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State Feedback Controller Design

State Feedback

X = AX+bu
y = CX
u=r—kx=r—[k k, - k]x=r-> kx
i=1
% = (A —bKk)x + br
R e e S R e |
= CX : ¢ [ x -
y ro4 u : xl X ! )
| 5 |
= | |
| ' |
| AK |
| |
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State Feedback Controller Design

Theorem 8.1
The pair (A —bk,b), for any 1x n real constant vector K,

Is controllable if and only if (A, Db) is controllable.

Proof : We show the theorem for n =4.
C=[b Ab A’b A’b]
and
C, :[b (A—-bk)b (A-bk)*b (A—bk)3b]

1 —kb —-k(A-bk)b —k(A-bk)%b]
C. —cC 0 1 —kb —k(A—bk)b

0O O 1 —kb

0 0 0 1 |

— pC, = pC — Controllability is invariant.

Perception and Intelligence Laboratory

Li Syst ) . .
nearoysiems 3 School of Electrical Engineering at SNU



State Feedback Controller Design

Example 8.1

Linear Systems

12 o)
X = X+| |u

y=[1 2]x
0 2 1 2
C= . O= -controllable & observable
1 1 7 4
u=r —[3 1]x
(1 2 0
X = X + r
i 0 1
=[1 2]x

y

0O 2 1 2

C, = , O, = : controllable & not observable
1 O 1 2

Perception and Intelligence Laboratory
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State Feedback Controller Design

Example 8.2

Sl

A(S) =(s—1)°—-9=5"—-25—-8=(s—4)(s+2) :unstable
u=r—[k, k,|x

, 1 3 k, K, 1 1-k, 3-k, 1
X= ~ X+| |r= X+| _|r
3 1 O O 0 3 1 0
A (s)=(s—-1+k)(s—1)—3(3—k,) =5+ (k, —2)s+(3k, —k, —8)
If we want to place the eigenvalues at —1+ j2,
A (S)=(s—1-j2)(s—1+ j2)=s"+25+5
—>k, =4,k, =17/3.
— Stabilizaed.

Perception and Intelligence Laboratory
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State Feedback Controller Design

Theorem 8.2
Consider the state equation in (8.1) withn=4
and the characteristic polynomial
A(s) =det(sl — A) =s* + ,s° +a,8° +a,S +
If (8.1) is controllable, then it can be transformed
by the transformation X = Px with

1 o a o
O 1
Q=P*=[b Ab A’ A%] %
O 0 1 ¢
0 0 O 1

Perception and Intelligence Laboratory
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State Feedback Controller Design

into the controllable canonical form

-, —O, —0;
L - 1 0 0
X =AX+bu =
0 1 0
0 0 1

y:W:[ﬂl £ B 184]Y

© O O Bk

Furthermore, the transfer function of (8.1) with n =4 equals

g(S) — /8153 +18282 +1835+/84
4 3 2
S +0[18 +0(28 +a38+0£4
Linear Systems 7

Perception and Intelligence Laboratory
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State Feedback Controller Design

Proof :
C & C is nonsingular since the eq. is controllable and
C =PC.
P=CC* or Q=P*'=CC™

2 3 ]
l —a o —a, —oa,+200,— 0,
& O 1 —a, o’ —a,
O O 1 —a,
0 o) 0] 1 |
1 o a o
_ 0O 1 o a,]|. .
= ! > | is assumed. Proved by multiplying.
O O 1 o
0 0 O 1
Linear Systems g Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



State Feedback Controller Design

Theorem 8.3

If the n-dimensional state equation in (8.1) is controllable,
then by the state feedback u =r - kx, where Kk is a 1xn real
constant vector, the eigenvalues of A -bk can arbitrarily be

assigned provided that complex conjugate eigenvalues are

assigned in pairs.

