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Linear SpacesLinear Spaces

Definition: Field is a set of scalars and over additionF FDefinition: Field     is a set of scalars and over     , addition, 
multiplication are defined such that they satisfy   

F

1)  ,α β αβ α β+ ∈ ∈ ∀ ∈F,   F,    F

F

) ,

2)  Commutative:  

      ,

) A i i

β β β

α β β α αβ βα α β+ = + = ∀ ∈

, ,

,   ,    F
3)  Associative:  

      ( ) ( ) ( ) ( ) , ,

4)  Distributive:  ( ) ) , ,

α β γ α β γ αβ γ α βγ α β γ
α β γ αβ αγ α β γ

+ + = + + = ∀ ∈
+ = + ∀ ∈

,   ,    F
,     F) ( ) ) , ,

5)   Id

β γ β γ β γ
∃ entity i.e., 0  1   such that 

0 , 1 ,

6) Additi I h th t 0

α α α α α
β β

∈ ∈
+ = ⋅ = ∀ ∈

∃ ∀

 F,    F   
                F  

  F         F  6)   Additive Inverse  such that 0,

7)   Multiplicative Inverse  such that 1,

β α β α
γ αγ α

∃ ∈ + = ∀ ∈
∃ ∈ = ∀ ∈

  F         F  
  F         F  
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Linear SpacesLinear Spaces

ExampleExample 
- Binary Field  {0,1}  with operations of

addition: 0+0=1+1=0, 1+0=1; , ;
multiplication: 0*1=0*0=0, 1*1=1.

- Positive Real is not Field because of no additive inverse

Perception and Intelligence Laboratory
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Linear SpacesLinear Spaces

Definition: Linear Space over a Field : ( )XF  FDefinition: Linear Space over a Field     
consists of a set X of vectors, a Field    , two 

operations of vector addition and scalar multiplication satisfying

:  ( ,  )XF  F

F( ,  )X F

1 2 1 2

1 2 2 1 2

1)  Vector addition: ,

2)  Commutative:  ,

X X

X

+ ∈ ∀ ∈
+ = + ∀ ∈1

x x x x

x x x x x , x

,   
   

3)  Associative: ,  

4)    such that 

5)    such that 

X

X X

X

∀ ∈

∃ ∈ ∀ ∈
∃ ∈

1 2 3 1 2 3 1 2 3(x + x ) + x = x + (x + x ) x , x , x

0 x + 0 = x,     x

x  x + x = 0

   
   

, X∀ ∈x     5) suc t at 0,

6)  Scalar multiplication:  , ,

7)  ( )  , , ,

) ( )

X X

X

α α
α β αβ α β

∈ ∀ ∈ ∀ ∈
= ∀ ∈ ∀ ∈

x x

x x x

     
      F  

      F  
       F  1 2 1 2 1 28)  ( )  , , ,

9)  ( )  , , ,

10)   1  such that 1

X

X

α α α α
α β α β α β

+ = + ∀ ∈ ∀ ∈
+ = + ∀ ∈ ∀ ∈

∃ ∈ ⋅

x x x x x x

x x x x

x =

       F  
      F  

 F    X∀ ∈x,     x
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Linear SpacesLinear Spaces

ExampleExample 
- (R, R), (C, C), (C, R) : Linear Space 
- (R, C): Not Linear Space because it does not satisfy (6)( , ) p y ( )
- Define Rn[s] be real coefficient polynomial of s with order less 

than n, 
(R [s] R) (R[s] R[s]): Linear Space(Rn[s], R), (R[s], R[s]): Linear Space 
(Rn[s], R[s]): Not Linear Space

- (Rn,R): Linear Space, usually we use Rn(R ,R): Linear Space, usually we use R

Perception and Intelligence Laboratory
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Linear SpacesLinear Spaces

ExampleExample 
X : Sol. Set of homogeneous differential eq. 

{ | 2 3 0}X x x x x= + + =&& &

1 2

{ | 2 3 0}
t t

X x x x x

x e e X

L in e a r S p a c e

λ λα β− −

+ +

⇒ = + ∈

⇒

{ | 2 3 }X x x x x C= + + =&& &

X : Sol. Set of Nonhomogeneous differential eq. 

1 2

1 2

{ | 2 3 }

( ) , ( ) : equal to  all sol.st t

X x x x x C

x e e v t X v t

x x X

λ λα β− −

+ +

⇒ = + + ∈
⇒ + ∉

N ot L inear Space⇒
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Linear SpacesLinear Spaces

Definition: SubspaceDefinition: Subspace
If ( , )  is Linear Space, ( , )  is Linear Space, and Y X

then  ( , )  is  Subspace of ( , ). 

X Y

Y X

⊂ F  F
 F F( , ) p ( , )

Example
( , ) is  Subspace of ( , )  n nR R C R

2 3( , )  is  Subspace of ( , ) R R R R

Note)
If 2) 3) 7) 10) i fi d hY X If  ,  2), 3), 7) - 10) are satisfied, then

only if  for LS   satisfy 1) & 4) - 6), 

( ) is Subspace of ( )

Y X

Y

Y X

⊂ 

F F

1 1 2 2 1 2 1 2

( , ) is  Subspace of ( , ). 

Only check !!

    ,   , ,   ,

Y X

y y Y y y Yα α α α
⇒

+ ∈ ∀ ∈ ∀ ∈

F F

F
Perception and Intelligence Laboratory
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Basis and RepresentationBasis and Representation

Li (V t ) SLinear (Vector) Space  
Vector has unique direction and magnitude
but many representations

x
1

2
x

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

but many representations  

2⎣ ⎦
2

ˆ
1

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Basis: Coordinate system for representation
Basis consists of a set of Linearly Independent Vectors

Perception and Intelligence Laboratory
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Basis and RepresentationBasis and Representation

D fi iti Li l I d d tDefinition: Linearly Independent
A set of                                 is linearly independent  
if and only if implies

1 2, , ...,  in ( , )nx x x X F

=0
n

i ixα∑ 1 2 ... = 0,α α α= = =if and only if                    implies
otherwise, linearly dependent.

