,1) w(orv) =0
P(A=251)° =2, v,=8 (A—A1)?w(or v) =0

There is 2 chains for each w(or v).
{W1’W2’V1’V2}

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU
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Similarity Transform

How to find generalized eigenvectors?

det(sl - A) = (s— 4 )(s— A,)(s— )" =0
s=A4, 4,, 4,(8 multiple roots)
(A=Al)x =0= x can be basis
(A-4,1)x, =0= X, can be basis

8 generalized eigenvectors for A,
(A-41)*u=0, u,=u p(A-2,1)° =10, v, =0
1
(A= Z1)°u; =0, Uy =(A—Al)u=0 P((A—ﬁs'));?, Vo =3, Uy WV,
2 B ) P(A-41) =4, v,=6, u,w,v,
(A-41)%u, =0, Uz—(A—ﬂJz u=0 p(A—ﬂgl)3:3, v =7, U,
(A=41)u =0, uy=(A-41)u=0 HA-A1)" =2, v,=8 u,

In similar way, p(A-41)° =2, v,=8
{w,, w,,v;,Vv,} can be obtained.

Perception and Intelligence Laboratory
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Similarity Transform

How to find generalized eigenvectors?
Q:[Xl Xy Wy Wy Vy V, Up Uy Uy Uy ]

A=QAQ
_}tl 0 0 0 0 0 0 0 0 0 |
0 4, O 0 0 0 0 0 0 0
0 0 4, 1 0 0 0 0 0 0
0 0 0 A, 0 0 0 0 0 0
A _ 0 0 0 0 4, 1 0 0 0 0
0 0 0 0 0 4;i 0 0 0 0
0 0 0 0 0 0 4, 1 0 0i| Jordan Block
0 0 0 0 0 0 0 4, 1 0
0 0 0 0 0 0 0 0 4, 1
(0 0 0 0 0 0 0 0 0 A
Linear Systems 37 ot Hectrionl Emmecring St
HW3

Transform the following matrix to Jordan form

3 -1 1 1 0 0]
1 1 -1 -1 O 0
0O 0 2 0 1 1
A =

o 0o 0o 2 -1 -1
o 0o o0 o0 1 1

00 0 0 1 1|

Linear Systems 38 Perception and Intelligence Laboratory
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Motivations

Linear algebra for linear time invariant systems

Linear space and operator theory for linear time varying system
Stability for linear time invariant systems

General definition and Theorem on stability for general systems

Repetitive & tedious training is required for learning of language,
mathematics, skill, mind control, sports, ...

Mathematics is useful for analysis, writing a paper, proof, ...

Overcoming of tedious training phase must give you freedom
in the future.

Perception and Intelligence Laboratory
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Functions of Square Matrix

Square Matrix A, A*:=AA ---A

Let f (A1) be a ploynomial

f(1)=A2+21% -6
f(A)= A’ +2A’ 61 « Ploynomial of A

A=Q"AQ B B
A = Q‘l#k\Q Q'AQ..=QA*Q
A O] A" O
0 Al |0 A
Definition

Minimal polynomial of A is defined as monic polynomial f (A1)
of least degree such that f(A)=0.

Perception and Intelligence Laboratory
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Functions of Square Matrix

Definition
Largest order of Jordan blocks for 4, isindex of 4 inA

Theorem n
Minimal polynomial of A is f(2)=]](2-4)"

i=1

where n, isindex of 4, in A.

Ex.) Charcteristic poly. A(1)=(41-3)°(1-1)

3000| [3100] (310 0]
0300/ |03 00 (0310
0030|0030/ [0030
0001 [000 1] [0 00 1]
(A-3)(A-1) (1-3)*(A1-1) (1-3)*(1-1): min. poly.