Linear Svstems Perception and Intelligence Laboratory
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State Feedback Controller Design

Proof :

uUu=r—kx=r—kP X =r-—kx

A (s)=s*+as’+a,s° +a,s+a,

% = (A—bK)X+br =

y=[8 B B
k =kP =kCC™

Linear Systems

k=|a,—a, &,—a,

A%

U3 — Uy

a,—a,]
—a, —-a,| [1]
0 0O |_ |0
X+ r
0 0 0
1 0| |O]

Perception and Intelligence Laboratory
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i State Feedback Controller Design

Alternative derivation of k :
Ay (s) = det(sl — A+bk) = det((s1 = A)[ 1+(s1 - A) bk ||
— det(sl - A)det| I+(sl —A) " bk |
A (s) = A(S) [1+ k(sl—-A)™ b]

A (s)—A(S) = A(S)K(sl —A) *b=A(s)k (sl ~A) b

Perception and Intelligence Laboratory

Linear Systems 1 School of Electrical Engineering at SNU



State Feedback Controller Design

E(Sl _Z\)‘lg _ BiS’ + B8 + 58+ 0,

A(s)
A(s)
Then

A, (S)—A(s) =k +k,s* +k,s+Kk,

Feedback Transfer Function

g(s)=c(sl —A)'b = LS’ + B,5° + S+ By

s +a,s° +a,8° +as+a,

3 2
gf (S) :C(SI _A_I_bk)—lb — 4/818_ _21825_ _21833_4‘/84_
s"+a,S"+a,S T +as+a,

Perception and Intelligence Laboratory
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State Feedback Controller Design

Example 8.3
(0 1 0 O
] O 0 -1 O
X =
O 0 0 1
0 0 5 0
y=[1 0 0 O0]x

Linear Systems

— Controllable

X+

—> its eigenvalues can be assigned arbitrarily.
A(s) =s°(s*—=5)=s"+0-5°—-55°+0-5s+0

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU



State Feedback Controller Design

pt=CcC=
[ 0 0]

0] 0]

p— 1
0 -3

-5 0

Linear Systems

I
N[

I
o=

1 0
o) 2
-2 0
O -10
1 O
0O -3
-2 0
O O
-4
o)
4
O -

© O O B

0
1
0
0

-5 0]
0 -5
1 0
0 1

Perception and Intelligence Laboratory
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State Feedback Controller Design

Let the desired eigenvalues be —1.5+0.5j and —1+ |
A;(S)=(s+1.5-0.5j)(s+1.5+0.5))(s+1—j)(s+1+))

=s* +55°+10.55* +11s+5

k=[5-0 105+5 11-0 5-0]=[5 155 11 5]

k=kP=[-5 -2 -8 _13]

3 12 3

Perception and Intelligence Laboratory
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State Feedback Controller Design

How to determine the desired eigenvalues?

|
'y
R Re s -] 2 > Re 7
4 4 1

= Sl il

(a) (b)

Find k to minimize the objective function

J = Iow[x’(t)Qx(t)+u(t)Ru(t)]dt
— Optimal Control Theory

Perception and Intelligence Laboratory
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State Feedback Controller Design

Solving the Lyapunov Equation

Procedure 8.1
Consider controllable (A, b). Find k such that
(A -Dbk) has any set of desired eigenvalues that
contains no eigenvalues of A.
1. Select an nx n matrix F that has the set of
desired eigenvalues.
2. Select an arbitrary 1x n vector k such that (F, k) is observable.
3. Solve the unique T in the Lyapunov equation AT — TF = bk.

4. Compute the feedback gain k = KT .

Note :
(A-bK)T=TF or A-bk=TFT*'— A-bk issimilarto F.

Perception and Intelligence Laboratory
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State Feedback Controller Design

Theorem 8.4
If A and F have no eigenvalues in common,

then the unique solution T of AT - TF = bk is nonsingular
if and only if (A, b) is controllable and (F, k) is observable.