1
0 i ii

xα
=∑ 1 2  ... 0,nα α α

Definition: Dimension of Linear SpaceDefinition: Dimension of Linear Space
Maximum number of linearly independent vectors in LS ( , )X F

ExampleExample 
- (Rn, R): n-dimensional vector space
- Functional linear space: the set of all real valued functionsp

(f(t), R) ,

Basis: 1, t, t2 , …  Dimension: infinite  
0

( )  i
ii

f t tα∞

=
= ∑

Perception and Intelligence Laboratory
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Basis and RepresentationBasis and Representation

D fi iti B iDefinition: Basis 
A set of  linearly independent vectors (LIVs) of LS  
is basis if every vectors in X can be expressed as a unique

( , )X F
is basis if every vectors in X can be expressed as a unique 
linear combination of these LIVs. 

TheoremTheorem 
In n-dim. LS, any set of n LIVs can be basis.

NoteNote 

1 2Let  , ,  ...,    be basis,
for     ,

(Li C bi ti )

n

n

e e e X
x X

β

∈
∈

∑ 1

1 2

1 2 1 2

       (Linear Combination)
         [ , ,  ..., ] ,
where [ , ,  ..., ] ,  =[ , ,  ..., ]

i ii

n
T

n n

x e
e e e E

E e e e

β
β β

β β β β

=
=
= =

= ∈

∑
nF
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Basis and RepresentationBasis and Representation

D fi iti R t tiDefinition: Representation 
is called representation of x with respect to 

the basis .
β

1 2{ , , ..., }e e ethe basis                     .

Example 

In ( [ ] )R s R

1 2{ , ,  ..., } ne e e

4
3 2

3 2

In  ( [ ], ),
for    =3 2 2 10,
if basis is { , , ,1},

3

R s R
x s s s

s s s
+ − +

⎡ ⎤
3 2 2if basis is { , , 1,1},

3
s s s s s− − −

⎡ ⎤

3 2

3

2
         =[ , , ,1]

2
x s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

3 2 2

3

5
         =[ , , 1,1]

3
x s s s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥10

⎢ ⎥
⎣ ⎦

3

13

⎢ ⎥
⎢ ⎥
⎣ ⎦
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Basis and RepresentationBasis and Representation

Change of Basis: Various forms of state variable descriptionChange of Basis: Various forms of state variable description
1 2 1 2

1

[ , ,  ..., ] [ , ,  ..., ]                  (*)n n

i

x e e e e e e
p

p

β β= =
⎡ ⎤
⎢ ⎥
⎢ ⎥2

1 2[ , ,  ..., ] =    , i=1,2, ..., n
...

i
i n i

ni

p
e e e e Ep

p

⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 2 1 2 1 2

1 2

[ , ,  ..., ] [   ... ] [   ... ]
[ , ,  ..., 

ni

n n n

p
e e e Ep Ep Ep E p p p

e e e

⎢ ⎥⎣ ⎦
= =
= ]n P

From (*)

1 2 1 2[ , ,  ..., ] [ , ,  ..., ]    

     th column of  = representation of  w.r.t. { } new basis

n n

i i

x e e e P e e e
P

i P e e

β β
β β
= =

⇒ =
−

1
Similarly,   

        
    th column of  = representation of  w.r.t. {

i i

i

P Q
i Q e e
β β β−⇒ = =
− }   i

Perception and Intelligence Laboratory
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Basis and RepresentationBasis and Representation

Norms of VectorsNorms of Vectors
Any real valued function of              is defined as a norm if it 
has the following properties:  

, || ||,x x

1. || || 0 & || || 0 iff  0

2. || || | | || ||

3 || || || || || ||

x x x x

x x Rα α α
≥ ∀ = =
= ∀ ∈

∀1 2 1 2 1 23. || || || || || || ,

      (Trangular inequality)

|| || | |
n

x x x x x x+ ≤ + ∀

∑1 1

2 1/ 2
2 1

|| || : | |

|| || : ( | | )

ii

n T
ii

x x

x x x x

=

=

=

= =

∑
∑

|| || : max | |i
i

x x∞ =
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Basis and RepresentationBasis and Representation

Orthonormalization
⎧Othorgonal :

O h l

0  if  

0  if  
T

i j

i j
x x

i j

= ≠⎧
⎨≠ =⎩

0 if i j≠⎧
2e2u

Othonormal :

Schmidt Orthonormalization procedure

0  if  

=1  if  
T

i j

i j
x x

i j

= ≠⎧
⎨ =⎩

1e1q

2q

Schmidt Orthonormalization procedure 

1 2

1 1 1 1 1

LI vectors  , ,..., ,
                                : / || ||

me e e
u e q u u= =

11q

1 1 1 1 1

2 2 1 2 1 2 2 2

1

1

|| ||
( )               : / || ||  

...
( )    : / || ||  

T

m T
m m k m k m m mk

q
u e q e q q u u

u e q e q q u u
−

= − =

= − =∑
2q 3e3q

1
( ) || ||m m k m k m m mk
q q q

=∑
1q

Perception and Intelligence Laboratory
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OLinear Operators

Linear Operators, Linear Mappings, Linear Transformations

: ( , ) ( , )L X Y→F F

Definition: A function L is Linear Operator if and only if

1 1 2 2 1 1 2 2 1 2 1 2( ) ( ) ( )  , ,  ,L x x L x L x x x Xα α α α α α+ = + ∀ ∈ ∀ ∈ F1 1 2 2 1 1 2 2 1 2 1 2

Example: Convolution integral

( ) ( ) ( )
t

y t g t u dτ τ τ= −∫0( ) ( ) ( )y t g t u dτ τ τ∫

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU15Linear Systems

Funeral Rites During 2002 World Cup in Seoulg p
월드컵 때 장례식장
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OLinear Operators
Matrix Representation of Linear Operators

{ }:  Basis of 
{ }:  Basis of 

i

i

x X
u Y

Operator y Lx=Operator 

Represen

y Lx=

Aβ α=

{ }ix{ }iu

Represen. Aβ α=

Let   i iy Lx=
Lx y⎯⎯→ Lx y⎯⎯→i ix y⎯⎯→

Ae a⎯⎯→

{ }iu{ }ix

x y⎯⎯→

Aα β⎯⎯→

{ }iu{ }ix
⇒

i ie a⎯⎯→ α β⎯⎯→

1, 2[ ,..., ]

. ( ) . . . { }
n

i i i i

A a a a

a rep of y Lx w r t u

=

= =

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU17Linear Systems

i i i i

OLinear Operators
Matrix Representation of Linear Operators

1, 2

1, 2 1, 2

[ ,..., ]