Lner Systoms " Perception and Intelligence Laboratory

School of Electrical Engineering at SNU

Functions of Square Matrix

Cayley-Hamilton Theorem
A =det(A-Al) ="+ A" +.. +a,
= A(A)=0
Remark:
A(A) = p(A)h(A), @(A): minimal polynomial
= A(A)=p(A)h(A)=0-h(A)=0

Perception and Intelligence Laboratory
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Functions of Square Matrix

Calculation of Function of Square Matrix f(A)
f(1)=A(1)g(1)+h(4), orderof h(1) isn-1
F(A)=A(A)g(A)+h(A) =h(A)

=B A+ B LA+ L+ B

Example oo 1 2
Compute A™, where A= 0 1

Minimal polynormal
p(A)=(A-1)°, p(A)=(A-1)"=0
f(2)=2"=(A-)"g(A)+ B+ B2
fW)=4+p=1
f'})=p,=100—> g, =-99

o [1 200
f(A)=A _ﬂll+ﬂ2A{0 1}

Perception and Intelligence Laboratory
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Functions of Square Matrix

Example
0 0 -2
Compute €™, whereA={0 1 0
1 0 3

A(A)=(A-1)*(1-2),
f(A)=e" =(A-1)*(A-2)g(A) + B, + B, A+ B A°
fFQ)=p+p,+p,=¢
f'Q) =L, +24, =te'
f(2)=p+2p,+4p,=¢"
2e'—e® 0 2e'—2e*

f(A)=e™=B1+p,A+B,A2=| O ' 0
—e'+e” —te' —e'+2e*
Linear Systems 44 Perception and Intelligence Laboratory
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Functions of Square Matrix

Theorem
For given f (1) and an nxn matrix A with characteristic polynomial

A =[], (-4)",
wheren=> " n,.

f(2)=A(4)g(1) +h(2)

F0(2y=hV(1), 1=12,...,n -1

|
where f V(1) = d f(lﬂ‘)
di' |,
Then
f(A) = h(A)

and h(A) is said to equal to f (1) on the Spectrum of A.

Perception and Intelligence Laboratory
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Functions of Square Matrix

Matrix function based on Power Series

For given f (1) and an nxn matrix A,

e”=1+/1t+izzt2+-~:2°° Lk
2!

k=0 k1
At _ 0 1 K Ak
€ _Zk=omt A
Laplace Transform of et
1« _ a—(k+D)
Z(Et )=5
1) = Zf_os*“iAk =57, (s7A)
(s = i for s <1
Z(eAt) — S—l(l _ S—lA)—l — (Sl _ A)—l

Perception and Intelligence Laboratory
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Review

Linear Operator

L:R" > R"

L(x)=y, xeR", yeR"
Matrix Representation AX=Ax: eigenvector

Ax=y, xeR", yeR" can be basis of range space
Range Space Ax=0: null vector

R(A) ={y| Ax =y} can be basis of null space

n — Diagonal form
y= Zi=1 Xia; .

— pR(A) =# of LI vectors in {a,}
Null Space

N(A) ={x| Ax=0}

PN(A) =n—pR(A)

Linear Svstems Perception and Intelligence Laboratory
e 47 School of Electrical Engineering at SNU

Review

Simple Example
100 %
SR Y
X Yo
Ax{ﬂ:y{o}%p{y}:pR(A):l

0
Ax=0—{ *}=N(A) - pN(A) =2

*

Linear Svstems Perception and Intelligence Laboratory
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Lyapunov Equation

Lyapunov Equation

Problem to find M € R™™ satisfying the Lyapunov equation
AM +MB =C,

for given Ae R™, Be R™™", CeR™™.

Conversion to Linear Equation
For Ae R*®, BeR*?

a,+by, a, . W] [en]
8 - Mo | _| G2
b,y
g +D0, [[My, | [ Cy |
6x6 6x1 6x1 (mn==6)

= Qm=c: Linear Equation
— if Q is nonsingular, the solution exists and unique
— if Q is singular, indeterminate or insoluble(insolvable)

. Perception and Intelligence Laborator,
Linear Systems 49 o g y
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Lyapunov Equation

Define Linear Mapping L:R™ — R™
L(M)=AM + MB

Let 77 be eigenvalue of linear mapping L()
L(M)=nM

Let u and A4 be right eigenvector and eigenvalue of A and
v and i be left eigenvector and eigenvalue of B
Au=Au, vB=puv

= L(uv) = Auv+uvB = Auv + puv = (4 + p)uv

= (A + u) is eigenvalue of L()

= Q is nonsingular iff all 77, = (4 + ;) is nonzero

= Ifsome 7, =(4 + ;) is zero

casel: C is in range space of L, sol. exists and not unique
case2: otherwise, sol. does not exist.