Proof :
A(s) =s"+a,s° +a,8° +a,s+a,
AA) = A"+, A° + a,A* +a,A+a,l =0
A(F)=F*+oF° +a,F* + a,F + o,
Since A and F have no common eigenvalues, A(A4) = 0.

If A is eigenvalue of F, A(4) is eigenvalue of A(F)(Problem 3.19)
det A(F) =] [ A(&) = 0 — A(F) is nonsingular.

Perception and Intelligence Laboratory
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State Feedback Controller Design

Substituting AT = TF + bk into AT — AF? yields
A’T—TF? = A(TF +bk) - TF? = Abk + (AT - TF)F
= Abk + bkF

IT-TI=0 Xa,
AT-TF=bk X Ly
AT -TF? = Abk +DbkF B X,
AT -TF® :AZbI§+ AbkE+bkF2_ . xXoy
+ AT —TF* = A’k + A’bkF + AbkF® + bkF® x1
A(A)T-A(F) = AEF)A(A) since =0
a, a, o 1| k
1 0| kF
-[b Ab A A% % -
a, 1 0 OfKkF
1 0 0 0] kF]
— T is nonsingular.
Linear Systems ‘9 Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



State Feedback Controller Design

Selection of observable pair {F, k}

k=[1L 0 0 0 0]

Desired Eigenvalues:A,,«, = jf,, o, £ |5,

Linear Systems

A

0
0
0
0

0]
a,
)
0]
0]

0)
A,
o,

0)

0)

0]
0]
0]
o,

-5,

0

0
0

5,

0[2_

k=[1 1 0 1 0]
k=[1 1 0 0 1]
k=[1 1 1 1 1]
(Problem 6.16)

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU



HW 8-1

1. Find the state feedback gain for the state equation

(1 1 2] 1
X=/0 1 1 |[X+|O0|u
0 0 1 11

so that the resulting system has eigenvalues —2 and —1+ j.
Use the method you think is the simplest by hand to carry out.
2. Consider a system with thransfer function
(s—=D(s+2)
(s+1)(s—2)(s+3)
Is it possible to change the transfer function to

g(s) =

S) =
g;(s) s+ 3

by the state feedback? Is the resulting system BIBO stable?
Is it asymptotically stable?

Linear Svstems Perception and Intelligence Laboratory
4 21 School of Electrical Engineering at SNU



Regulation and Tracking

Regulation and Tracking

Regulation : to find out the state feedback gain
so that the output decay to zero.
Tracking : to find out the state feedback control u(t)
so that y(t) approaches to r(t) =a
By stabilizing control u = —kx for r(t) =0,
Zero input response
y(t) = ce®*®9'x(0)
will decay to zero. The regulation can be easily achieved.
For tracking , we need a feedforward gain p as
u(t) = pr(t) —kx.
limy(t) =limsy(s) =limsg (s)r(s)
BS'+BoS*+ s+ @ _ PP,

=limsp —— 5 — —
+o,S"+a,S"+a,S+a, S a,

s—0 S

4 =a

—> p= ﬂ, where S, should not be zero.
4

Perception and Intelligence Laboratory
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Regulation and Tracking

Robust Tracking and Disturbance Rejection

Robust tracking:
When the parameter of the transfer function is perturbed,
the feedforward gain p may not yield the exact tracking.
— nonrobust — robust design is required.

Disturbance rejection:
X = AX+bu + bw
y = CX
To design the controller so that the output track the step
response even with the presence of a disturbance w(t).