[ ,..., ] [ ,..., ]
i m i

m m

y u u u a

L x x x y y y

=

=1, 2 1, 2

1, 2 1, 2

1, 2

[ ,..., ][ ,..., ]

[ ,..., ]

m m

m m

m

u u u a a a

u u u A

=

=

1, 2 1, 2

From    ,    : Unique

[ ,..., ] [ ,..., ]m m

y Lx L

u u u L x x xβ α
=
=

1, 2[ ,..., ]

Hence  ,   : Many depending 
mu u u A

A A

α

β α

=

= on { },{ }i ix u

Perception and Intelligence Laboratory
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OLinear Operators

B i ChBasis Changes

Operator

R 1 b i [ ] ( )A Aβ

 ( )Lx y Lx⎯⎯→ =

Rep1: basis 1[ ... ]             ( )A
ne e Aα β α⎯⎯→ =

QQ PP

Rep2: basis 1[ ... ]             ( )A
ne e Aα β α⎯⎯→ =

:  rep. of    w.r.t. { }i i ia Le e

:  rep. of    w.r.t. { } 

: rep. of    w.r.t. { }

i i i

i i i

i i i

a Le e

p e e

: rep. of    w.r.t. { }i i iq e e

Perception and Intelligence Laboratory
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OLinear Operators

Si il it T fSimilarity Transform
1,     =P P PA PAP

A

α α β β α α
β α

−= = =

=
1 1

                

            

A

A PAP Q AQ

β α
− −

=

⇒ = =

Note: are similar if there exists a nonsingular P&A ANote:          are similar if there exists a nonsingular P &A A

Perception and Intelligence Laboratory
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OLinear Operators

Example 

3 2 1 0−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥2 1 0       0

4 3 1 1

A b⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Let new basis be  
2{ , , }:  Linearly independentb Ab A b
2

1

Q=[ ]

0 0 17

b Ab A b

⎡ ⎤
⎢ ⎥

AQ QA=
1 1 0 15

0 1 5

A Q AQ− ⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

1 1[ ... ] [ ... ]n nAq Aq q q A=

: rep. of  w.r.t.  { }i i ia Aq q

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU21Linear Systems

kHomework

HW1: Problem 3.1 in Text 

Should submit the report within one week after finishing 
the lecture of this chapter

HW2
2 1 0 0 0 1

0 2 1 0 0 1
Given              

0 0 2 0 1 1
A b b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 0 2 0 1 1

0 0 0 1 1 1

What are the representations of with respect to the basisA

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 3 2 3

What are the representations of  with respect to the basis

{ ,  ,  ,  } and the basis { ,  ,  ,  }, respe

A

b Ab A b A b b Ab A b A b ctively? 

Drive using the definition of representation.
Perception and Intelligence Laboratory
School of Electrical Engineering at SNU22Linear Systems
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OLinear Operators

Linear Algebraic Equations

     :( , ) ( , )n mAx y A= →F F F F

Definition: Range Space
R(A)={all y for which there is at least one x such that y=Ax} 

Theorem:
R(A) is Subspace of ( , )mF F

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU23Linear Systems

OLinear Operators

Example

y x⎡ ⎤ ⎡ ⎤1 1

2 2
1[ ... ]

... ...

n

n i i
i

y x

y x
y Ax a a x a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

∑

 is spaned from { }

i

m n

i

y x

y a

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⇒

Dim. of ( ) is equal to number of LI vectors in { }

Dim. of ( ) of 
iR A a

R A Rank A m

⇒
⇒ = ≤

Perception and Intelligence Laboratory
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OLinear Operators

D fi iti N ll SDefinition: Null Space
N(A)={all x for which Ax=0},  dim. of N(A) =n- dim. of R(A)

E l

If  dim. of ( )
0 0, ( ) { | 0} {0}: not vector space

R A n
Ax x N A x Ax

=
= ⇒ = = = =

Example

1

0 0,     ( ) { | 0} {0}:  not vector space
Hence dim. of ( ) 0
If  dim. of ( ) , 0 such that 0
1 0 0 0 0

Ax x N A x Ax
N A

R A k n x Ax
x

⇒
=

= ∃ ≠ =
⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

p
0⎡ ⎤

⎢ ⎥
2

3

0 1 0 0 0
       

0 0 0 0 0

x

x

⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

3

0
( ) { }N A

x

⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

40 0 0 0 0x
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ 4

dim. of ( )= -
dim. of ( ) dim. of ( )

x
N A n k

R A N A n

⎢ ⎥
⎢ ⎥⎣ ⎦

⇒ + =

Perception and Intelligence Laboratory
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OLinear Operators

ThTheorem
Let  :    cf.) ( , )n m mA →F F F F

1 for given there exists such thaty x1. for given ,  there exists  such that 

         iff  ( ) ([ ])

2. for all , there exists such that

y x

Ax y A A y

y x

ρ ρ= =

∈ mF2. for all ,  there exists  such that 

        iff  ( )    (indefiniteness, )

y x

Ax y A m m nρ
∈

= = <
F

Perception and Intelligence Laboratory
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OLinear Operators

ThTheorem
Let  be a solution of 

( ) :

px Ax y

k n A nullityρ

=

=
then 

( ) :k n A nullityρ= −

1 1 2 2 ...p k kx x v v vα α α= + + + +

is a solution of          , 
where

Ax y=
{ }  is a basis of ( )iv N A

Pf.
p

p i i

Ax y

Ax Ax Av yα

=

= + =∑p i i y∑

Perception and Intelligence Laboratory
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OLinear Operators

ThTheorem

1

 , :  square

1. If is nonsingular, , 0 0

Ax y A

A x A y Ax x−

=

= = ⇒ =1. If  is nonsingular,  , 0 0

2. Iff  is singular, 0 has nonzero sol's.

    Number of LI sol's is nullity of .

A x A y Ax x

A Ax

A

⇒
=

Perception and Intelligence Laboratory
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S l fSimilarity Transform

Characteristic PolynomialCharacteristic Polynomial

Eigenvalue 
Eigenvector ( )

such that
x non zero

x Ax x

λ

λ∃ =such that 
( ) 0  of ( ) 1
( ) is singular ( ) det( ) 0

( ) is called characteristic polynomial of 

x Ax x
A I x nullity A I
A I A I

A

λ
λ λ
λ λ λ

λ

∃ =
⇒ − = ⇒ − ≥
⇒ − ⇒ Δ = − =
Δ( ) p y

Example
Companion form

4

3 4 3 2

p

0 0 0

1 0 0
( ) + + + +

a

a
a a a aλ λ λ λ λ

−⎡ ⎤
⎢ ⎥−⎢ ⎥ Δ = 1 2 3 4

2

1

     ( )  +  +  +  +  
0 1 0

0 0 1

a a a a
a

a

λ λ λ λ λ⎢ ⎥ Δ =
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦
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S l fSimilarity Transform

Similarity Transform to Jordan form
case 1: distinct eigenvalues

Let 1 be distinct eigenvaluesi nλ
Theorem

Let , 1,..., ,  be distinct eigenvalues,

then eigenvectors , 1,..., ,  are linearly independent.