) Perception and Intelligence Laborator,
Linear Systems 50 P g 4
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HWA4

Problem 3.31 in the Text.

Perception and Intelligence Laboratory
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Useful Formulas

Theorem
p(AB) <min(p(A), po(B)), AcR™", BeR™P
Bpf.)
a, .. a,|[b| | ab,
AB = =

a‘ml a‘mn bn Zamibi
1. row of AB is spaned by {b}
= rank of AB is not more than the number of LI vectors in {b,}

b, .. by,
AB=[a, .. a,] =[>ba .. Yba]

b b,

nl np

2. column of AB is spaned by {a,}
= rank of AB is not more than the number of LI vectors in {a,}

Perception and Intelligence Laboratory
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Useful Formulas

Theorem

The rank of a matrix will not change after pre- or post-
multiplying by a nonsingular matrix

p(A) = p(AC) = p(DA),Ac R™",C e R™,D e R™"
Pf.)

P=AC

p(A) =min(m,n), p(C) =n

— p(A) < p(C)

p(P) <min(p(A), p(C)) = p(A)

A=PC™

— p(A) < p(P)

= p(A) = p(P)
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Useful Formulas

Theorem
det(l , + AB) =det(l, + BA),Ac R™",B e R™™
Pf.)
_ I A I 0 1. -A
Define N = ,Q = P=
0 1, -B 1, B 1,
I, +AB O l, ~A ]
P= ,QP =
B I, 0 I, +BA]
detN =detl_detl =1=detQ
det NP =det[l , + AB]=det Ndet P =det P
det QP =det[l, + BA]=detQdetP =detP
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Matrix Properties

Fact: all eigenvalues of symetric real M are real.

Pf.)
Assume x be complex
(X MX)" =X M x =X Mx
This implies X' Mx is real.
Let A,v be eigenvalue and eigenvector of M
Mv = Av
VMv=VAv=AVvV

— A should be real since v'v and v'"Mv are real.
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Matrix Properties

Claim: every symmetric real matrix can be diagonalized by a
similarity transform.

Pf.)

To show that there is no gneralized eigenvector of grade 2 or higher,
suppose x be a generalized eigenvector of grade 2 or higher, i.e.,

(M =A1)*x=0----(1)

(M=Al)x=0 ---(2)
From (2)

[(M=ADX]'(M =A1)x =0
From (1)

[((M=ADX] (M =A)x=x"(M -=41)*x=0
This contradicts.
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Matrix Properties

Claim: Jordan form of symmetric real matrix M has no Jordan
block of order of 2 or higher.

Note: Ais called orthogonal (orthomormal) matrix if
all columns are orthogonal(orthomormal).
If Alis orthomormal ,

ATA=1, A" = A™: called unitary matrix.
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Matrix Properties

Theorem
M =QDQ*',Q" =Q™, D:diagonal, M : symmetric real

Pf.)
Since D"=D,M" =M

M =QDQ™" =(QDQ™)" =Q'DQ’
=Q'=Q"
Positive Definiteness

M is positive definite , M > 0 if x' Mx > 0 for every nonzero x
M is positive semidefinite , M >0 if x' Mx > 0 for every nonzero X
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Matrix Properties

Theorem

M is positive definite (semidefinite) iff

any one of the following conditions holds

- every eigenvalue of M s positive (zero or positive),

- all leading principal minors of M are positive (all
principal minors are zero or positive) (see [10])

- there exists nonsingular N (nonsingular or mxn matrix
N with m<n) such that M=NTN.

Note:
principal minors: det of 1x1, 2x2, 3x3 ... submatrix
leading principal minors include m,,
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Matrix Properties

Theorem
1. mxn matrix H, m=n, has rank n iff
H™H has ranknordet H'H =20
2. mxn matrix 4, m<n, has rank m iff
HHT has rank m or detHH" #0

Pf.)
(Necessity) p(H"H) =n— p(H) =n (Sufficiency) p(H)=n— p(H"H) =n
by contraction, suppose by contraction, suppose
p(H"H)=n, but p(H)<n p(H)=n, but p(H'H)<n
— 3v =0 such that Hv =0 —>3v=0suchthatH"Hv=0
—H'Hv=0 >V H Hv =0 = (Hv)" Hv = |Hv|]
— contradicts p(H"H) =n SHv=0
— contradicts p(H) =n
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Matrix Properties