Perception and Intelligence Laboratory
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Regulation and Tracking

Robust Tracking and Disturbance Rejection
X, =F—y=r-—cX

o=k k] X |

a

Perception and Intelligence Laboratory
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Regulation and Tracking

Theorem 8.5

If (A, b) is controllable and if g(s) = c(sl - A)*b has no zero at
s =0, then all eigenvalues of the A-matrix in (8.29) can be assigned

arbitrarily by selecting a feedback gain [k Kk, ]

Proof :

NEEE N R

can be expressed as

L ol el

=

o
L
q
_|_
1
o T
I
2

Linear Svstems Perception and Intelligence Laboratory
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Regulation and Tracking

Proof of Theorem 8.5
It is enough to show that

A O b
ol Lol
is controllable if only if g, = O(the plant has no zero at s = 0).
We prove for n =4,
b Ab A%b A°b A‘b
[O —cb -cAb -cA’b —cA"b}

1 —o 0512 —a, —a, (0!12 —a,) a0 —o; A
0 1 -, 0!12 —Q, Ay
=10 O 1 —ay A3s
0O O 0 1 Ays

_O -B po—F, B (0{12 —a,)+ ooy — By Ay N

Perception and Intelligence Laboratory
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Regulation and Tracking

The rank of a matrix does not change by elementary operations.
Adding the second row multiplied g, to the last row, and
adding the third row multiplied £, to the last row, and

adding the fourth row multiplied £, to the last row, we obtain

1 —« alz -, —a (0512 — az) o, — oy &5

0 0 —a, 0512 —a, Ay

O O 1 —a, Az

O O 0 1 Ays
0 O 0 0 w2

which is nonsingular.

Perception and Intelligence Laboratory
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Regulation and Tracking

Characteristic polynomial of overall system

Af(s):det[sl—A—bk —bka}
C S

| 0[sl—A—-bk —bk,
[—c(sl—A—bk)l 1}[ c S }
[sl—-A-bk —bk,
B 0 s+c(sl —A—bk) bk,

A N (s)
1-A;(S) = D(s)(s+ 5(s) kaj

N (s)

«— g(s) = —Z’) — c(sl —A—bk) b

A, (s) =sD(s)+k,N(s)

Perception and Intelligence Laboratory
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Regulation and Tracking

Disturbance Rejection

N (s) ks _
y = B(s )(v+w) V= (r y), r=0 i—iO—JY—liJ)*—l’ N
k.N(s) NOMW - L
6 Y " Bs) " ’
N (s)
. D(s) sN (s) ~ sN(s)
gyw_l K,N(s) sD(s)+ k,N(s) A, (s)
sD(s)

If w(t) =w, £(w)=w/s,

_sN(s) W _ WN(s)
W= 6 s T A

— 0 by assigning poles in LHP.

Linear Svstems Perception and Intelligence Laboratory
4 29 School of Electrical Engineering at SNU



Regulation and Tracking

Tracking to step reference

B v w0, ke
kN (), kN (s) S
(1+ S[_)(S) )y_ S[_)(S) r
k, N(s)
g, (s)=—> D(s) ___kN(G) _ kiN(S)
yr 1+ka|\_|(s) sD(s)+k,N(s) A, (s)
s D(s)
Ifr(t) =7, £(w)=T/s
_k,N(s) T
yr(s)_ Af(s) S

k.N(O)T k., N(O)F

0-D(s)+k.N(©O)  kN©

hmy(t) =limsy, (s) =

Perception and Intelligence Laboratory
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Regulation and Tracking

Stabilization

HERE R

A_ is not affected by state feedback.

c

If A_ is stable and (A, b_) is controllable,
(A, b) is said to be stabilizable.

Perception and Intelligence Laboratory
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State Estimator Design

State Estimator ’ [ AnE l
SE— " - | c
Open —loop state Estimator ll A k
X =AX+bu _ ----- 1

5
>
7

|
|
I
I
|
I
I

G

AN

y = CX v[:ﬁ:
K= Ax+bu

Two problems T
1. Initial state must be computed <« {A, c} is observable
2. If A is unstable, the estimate error may diverge.

X —X= A(X—X),

e(t) .= x(t) — Xx(t)
e= Ae, e—>x IfRe(1(A))>0.