{ } can be basis

i

i

i

i n

v i n

v

λ =

=

{ } can be basis. iv

Perception and Intelligence Laboratory
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S l fSimilarity Transform

Similarity Transform to Jordan formSimilarity Transform to Jordan form
case 1: distinct eigenvalues

Ax y⎯⎯→{ }in : rep of w r t { }q v ny

Âx y⎯⎯→

{ }in

{ }iv

Q P 1

1 1
1

: rep. of  w.r.t. { }  

 =[ ... ... ]

ˆ[ ... ... ]

i i i

i i n i i

i

q v n

v n n n q q

Q v v v A Q AQ PAP− −

=

= ⇒ = =x y→{ }iv

ˆ  : rep. of  w.r.t. { }  i i ia Av v

1[ ... ... ]i nQ v v v A Q AQ PAP⇒

1

1

0

...... ˆ = [ ... ... ]i i i i nAv v v v v A

λ

λ
λλ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= ⇒ =
⎢ ⎥⎢ ⎥1

0

i i i i n
ii

n

λλ
λ

⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦P 56, 57, 58      

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU31Linear Systems

S l fSimilarity Transform

ExampleExample
0 0 0

1 0 2   ( )=det( I ) ( 2)( 1)A Aλ λ λ λ λ
⎡ ⎤
⎢ ⎥= → Δ − = − +⎢ ⎥
⎢ ⎥0 1 1

2 0 0 0

( 2I)q 1 2 2 q =0 q = 1A

⎢ ⎥⎣ ⎦
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = − →⎢ ⎥ ⎢ ⎥1 1 1( 2I)q 1 2 2 q =0 q = 1   

0 1 1 1

1 0 0 0 2

A− = − →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

2 2 2 3 3( I)q 1 1 2 q =0 q = 2  , q 0 q = 1

0 1 2 1 1

0 0 2

A A⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = → − = →⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ 2 0 0⎡ ⎤0 0 2

1 2 1

1 1 1

Q

⎡ ⎤
⎢ ⎥= −⎢
⎢ −⎣ ⎦

1

2 0 0
ˆ 0 1 0

0 0 0

A Q AQ−

⎡ ⎤
⎢ ⎥⇒ = = −⎥ ⎢ ⎥

⎥ ⎢ ⎥⎣ ⎦
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S l fSimilarity Transform

Similarity Transform to Jordan formSimilarity Transform to Jordan form
case 2: not all distinct eigenvalues

Definition: Generalized eigenvector v of grade k iff

⎡ ⎤ ⎡ ⎤

Example

1( ) 0 and ( ) 0 k kA I v A I vλ λ −− = − ≠

1 1 0 1 1

0 1  ( ) 0 0 1

0 0 0 0 0

A A I

λ
λ λ

λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⇒ − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2 3

0 0 0 0 0
0 0 1 0 0 0

( ) 0 0 0 ( ) 0 0 0A I A I

λ

λ λ

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⇒ − = ⇒ − =⎢ ⎥ ⎢ ⎥

[ ]
0 0 0 0 0 0

0 0 1  is generalized eigenvector of grade 3.
T

v

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⇒ =
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S l fSimilarity Transform

Derivation of BasisDerivation of Basis 

1
2

:
: ( ) ( )

( ) ( )

k

k k

v v
v A I v A I v

A I A I
λ λ
λ λ

−

=
= − = −

2
2 1

1
1 2

: ( ) ( )
...
: ( ) ( )

{ }: Chain of generalized eigenvectors

k k

k

v A I v A I v

v A I v A I v
v

λ λ

λ λ

− −

−

= − = −

= − = −
=

1

{ }: Chain of generalized eigenvectors

ˆ :  rep.of  w.r.t. { }
( )

i

i i i

i i

v

a Av v
A I v vλ −

=

− =
J d Bl k1

1

( )

0

1

i i

i i iAv v vλ
−

−= +
⎡ ⎤
⎢
⎢

1 0 0

0 1 0ˆ

λ
λ

⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥

Jordan Block

1 1

1
[ ... ... ]

0

i i nv v v v
λ−
⎢=
⎢
⎢
⎣ ⎦

0 1 0ˆ
0 0 ... 1

0 0 0

A
λ

λ

⎥ ⎢ ⎥→ =
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎣ ⎦
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S l fSimilarity Transform

How to find generalized eigenvectors?How to find generalized eigenvectors? 
8

1 2 3

1 2 3

det( ) ( )( )( ) 0
,  ,  (8 multiple roots)

( ) 0 b b i

sI A s s s
s

A I

λ λ λ
λ λ λ

λ

− = − − − =
=

1 1 1

2 2 2

( ) 0  can be basis
( ) 0  can be basis

A I x x
A I x x

λ
λ
− = ⇒
− = ⇒

8 generalized eigenvectors for 3λg g
0

3 0
1

3 0 1 1 1
2

( ) 10, 0
( ) 7, 3,
( ) 4 6

A I
A I u w v
A I

ρ λ ν
ρ λ ν

λ

− = =
− = =

3

3
3

4

0 such that 
       ( ) 0

( ) 0

u
A I u
A I u

λ
λ

∃ ≠
− ≠
− =2

3 0 2 2 2
3

3 0 3
4

3 0 4

( ) 4, 6,
( ) 3, 7,
( ) 2, 8,

A I u w v
A I u
A I u

ρ λ ν
ρ λ ν
ρ λ ν

− = =
− = =
− = =

3

1 2 3 4

3

      ( ) 0
There is 4 chains { , , , }

two (or ) 0 and such that 
      ( ) (or ) 0

A I u
u u u u

w v
A I w v

λ

λ

=

∃ ≠
− ≠3 0

5
3 0( ) 2, 8A Iρ λ ν− = =

3
2

3

1 2

( ) ( )
       ( ) (or ) 0
There is 2 chains for each (or ).
{ , ,

A I w v
w v

w w

λ− =

1 2, }v v
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S l fSimilarity Transform