Singular Value
M =HTH >0; eigenvalues A°>0

W22 2 A2 >0=4,"==1"
Let 0 = min(m, n)
WZA22A >0=2, ==

A. is called singular values of H
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Matrix Properties

Example: Singular Value

4 -1 2
H =
2 05 -1

20 5 -10
M=H'H=| 5 125 -25
-10 -25 5

det(11 —M) = 1°-26.254° = 1%(1 —26.25)
— singular values of H are +/26.25 =5.1235, 0
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Matrix Properties

Theorem: Singular Value Decomposition
Every mxn matrix H can be transformed into
H =RSQ’
with R"TR=RR" =1_, Q"Q=QQ" =1, and
S is diagonal matrix with signular values
Q : orthonormalized eigenvectors of H™H
R : orthonormalized eigenvectors of HH '
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Matrix Properties

Pf.
! (M) == p(HTH), 472477 50= 4, -

Q:[ql“'qr qr+1“'qn]:[Q1 QZ]

g, : orthonormalized eigenvectors of H'H
note) H'Hg, = A°q, fori=1, .., r
HTqu =0, forj=r+1, ..., n (Null space basis)
2 THTH —
QTHTHQ: A O . Q-IZ_ ; QZ 02
0 0| Q H HQ=A
A7QH'HQA ™ =1=R'R =1 bydefining R, = HQA™
Choose R, such that R"R =1,R=[R,R,]
R’ R"HQ "HQ
RTHQ = }Htol QZJ{ e R
R2 HQl R2 HQZ

1

R,

A 0 .
; =S = H =RSQ
R/RA=0 0

RTHQ =

Perception and Intelligence Laboratory

Linear Systems 64 School of Electrical Engineering at SNU




i HWS

Find Singular Value Decomposition for the following matrix

-1 0 1
H = .
{2 -1 0}
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i Matrix Properties

Norm of Matrix (Induced Norm)

I = sup 2 - supax
x#0 HXH HxH:l

|Al = m?X(Zin:l cH ‘), for ||x|, =1,ex)x =[0...1...0]
A, = o (5™, for ], =1

max

A, =max(X" Jay]), for [x], =1ex)x=[-1..1..-1]

<~
|Al, = sup(x" A"Ax)"? =sup(X A'AY avi)V2 x =D oy,
=1 =2
=SUP(XC X A1) S SUP(X A 3 ) = (A )
X|=. X||=
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i Matrix Properties

Examples

Linear Systems

|Al| = m?x(z:zl‘aij ‘), for ||, =1 ex)x =[0...1...0]

1 -2 4
A=|-5 2 0
2 3 1

x'=[+1 0 0]—|Ax| =8
x'=[0 £1 0]->|Ax| =7
x'=[0 0 #1]—>|Ax| =5
= A, =8
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i Matrix Properties

Examples

Linear Systems

1 -2 4
A=|-5 2 0
2 3 1

x'=[1 -1 1]->|Ax| =7
x'=[-1 1 0]>|Ax| =7
x'=[1 1 1]>|Ax| =6
= Al =7
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Matrix Properties

Norm of Matrix (Induced Norm)

. X2

The sum of these two
magnitudes gives the
norm of A.

(@)
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Matrix Properties

Norm of Matrix (Induced Norm)

A *2

This magnitude gives
the norm of A.

(b)
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Matrix Properties

Norm of Matrix (Induced Norm)

A Xo
2 —+4
i b ; lloo = 1
TS S S o T = X
=] ==t
3 2 L TR R S
_______ ® Ax
bl AN
[
This magnitude gives
the norm of A.
(©)
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Summary

Field, Linear (Vector) Space

Basis, Linearly Independent Vectors,
Representation of Vectors and Linear Operators
Basis Change, Similarity Transform

Generalized Eigenvectors, Jordan Form
Function of Square Matrix

Range Space and Null Space in Linear Algebraic Equations
Lyapunov Equation

Singular Value Decomposition, Unitary Matrix
Matrix Norm

Useful Formula and Matrix Properties
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