Perception and Intelligence Laboratory
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State Estimator Design

Closed-loop State Estimator

X=AX+bu+I(y—cx)

X=(A-Ic)x+bu+ly

e(t) = x(t) — X(t)

e =xX—X=Ax+bu—(A-Ic)x—bu—I(cx)
= (A—Ic)x—(A—1c)X=(A—Ic)(x —X)

é=(A—-Ic)e

y u N ]
L"E—.—} (sT—A)" ‘;3—_—.‘\» ——{ b A T—A) '—-3

___________________

Perception and Intelligence Laboratory
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State Estimator Design

Theorem 8.03
Consider the pair (A, c). All eigenvalues of (A —Ic)

can be assigned arbitrarily by selecting a real constant
vector | if and only if (A, c) is observable.

X = AX+bu

y = CX

Procedure 8.01

1. Select an arbitrary nx n stable matrix F that
has no eigenvalues in common with those of A.
2. Select an arbitrary nx1 vector | such that
(F, 1) is controllable.

Perception and Intelligence Laboratory

Li; ) . .
inear Systems 34 School of Electrical Engineering at SNU



State Estimator Design

3. Solve the unique T in the Lyapunov equation

TA-FT =lc. This T is nonsingular following the
dual of Theorem 8.4.

4. Then the state equation
z=Fz+Tbu+ly
X=T7"'z

generates an estimate of x.

Verify :
e=z2—1TxX
e=z—Tx=Fz+Tbu+Ilcx—TAXx—Tbu
=Fz+Ilcx—(FT+Ic)x=F(z-Tx)=Fe

lime=0—>limz=Tx >1limT'z=x

t—o t—> t—>

Linear Svstems Perception and Intelligence Laboratory
4 35 School of Electrical Engineering at SNU



State Estimator Design

Reduced-Dimensional State Estimator

Procedure 8.R1

1. Select an arbitrary (n—1) x (n —1) stable matrix F
that has no eigenvalues in common with those of A.

2. Select an arbitrary (n—1) x1 vector | such that (F, 1)
Is controllable.

3. Solve the unique T iIn the Lyapunov equation TA—-FT =lc.
Note that T is an (n—1) x1 matrix.

4. Then the (n—1)-dimensional state equation

z=Fz+Tbu+ly

[

IS an estimate of x.

Linear Svstems Perception and Intelligence Laboratory
4 36 School of Electrical Engineering at SNU



State Estimator Design

HRH

e=z2—1TX
e=72—-TX=Fz+Tbu+Ilcx—TAX—Tbu = Fe

Theorem 8.6
If A and F have no common eigenvalues,
then the square matrix

F’=H’

where T is the unique solution of TA-FT =Ic,
Is nonsingular if and only if (A, c) is observable
and (F,I) is controllable.

Perception and Intelligence Laboratory
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State Estimator Design

Proof :
Let A(s) =det(sl —A)=s"+s’ +a,5° +a,s+a,
Dual to (8.22), o B
o3 &, a

~TA(F)=[1 FI Fl FI]

K
o

© oo r
O
>
N

=C,AO
A(F) is nonsingalar If A and F have no common eigenvalues.
Then T=AF)'C, Oand becomes

<[ i o] s el

If (F,I) is not controllable, C, has rank 2 at most and P is singular.
If (A,c) is not observable, O has at least 1-dim. null space and
there exists r = 0 such that Or=0 which implies cr=0 and Pr =0.
Thus P is singular. This is proof of the necessity part.

Linear Svstems Perception and Intelligence Laboratory
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State Estimator Design

The sufficiency is proved by contraction.
Suppose P is singular, then there exists r = 0 such that

C . cr
r= =0
[C4A@J c, O }

Defineaar O =[a, a, a, a,|a[ a,]

a a, a, a, 1][ cr X
a| |, a 1 0| cAr | X
ey 1 0 Of|cA’r| | x
a,| |1 0 0 O0]J/cA’r| |cr=0

C,AD =@, =€ 8 —a =0Iif{,| } iscontrollable.
—a =0 if (F, I} is controllable.