How to find generalized eigenvectors?How to find generalized eigenvectors? 
8

1 2 3

1 2 3

det( ) ( )( )( ) 0
,  ,  (8 multiple roots)

( ) 0 b b i

sI A s s s
s
A I

λ λ λ
λ λ λ
λ

− = − − − =
=

1 1 1

2 2 2

( ) 0  can be basis
( ) 0  can be basis
A I x x
A I x x

λ
λ

− = ⇒
− = ⇒

8 generalized eigenvectors for 3λg g
0

3 0
1

3 0 1 1 1
2

( ) 10, 0
( ) 7, 3,
A I
A I u w v

ρ λ ν
ρ λ ν

− = =
− = =

3

4
3 4

3
3 3 3 3

       ( ) 0,

       ( ) 0, ( ) 0

A I u u u

A I u u A I u

λ

λ λ

− = =

− = = − ≠
2

3 0 2 2 2
3

3 0 3
4

3 0 4

( ) 4, 6,
( ) 3, 7,
( ) 2, 8,

A I u w v
A I u
A I u

ρ λ ν
ρ λ ν
ρ λ ν

− = =
− = =
− = =

3 3 3 3

2 2
3 2 2 3

1 3
3 1 1 3

( ) , ( )

       ( ) 0, ( ) 0

       ( ) 0, ( ) 0

A I u u A I u

A I u u A I u

λ λ

λ λ

− = = − ≠

− = = − ≠
3 0 4

5
3 0

( ) 2, 8,
( ) 2, 8
A I u
A I

ρ λ ν
ρ λ ν− = =

3 1 1 3

1 2 1 2

( ) ( )

       In similar way,
       { , , , } can be obtained.w w v v
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S l fSimilarity Transform

How to find generalized eigenvectors?How to find generalized eigenvectors? 

1 2 1 2 1 2 1 2 3 4

1

[        ]

ˆ

Q x x w w v v u u u u

A Q AQ−

=

=

1

2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

Q Q

λ
λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥3

3

3

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0
Â

λ
λ

λ

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
3

3

3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

A
λ

λ
λ

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

Jordan Block

3

3

3

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

λ
λ

λ

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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3HW3

Transform the following matrix to Jordan formTransform the following matrix to Jordan form 

3 1 1 1 0 0

1 1 1 1 0 0

−⎡ ⎤
⎢ ⎥− −⎢ ⎥1 1 1 1 0 0

0 0 2 0 1 1

0 0 0 2 1 1
A

⎢ ⎥
⎢ ⎥

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥0 0 0 0 1 1

0 0 0 0 1 1

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Motivations

Linear algebra for linear time invariant systemsLinear algebra for linear time invariant systems
Linear space and operator theory for linear time varying system
Stability for linear time invariant systemsy y
General definition and Theorem on stability for general systems

Repetitive & tedious training is required for learning of language,
mathematics, skill, mind control, sports, …

Mathematics is useful for analysis, writing a paper, proof, …

Overcoming of tedious training phase must give you freedom
in the future.

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU39Linear Systems

f SFunctions of Square Matrix

Square Matrix :kA A AA ASquare Matrix ,    :  A A AA A= ⋅⋅⋅

Let        be a ploynomial( )f λ
3 2( ) 2 6f λ λ λ+
3 2

1

( ) 2 6
( ) 2 6

f
f A A A I

A Q AQ

λ λ λ

−

= + −
= + − ⇐

=

Ploynomial of A

1 1 1

1 1

 ...
0 0

k k

k k

A Q AQ
A Q AQ Q AQ Q A Q
A A

− − −
=
= =

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

2 20 0 kA A
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

Definition
Minimal polynomial of A is defined as monic polynomial      
of least degree such that              .

( )f λ
( ) 0f A =
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f SFunctions of Square Matrix

DefinitionDefinition
Largest order of Jordan blocks for       is index of       in Aiλ iλ

Theorem 
Minimal polynomial of  A  is

h 1

( ) ( ) i

m
n

i
i

f λ λ λ
=

= −∏
i i d f i Aλwhere 1i

i is index of   in  .in Aλ

3.) Charcteristic poly.  ( ) ( 3) ( 1)
3 0 0 0 3 1 0 0 3 1 0 0

Ex λ λ λΔ = − −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤3 0 0 0 3 1 0 0 3 1 0 0

0 3 0 0 0 3 0 0 0 3 1 0

0 0 3 0 0 0 3 0 0 0 3 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

2 3

0 0 3 0 0 0 3 0 0 0 3 0

0 0 0 1 0 0 0 1 0 0 0 1
( 3)( 1)    ( 3) ( 1)    ( 3) ( 1) :  min. poly.λ λ λ λ λ λ

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
− − − − − −
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f SFunctions of Square Matrix

Cayley-Hamilton TheoremCayley Hamilton Theorem
1

1( ) det( ) : ...

( ) 0

n n
nA I

A

λ λ λ α λ α−Δ = − = + + +

⇒ Δ =

Remark:
( ) ( ) ( ), ( ) :  minimal polynomialhλ ϕ λ λ ϕ λΔ =

( ) ( ) ( ) 0 ( ) 0A A h A h Aϕ⇒ Δ = = ⋅ =
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f SFunctions of Square Matrix

Calculation of Function of Square Matrix ( )f ACalculation of Function of Square Matrix
( ) ( ) ( ) ( ), ( ) 1

( ) ( ) ( ) ( ) ( )

f g h order of h is n

f A A g A h A h A

λ λ λ λ λ= Δ + −
= Δ + =

( )f A

1 2
1 2 0...n n

n nA A Iβ β β− −
− −= + + +

Example
100 1 2

C hA A
⎡ ⎤
⎢ ⎥

100

2 2

Compute , where 
0 1

Minimal polynormal
( ) ( 1) ( ) ( ) 0

A A

A A Iϕ λ λ ϕ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

= − = − =
100 2

1 2

1 2

( ) ( 1) , ( ) ( ) 0
( ) ( 1) ( )
(1) 1
(1) 100 99

A A I
f g
f
f

ϕ λ λ ϕ
λ λ λ λ β β λ

β β
β β

= = =
= = − + +
= + =

′ →2 1

100
1 2

(1) 100 99
1 200

( )
0 1

f

f A A I A

β β

β β

′ = = → = −
⎡ ⎤

= = + = ⎢ ⎥
⎣ ⎦
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⎣ ⎦

f SFunctions of Square Matrix

Example

0 0 2

C t h 0 1 0At A

−⎡ ⎤
⎢ ⎥

2

Compute e , where 0 1 0

1 0 3
( ) ( 1) ( 2),

At A

λ λ λ

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Δ = − −
2 2

1 2 3

1 2 3

( ) ( ) ( ),
( ) ( 1) ( 2) ( )
(1)
(1) 2

t

t

t

f e g
f e
f te

λλ λ λ λ β β λ β λ
β β β
β β

= = − − + + +
= + + =

′ = + =2 3
2

1 2 3
2 2

(1) 2
(2) 2 4

2 0 2 2

t

t t t t

f te
f e

e e e e

β β
β β β

= + =
= + + =

− −⎡ ⎤
⎢ ⎥2

1 2 3
2

( ) e 0 0At t

t t t t

f A I A A e

e e te e

β β β= = + + =
− + − − 22 te

⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦
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f SFunctions of Square Matrix

TheoremTheorem

1

For given ( ) and an  matrix  with characteristic polynomial

( ) ( ) ,i
m n

ii

f n n Aλ

λ λ λ

×

Δ = −∏ 1
m

i=1

( ) ( )

( ) ( )

where = .
( ) ( ) ( ) ( )

( ) ( ) 1 2 1

ii

i

l l

n n
f g h
f h l n
λ λ λ λ
λ λ

=

= Δ +

∏
∑

( ) ( )

( )

( ) ( ), 1, 2,..., 1
( )

where ( ) .

i i i
l

l
i l

f h l n
d f

f
d λ λ

λ λ
λλ

λ
=

= = −

=

Then
( ) ( )

and ( )

i

f A h A
h

λ λ

λ

=

=
 is said to equal to ( ) on the Spectrum of .f Aλ( ) q ( ) pf
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f SFunctions of Square Matrix

Matrix function based on Power SeriesMatrix function based on Power Series

2 2

0

For given ( ) and an  matrix ,
1 1

1
2! !

t k k

k

f n n A

e t t t
k

λ

λ

λ λ λ∞

=

×

= + + + ⋅⋅⋅ = ∑ 0

0

2! !
1

!

k

At k k

k

k

e t A
k

=

∞

=
=

∑
∑

L l T f f AtLaplace Transform of Ate

( 1)1
( )

!
k kt s

k
− +=L

( 1) 1 1

0 0

1 1
10

!
( ) ( )

1
( ) , for | | 1

1

At k k k

k k

k

k

k
e s A s s A

s s
s

λ λ
λ

∞ ∞− + − −
= =

∞ − −
−=

= =

= <

∑ ∑
∑
L

0

1 1 1 1
1

( ) ( ) ( )
k

At
s

e s I s A sI A
λ

− − − −
−

= − = −
∑
L
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Review

Linear OperatorLinear Operator   

:

( ) , ,

n m

n m

L R R

L x y x R y R

→

= ∈ ∈( ) , ,y y

Matrix Representation
, ,n mAx y x R y R= ∈ ∈

: eigenvector 

                 can be basis of range space

Ax xλ=

Range Space
( ) { | }R A y Ax y= =

0 :     null vector

                 can be basis of null space

Diagonal form

Ax =

→
1

( ) #  of LI vectors in { }

n

i ii

i

y x

R Aρ
=

=

→ =
∑ a

a
N ll S

Diagonal form→

Null Space
( ) { | 0}

( ) ( )

N A x Ax

N A n R Aρ ρ
= =
= −
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( ) ( )ρ ρ

Review

Simple ExampleSimple Example

1
1

2

1 0 0
, ,

0 0 0

x
y

A x x y

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦2

3

1

0 0 0

*
{ } ( ) 1

y
x

x
Ax y y R Aρ ρ

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = = → = =⎢ ⎥ ⎢ ⎥ { } ( ) 1
0 0

0

Ax y y R Aρ ρ= = = → = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥0 { * } ( ) ( ) 2

*

Ax N A N Aρ⎢ ⎥= → = → =⎢ ⎥
⎢ ⎥⎣ ⎦
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Lyapunov Equation
Lyapunov Equation

Problem to find  satisfying the Lyapunov equation
,

for given , , .

n m

n n m m n m

M R
AM MB C

A R B R C R

×

× × ×

∈
+ =

∈ ∈ ∈for given , , .A R B R C R∈ ∈ ∈

Conversion to Linear Equation
3 3 2 2For A R B R× ×∈ ∈

11 11 12 11 11

21 21 21

For ,
.

.

A R B R
a b a m c

a m c

∈ ∈
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥21

33 22 32 32

. ... ...

6 6 6 1 6 1 ( 6)

b

a b m c
mn

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

× × × =           6 6                         6 1      6 1  ( 6)
:   Linear Equation

if  is

mn
Qm c

Q
⇒ =
→  nonsingular, the solution exists and unique

if  is singular, indeterminate or  insoluble(insolvable)Q→
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Lyapunov Equation
Define Linear Mapping :  nm nmL R R→

Let be eigenvalue of linear mapping 
( )L M AM MB= +

η ( )L ⋅
( )L M M

Let u and    be right eigenvector and eigenvalue of A and 
v and be left eigenvector and eigenvalue of B

( )L M Mη=

λ
μv and    be left eigenvector and eigenvalue of B
,Au u vB vλ μ= =
μ

 ( ) ( )L uv Auv uvB uv uv uvλ μ λ μ⇒ = + = + = +( ) ( )μ μ
( ) is eigenvalue of ( )Lλ μ⇒ + ⋅

 is nonsingular iff all ( ) is nonzerok i jQ η λ μ⇒ = +
 If some  ( ) is zero

      case1:  is in range space of , sol. exists and not unique
      case2: otherwise, sol. does not exist.

k i j

C L
η λ μ⇒ = +
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HW4

Problem 3.31 in the Text. 
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School of Electrical Engineering at SNU51Linear Systems

f l lUseful Formulas
Theorem

( ) min( ( ), ( )), ,m n n pAB A B A R B Rρ ρ ρ × ×≤ ∈ ∈

Bpf.)
11 1 1 1... i ia a a⎡ ⎤⎡ ⎤ ⎡ ⎤ ∑b b11 1 1 1

1

...