—>axr O =0— =0A¢ } isobservable.

— contradict.

Perception and Intelligence Laboratory
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HW 8-2

3. Find a reduced dimensional state estimator for the state equation and
Verify the validity of the designed estimator through Matlab simulation

(1 1 -2 1]
x={0 1 1 [x+|O0Ju
0 0 1| 1

y=[1 1 1]x

Select the eigenvalues —/é and —3+2].

Perception and Intelligence Laboratory
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State Feedback from Estimated States

Feedback from Estimated States -l = )
() x Plant wi'
The state equation: :
X = AX + bu el
y =CX k K ¥ Fatimitor -

If the state IS not measurable,
X=(A—-Ilc)x+bu+ly

we use the estimated state for feedback
u=r—kx

X = Ax —bkX +br
X=(A-Ic)x+b(r—kx)+Ilcx
Matrix form:

HE e HEN
“te o]

Then

Linear Svstems Perception and Intelligence Laboratory
4 41 School of Electrical Engineering at SNU



State Feedback from Estimated States

Separation Property
By selecting a equivalence transformation

P ) W

The equivalent eq. is
x| [A—-bk bk X b
= + r
e | 0 A-lc]|e 0
i X
y=|c O][ }
- e

Controllable part is given by
X=(A—-bk)x+br y=cx

Overall transfer function becomes
g,(s) =c(sl —A+bk)™'b

Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

State Feedback-Multivariable Case
Theorem 8.M1
The pair (A —BK, B), for any p xn real constant matrix K,
Is controllable if and only if (A, B) is controllable.

Proof :
The proof follows the proof of Theorem 8.1.

The only difference is that (8.4) is modified as:

|, -KB -K(A-BK)B -K(A-BK)’B

o I, KB ~K(A-BK)B
C, =C

0O O » KB

0O O 0 » |

Linear Svstems Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

Theorem 8.M3

All eigenvalues (A —BK) can be assigned arbitrarily
(provided complex conjugate eigenvalues are assigned

In pairs) by selecting a real constatnt K if and only if
(A, B) is controllable.

Linear Svstems Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

Cyclic Design

Theorem 8.7

Linear Systems

If the n-dimensional p-input pair (A, B) is
controllable and if A is cyclic, then for almost
any p x1 vector v, the single-input pair (A, Bv)
Is controllable.

A is cyclic if its characteristic polynomial equals

Its minimal polynomial.

A is cyclic iff its Jordan form has only one Jordan block
for each distinct eigenvalue.

Perception and Intelligence Laboratory
45 School of Electrical Engineering at SNU



State Feedback-Multivariable Case

Intuitive Validation:
Controllability is invariant under any equivalence transformation,
thus we assume A to be Jordan form

(2 1 0 0 O )

O 21 0 O

A=/0 0 2 0 O B=

O 0 0 -1 1

0 0 0 0 -1] ]

— (A, BvV) is controllable iff &« 0, S #

«—a=Vv,+2v,0and g=v, =0 ”

1
0]

Vl
2 Bv:B[ }:
3 V2
O_
0.

R N P O O
™ X [ X X

— Almost controllable [
2 1 0] (2 1]
A — O 2 O B — O 2 ol !2 _ll ¥ | v = —2u;
|0 0 2] 1 0]

— 3 no v s.t. (A,BV) is controllable

Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

Theorem 8.8
If (A, B) is controllable, then for almost any

p x n real constant matrix K, the matrix (A — BK)
has only distinct eigenvalues and is, consequently, cyclic.