... ... ...
n i i

m mn n mi i

a a a

AB

a a a

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑

∑

b b

b b
1. row of AB is spaned by { }

rank of AB is not more than the number of LI vectors in { }
j

j

⎣ ⎦

⇒

∑
b

b

b b⎡ ⎤

[ ]
11 1

1 1

1

...

... ... ...
p

n i i in i

n np

b b

AB b b

b b

⎡ ⎤
⎢ ⎥ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

∑ ∑a a a a

1

2. column of AB is spaned by { }
rank of AB is not more than the number of LI vectors in { }

n np

i

i

b b⎣ ⎦

⇒
a

a
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f l lUseful Formulas
Theorem

The rank of a matrix will not change after pre- or post-
multiplying by a nonsingular matrix 

( ) ( ) ( ) m n n n m mA AC DA A R C R D R× × ×( ) ( ) ( ), , ,m n n n m mA AC DA A R C R D Rρ ρ ρ × × ×= = ∈ ∈ ∈

Pf.)

AC

( ) min( , ), ( )

( ) ( )

P AC

A m n C n

A C

ρ ρ
ρ ρ

=
= =

→ ≤

1

( ) ( )

( ) min( ( ), ( )) ( )

A C

P A C A

A PC

ρ ρ
ρ ρ ρ ρ

−

→ ≤
≤ =

=
( ) ( )

( ) ( )

A P

A P

ρ ρ
ρ ρ

→ ≤
⇒ =
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f l lUseful Formulas
Theorem

det( ) det( ), ,m n n m
m nI AB I BA A R B R× ×+ = + ∈ ∈

Pf.)
0I A I I A⎡ ⎤ ⎡ ⎤ ⎡ ⎤0

Define , ,
0

0

m m m

n n n

I A I I A
N Q P

I B I B I

I AB I A

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
+⎡ ⎤ ⎡ ⎤0

,
0

det det det 1 det

m m

n n

I AB I A
NP QP

B I I BA

N I I Q

+ −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
= = =det det det 1 det

det det[ ] det det det

det det[ ] det det det

m n

m

n

N I I Q

NP I AB N P P

QP I BA Q P P

= + = =
= + = =
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Matrix Properties

F t ll i l f t i l M lFact: all eigenvalues of symetric real M are real.

Pf.)

* * * * *

Assume  be complex

( )

x

x Mx x M x x Mx= =
*This implies  is real.

Let ,  be eigenvalue and eigenvector of 

x Mx

v M

M

λ
λ

* * *

* *h ld b l i d l

Mv v

v Mv v v v v

M

λ

λ λ

λ

=

= =

 should be real since  and  are real.v v v Mvλ→
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Matrix Properties

Cl i t i l t i b di li d bClaim: every symmetric real matrix can be diagonalized by a 
similarity transform.

Pf )Pf.)

2

To show that there is no gneralized eigenvector of grade 2 or higher,
suppose  be a generalized eigenvector of grade 2 or higher, i.e.,

( ) 0 (1)
x

M Iλ 2

*

( ) 0 (1)
( ) 0 (2)

From (2)
[( ) ] ( ) 0

M I x
M I x

M I M I

λ
λ

λ λ

− = ⋅⋅⋅ ⋅
− ≠ ⋅⋅ ⋅ ⋅

*[( ) ] ( ) 0
From 

M I x M I xλ λ− − ≠

* * 2
(1)

[( ) ] ( ) ( ) 0
Thi di

M I x M I x x M I xλ λ λ− − = − =
This contradicts.
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Matrix Properties

Cl i J d f f t i l t i M h J dClaim: Jordan form of symmetric real matrix M has no Jordan 
block of order of 2 or higher. 

Note: A is called orthogonal (orthomormal) matrix if
all columns are orthogonal(orthomormal).
If A is orthomormalIf A is orthomormal , 

1, : called unitary matrix.T TA A I A A−= =
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Matrix Properties

ThTheorem
1 1, , : diagonal, : symmetric realTM QDQ Q Q D M− −= =

Pf.)

1 1

Since  ,

( )

T T

T T T

D D M M

M QDQ QDQ Q DQ− − −

= =

= = =
1

( )
T

M QDQ QDQ Q DQ

Q Q−

= = =

⇒ =

Positive Definiteness

 is positive definite , 0 if 0 for every nonzero TM M x Mx x> >

 is positive semidefinite , 0 if 0 for every nonzero TM M x Mx x≥ ≥
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Matrix Properties

ThTheorem
M is positive definite (semidefinite) iff
any one of the following conditions holdsany one of the following conditions holds
- every eigenvalue of M  is positive (zero or positive),
- all leading principal minors of M  are positive (all
principal minors are zero or positive) (see [10])

- there exists nonsingular N (nonsingular or mxn matrix
N ith < ) s ch that M NTNN  with m<n) such that M=NTN.  

Note:
principal minors: det of 1x1 2x2 3x3 submatrixprincipal minors: det of 1x1, 2x2, 3x3 … submatrix
leading principal minors include m11
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Matrix Properties

ThTheorem
1. mxn matrix H,            , has rank n iff

HTH has rank n or det 0TH H ≠

m n≥
H H has rank n or det

2. mxn matrix H,         , has rank m iff
HH T has rank m or det

0H H ≠
m n≤

0THH ≠
Pf.)
(Necessity) ( ) ( )

by contraction suppose

TH H n H nρ ρ= → = (Sufficiency) ( ) ( )
by contraction suppose

TH n H H nρ ρ= → =
  by contraction, suppose

( ) ,  but  ( )
0 such that 0

0

T

T

H H n H n
v Hv

H H

ρ ρ= <
→ ∃ ≠ =
→ 2

 by contraction, suppose
( ) ,  but  ( )

0 such that 0

T

T

T T T

H n H H n
v H Hv

ρ ρ= <
→ ∃ ≠ =

0
contradicts ( )

T

T

H Hv
H H nρ

→ =
→ =

2
0 ( )

0
contradicts ( )

T T Tv H Hv Hv Hv Hv
Hv

H nρ

→ = = =
→ =
→ =
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Matrix Properties

Si l V lSingular Value
2

2 2 2 2 2

0;  eigenvalues  0

0

T
iM H H λ

λ λ λ λ λ

= ≥ ≥

≥ ≥ ≥ >1 2 r r+1 n0

Let min( , )