Intuitive Verification:
(A —BK) has
A (s)=s*+as’+a,s°+a,s+a,
where a, are functions of the entries of K. By differentiation
A’ (s) = 4s® +3a,5° +2a,5 +a,
If A (S) has repeated roots, then A (s) and A’; (s) are not coprime.
Then 3 a coprime fraction A’ (s)/ A (s) such that

A (8)/ A (s)=A(s)/ A (s)

Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

The sufficient and necessary condition is
Sylvester resultant is singular

(a, a4 0O O O O 0 0]
a, 2a, a a O 0 0 o)
a, 3a a 2a, a 4a O o)
det 8 4 & 3 3 2a 3 g —b(k.)=0
1 0 a 4 a 3a a, 2a, !
0 o) 1 O a 4 a, 3y
o o0 O O 1 0 & 4
o o0 o0 o o o 1 o0

The solution space is a line(a very small portion)
In high dimensional space.

Thus Sylvester resultant is almost nonsingular, and
A —BK is almost cyclic.

Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

If Ais not cyclic, we can choose u =w — K X, then
X =(A—-BK,)x+Bw = Ax+Bw

where A is cyclic. (A, B) is controllable since (A, B) is controllable.

Thus 3 v such that (A, Bv) is controllable. By choosing
w=r—-K,Xx, with K, = vk.

Then the system becomes
X =(A-BK,)x+Br =(A—-Bvk)x+Br

The resulting state feedback control becomes
u=r—(K,+K,)x=r—-Kx.

The K =K, + K, can achieve arbitrary eigenvalue assignment.

Linear Svstems Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

Lyapunov-Equation Method
1. Select an nx n matrix F with a set of desired

eigenvalues that contains no eigenvalues of A.

2. Select an arbitrary p x n matrix K such that
(F, K) is obaservable.

3. Solve the unique T in the Lyapunov equation
AT -TF = BK.

4. If T is singular, select a different K and repeat

the process. If T is nonsingular, we compute K = KT,
and (A — BK) has the set of desired eigenvalues.

The Lyapunov equatuion becomes
(A—-BK)T=TF or A-BK=TFT*

Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

Theorem 8.M4
If A and F have no eigenvalues in common, then

the unique solution T of AT — TF = BK is nonsingular
only if (A, B) is controllable and (F, K) is observable.
Proof :

The proof of Theorem 8.4 applies here except that
(8.22) must be modified as

al a,] ol 1] K

| I 1 0|l KF

~Ta(F)=[B AB AB A’B]| 72 @ ’
ol 0 O KF?
1 0 0 O]|KF

—TA(F) =CxzO
where A(F) is nonsingular. If (A, B) is uncontrollable
or (F, K) is unobservable, then T is singular.
The contraction statement is true.
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State Feedback-Multivariable Case

Canonical Form Method

—Qyyy T, Qg3 Qg L T0y — Oy 1 b,
1 0 0 0 : 0 0 0O O
0 1 0 0 : 0 0 0O O
X = 0 0 1 0 : 0 0O |[X+|/0 O |u
05y Uy O3 —Oy 1 Ty —Qyy
i 0 0 0 0 : 1 0 ] i |
y = B P Pus Pus Poi P :| <
_ﬁzll Boo Pors Poa Pon  Por
Linear Systems - Perception and Intelligence Laboratory
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State Feedback-Multivariable Case

Desired characteristic polynomial is given by
4 | — 3, = 2 |, = — 2, = —
A¢(S)=(S" +@yS” + 018" + 0135+ 0y )(S™ + ppy S+ Ay ).

Let us select K as

1 _ _
K — |:1 bu} |:a111 — Uy Gy — Wy O3 — Qg3

0O 1

Uy11 — U1y Opgp —Uy1p  Ap13 — Upg

14 — Agqy —pq —)s

Up1g —Up1p Uppg —Upy Upyp — Uyyy

where «,,; are arbitary real constants. Then we have

—Oyyy  —Qyyp,  —Oh; Oy . 0 0
1 0] 0] 0 : 0 0
0] 1 0] 0] : 0 0
A—-BK = 0] 0] 1 0 : 0 0
_5211 _C=¥212 _5213 _Cm : —Qly;  —Olhy
0 0] 0] 0 : 1 0 |
Linear Systems - Perception and Intelligence Laboratory
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i State Feedback-Multivariable Case

Effects on Transfer Matrices

G(s) = N(s)D™(s)
y(s) = N(s)D*(s)u(s)
D(s)v(s) =u(s)

y(s) = N(s)v(s)
X(s) = L(s)Vv(s)

1(s) Zk u(s)
B D D l(s)

V(s5) ¥(s)

NG >

X(s)

L(s)

u(s) =r(s) —Kx(s) =r(s) —KL(s)v(s)

D(s) = D,,.H(s) + D,.L(s)

D, H(s)+D,.L(s)]v(s) =r(s) — KL(s)v(s)
[D, H(s) + (D, + K)L(s)]V(S) = r(s)

y(s) = N(s)[D,.H(s) + (D,, + K)L(s)]  r(s)
G, (s) = N(s)[D, H(s) + (D, + K)L(s)] = N(s)[D(s) + KL(s)]"

Linear Systems
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State Estimators-Multivariable Case

State Estimators-Multivariable Case

X =AX+ Bu
y =CX
X=(A—-LC)x+Bu+Ly

e(t) == x(t) — X(t)
é=(A—-LC)e

Perception and Intelligence Laboratory
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State Estimators-Multivariable Case

Procedure 8.MR1

Consider the n-dimensional g-output observable pair

(A, C). It is assumed that C has rank q.

1. Select an arbitrary (n—q) x(n—q) stable matrix F
that has no eigenvalues in common with those A.

2. Select an arbitrary (n—q) x g matrix L such that
(F, L) is controllable.

3. Solve the unique (n—qg)xn matrix T in the
Lyapunov equation TA—-FT =LC.

4. If the square matrix of order n

(¢

Is singular, go back to Step 2 and repeat the process.
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State Estimators-Multivariable Case

If P is nonsingular, then the (n— q)-dimensional state equation
Z=Fz+TBu+Ly

<[] [

generates an estimate of x.

To justify the procedure,

C
Yy _ X
e=z—-TxX
e=72—TXx=Fz+TBu+LCx—TAX—-TBuU

=Fz+(LC-TA)X=F(z—-Tx) =Fe.
Since F is selected as stable, e >0 ast — .
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State Estimators-Multivariable Case

Theorem 8.M6

If A and F have no common eigenvalues,
then the square matrix

(1]

where T is the unique solution of TA—FT = LC,
Is nonsingular only if (A, C) is observable and
(F,L) is controllable.
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Feedback from Estimated States-
Multivariable Case

Feedback from Estimated States-Multivariable Case

X =AX+Bu
y =CX

C
[Ql Q2]|:T:| = Q1C+Q2T =1

Zz=Fz+TBu+Ly
X =Q,y +Q,z
u=r—-Kx=r-KQ,y-KQ.,z
X =AX+B(r-KQ,Cx—-KQ,z)
= (A-BKQ,C)x—-BKQ,z +Br
z=Fz+TB(r-KQ,Cx-KQ,z)+LCX
=(LC-TBKQ,C)x+(F-TBKQ,)z+TBr

Perception and Intelligence Laboratory
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Multivariable Case

i Feedback from Estimated States-

x| [ A-BKQ,C ~BKOQ, X B
z| |LC-TBKQ,C F-TBKQ, ||z T8
.
x| [ x ] [, 0 |[x
e| |z-Tx| |-T 14 [z}
x| [A-BK —BKQZ}[X} [B}
= + r
el | O F e 0

i o

G.(s)=C(sl-A+BK)'B
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HW 8-3

4. Given
(0 1 0 0] 0 O]
O O 1 O O O
A - , B =
-3 1 2 3 1 2
2 1 0 O 0O 2

Find two different constant matrices K such that (A — BK)
has eigenvalues —4+3j and —5+4j.
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