0

n m n

λ λ λ λ λ

λ λ λ λ λ

≥ ≥ ⋅⋅⋅ ≥ > = = ⋅⋅⋅ =

=

≥ ≥ ⋅⋅⋅ ≥ > = = ⋅⋅⋅ =1 2 r r+1 n0

 is called singular values of  i H

λ λ λ λ λ

λ

≥ ≥ ≥ > = = =
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Matrix Properties

E l Si l V lExample: Singular Value

4 1 2
H

− −⎡ ⎤
= ⎢ ⎥2 0.5 1

20 5 10

5 1 25 2 5T

H

M H H

⎢ ⎥−⎣ ⎦
−⎡ ⎤

⎢ ⎥

3 2 2

5 1.25 2.5

10 2.5 5

det( ) 26 25 ( 26 25)

TM H H

I Mλ λ λ λ λ

⎢ ⎥= = −⎢ ⎥
⎢ ⎥− −⎣ ⎦
= =det( ) 26.25 ( 26.25)

singular values of  are 26.25 5.1235, 0

I M

H

λ λ λ λ λ− = − = −

→ =
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Matrix Properties

Th Si l V l D itiTheorem: Singular Value Decomposition

Every  matrix  can be transformed into
T

m n H

H RSQ

×

with , ,  and

i di l t i ith i l l

T

T T T T
m n

H RSQ

R R RR I Q Q QQ I

S

=

= = = =

 is diagonal matrix with signular values

:  orthonormalized eigenvectors of 

: orthonormalized eigenvectors of

T

T

S

Q H H

R HH:  orthonormalized eigenvectors of R HH
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Matrix Properties

Pf )Pf.) 2 2 2
1 2 1

1 1 1 2

( ) ( ), 0
[ ] [ ]

: orthonormalized eigenvectors of

T
r r

r r n
T

H r H H
Q q q q q Q Q
q H H

ρ ρ λ λ λ λ +

+

= = ≥ ⋅⋅⋅ > = ⋅⋅ ⋅
= ⋅⋅ ⋅ ⋅ ⋅ ⋅ =

2

2

: orthonormalized eigenvectors of 
) ,  for 1,  ...,   

0,  for 1,  ...,   (Null space basis)

0

i
T

i i i
T

j

q H H
note H Hq q i r

H Hq j r n
λ= =

= = +
⎡ ⎤Λ 0T TQ H HQ2 0

0 0
T TQ H HQ

⎡ ⎤Λ
= ⇒⎢ ⎥
⎣ ⎦

2 2
2

1 1
1 1 1

1 1 1 1 1 1

0

 by defining 

T T

T T T

Q H HQ

Q H HQ
Q H HQ I R R I R HQ− − −

=
= Λ

Λ Λ = ⇒ = = Λ1 1 1 1 1 1

2 1 2

1 1 1 1 2
1 2

Choose  such that , [ , ]

[ ]

T

T T T
T

T T T

R R R I R R R
R R HQ R HQ

R HQ H Q Q
R R HQ R HQ

= =
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦2 2 1 2 2

2 1

0
:

0 0
T T

T

R R HQ R HQ

R HQ S H RSQ
R R

⎣ ⎦ ⎣ ⎦
Λ⎡ ⎤

= = ⇒ =⎢ ⎥Λ =⎣ ⎦
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HW5

Fi d Si l V l D iti f th f ll i t iFind Singular Value Decomposition for the following matrix

1 0 1
.

2 1 0
H

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦2 1 0⎢ ⎥−⎣ ⎦

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU65Linear Systems

Matrix Properties

N f M t i (I d d N )Norm of Matrix (Induced Norm)

0 1
sup sup
x x

Ax
A Ax

x≠ =
= =

0 1

1 11

* 1/ 2

max( ), for 1, ) [0...1...0]

( ( )) f 1

x x

n

ijij

x

A a x ex x

A A Aλ

≠

=
= = =∑

* 1/ 2
max2 2

1

( ( )) , for 1

max( ), for 1, ) [ 1...1... 1]
n

ijji

A A A x

A a x ex x

λ

∞ ∞=

= =

= = = − −∑

* * 1/ 2 * * 1/ 2

2
1 1

sup( ) sup( ) ,i i i i
x x

A x A Ax x A A v x vα α
= =

⇐

= = =∑ ∑
1 1

*

1
sup(

x x

i i
x

x α λ
= =

=
= ∑ 1/ 2 * 1/ 2 * 1/ 2

max max
1

) sup( ) ( ( ))i i i
x

v x v A Aλ α λ
=

≤ =∑
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Matrix Properties

E lExamples

1 11
max( ), for 1, ) [0...1...0]

n

ijij
A a x ex x

=
= = =∑

1 2 4

5 2 0

j

A

−⎡ ⎤
⎢ ⎥= −⎢ ⎥

[ ] 1

2 3 1

1 0 0 8Tx Ax

⎢ ⎥
⎢ ⎥⎣ ⎦
= ± → =

[ ]
[ ]

1

1

0 1 0 7

0 0 1 5

T

T

x Ax

x Ax

= ± → =

= ± → =[ ] 1

1
8A⇒ =
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Matrix Properties

E lExamples

1
max( ), for 1, ) [ 1...1... 1]

n

ijji
A a x ex x

∞ ∞=
= = = − −∑
1 2 4

5 2 0

2 3 1

A

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

[ ]
[ ]

2 3 1

1 1 1 7

1 1 0 7

T

T

x Ax

A

∞

⎢ ⎥⎣ ⎦
= − → =

[ ]
[ ]

1 1 0 7

1 1 1 6

T

T

x Ax

x Ax

∞

∞

= − → =

= → =

7A
∞

⇒ =
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Matrix Properties

N f M t i (I d d N )Norm of Matrix (Induced Norm)
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Matrix Properties

N f M t i (I d d N )Norm of Matrix (Induced Norm)
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Matrix Properties

N f M t i (I d d N )Norm of Matrix (Induced Norm)
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Summary

Fi ld Li (V t ) SField, Linear (Vector) Space
Basis, Linearly Independent Vectors, 
Representation of Vectors and Linear OperatorsRepresentation of Vectors and Linear Operators
Basis Change, Similarity Transform
Generalized Eigenvectors, Jordan Form
Function of Square Matrix
Range Space and Null Space in Linear Algebraic Equations 
L E tiLyapunov Equation
Singular Value Decomposition, Unitary Matrix
Matrix NormMatrix Norm
Useful Formula and Matrix Properties
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