The GaAsP, GaP, GaAsP:N, and GaP:N material system
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Fig. 7.1. Schematic band structure of GaAs, GaAsP, and GaP. Also shown is the nitrogen
level. At a P mole fraction of about 45 - 50 %, the direct-indirect crossover occurs.

(E4(GaAs): 1.43eV (870nm), E (GaP): 2.26eV (550nm))
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* GaAsP on GaAs is the lattice mismatched system.
- A lattice mismatch between GaAs and GaP is large, about 3.6%.
- low internal quantum efficiency

* GaAsP, GaAsP:N suitable for indicator light
- The isoelectronic impurities form an optically active level within the forbidden gap
of the semiconductor so that carriers recombine radiatively via the N levels.
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¢ Isoelectronic impurities have an electronic wave function that is strongly

localized in position space (small AXx) so that the wave function is delocalized in
momentum space (large Ap).

- The change in momentum occurring when an electron makes a transition from
the indirect X valley of the conduction band to the central 7I"valley of the valence
band, the momentum change is absorbed by the isoelectronic impurity atom.
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Fig. 7.3. Experimental external
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« The efficiency of the N-doped LEDs is strongly enhanced over the entire
composition range compared with the GaAsP LEDs without N doping.

* GaAsP LED efficiency decreases by more than 2 orders of magnitude in the
composition range x= 40~60% due to the direct-indirect crossover occurring
in GaAsP and the increasing dislocation density occurring at higher P mole
fractions. 2 Not suitable for high power LEDs
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* GaAsP and GaAsP:N is suitable for low-brightness applications.
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GaAsP vs. GaAsP:N
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Fig. 7.5, Efficiency ratio
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undoped GaAs_ Py at 300 K
(after Groves et al., 1978a and
1978b).
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* N-doped GaAsP devices have a higher efficiency over the entire
composition range.

* The brightness of LEDs based on isoelectronic impurity transitions
is limited by the finite solubility of nitrogen.

445.664 (Intro. LED) / Euijoon Yoon 6




The AlGaAs/GaAs material system

Y i
= oy T 1T
—7-r--- Direct gap
[FAIAsS™ -\ === Indirect gap
S 0.6
20F >
\\
0.7
{6 AlSb
P —0.8
o =
—GaAs E
R |09 3
% 1.0 =
P K 5
= =
2 12 B
o o
& K]
2 o8 1+ =
= I-GaSb
“ 20
- 3.0
04 —InAs a0
Lﬂéb o 6.0
=1l InSh| {10
ool AEL | ‘ 2
54 55 5.6 57 5.8 59 6.0 6.1 6.2 6.3 6.4 6.5

Lattice constant ay, (&)

Fig. 7.6. Bandgap energy and lattice constant of various TII-V semiconductors at room
temperature (adopted from Tien, 1988).

* AlGaAs is lattice matched to GaAs for all Al mole fractions.
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Fig. 7.7. Bandgap energy and emission wavelength of AlGaAs al room temperature. £
denotes the direct gap at the T point and £, and £ denote the indirect gap at the L and X
point of the Brillouin zone, respectively (adopted from Casey and Panish, 1978).

* AlGaAs/GaAs has a direct-indirect crossover at a wavelength of 621 nm.

* The AlGaAs material system is suited for high-brightness visible-spectrum
LEDs emitting in the red wavelength range.
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AlGaAs/GaAs

(a) Al,Gay_,As / GaAs QW structure (b) Al Gay_ As / Al Gay ., As DH structure

Al Gaj_ As Al Gaj_ As Al Gaj_ As Al Ga_ As

GaAs Al GayAs (x>
Fig. 7.8. Band diagrams of AlGaAs/GaAs structures suited for light emission in the red

part of the visible spectrum. (a) AlGaAs/GaAs quantum well (QW) structure with thin
GaAs well. (b) AlGaAs/AlGaAs double heterostructure (DH) with AlGaAs active region.

* The AlGaAs/GaAs system is suited for IR and red high-power LEDs.
* AlGaAs DH-TS LEDs
« The reliability of AlGaAs devices is lower than that of AlGalnP devices.

High-Al-content AlGaAs layers are subjected to oxidation and corrosion,
thereby lowering the device lifetime. Hydrolysis.
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The AlGalnP/GaAs material system
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Fig. 7.9. Bandgap energy and corresponding wavelength versus lattice constant of
(AlyGa)_y)yIn1_yP at 300K. The dashed vertical line shows (AlGay_y)o,5Ing 5P lattice
matched to GaAs (adopted from Chen ef al. 1997)
* High-brightness system for red, orange, amber, and yellow LEDs
« Since Al (1.82A ) and Ga (1.81A) have very similar atomic radii, the material
(Al Ga,_,)sIngsP is lattice matched to GaAs.
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AlGalnP/GaAs
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Fig. 7.10). Bandgap energy and emission wavelength of the unordered AlGalnP
quaternary semiconductor lattice-matched to GaAs at room temperature. Er- denotes the

direct gap at the I” point and Fy denotes the indirect gap at the X point of the Brillouin
zone (adopted from Prins ¢t al., 1995 and Kish and Fletcher, 1997).

* (Al,Ga,),sIng 5P is a direct-gap semiconductor for Al mole fractions x <0.53

« Direct-indirect crossover at a wavelength of 555 nm
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* The AlGalnP/GaAs system is suited for red, orange, and amber
high-power LEDs. Efficiency decreases for yellow, yellow-green, and
green LEDs.
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l1I-V Nitride material system
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« High radiative efficiency despite the presence of a very high concentration of
threading dislocations due to large lattice mismatch in InGaN/GaN epitaxial films.

* The InGaN material system is suited for UV, blue, cyan, and green high-power
LEDs. Efficiency decreases in green spectral range.

« In theory, InGaN is suitable for covering from UV to IR ranges.

445.664 (Intro. LED) / Euijoon Yoon 13
InGaN/GaN (carrier localization due to potential fluctuations )
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« Fluctuations of the In content in InGaN causes carriers to be localized in
potential minima, thus preventing carriers from reaching dislocations.
- High radiative efficiency
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Progress in luminous efficiency of LEDs
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Fig. 7.13. Luminous performance of visible LEDs versus time. Also shown is the
luminous performance to other light sources (adopted from Craford, 1997, 1999, updated
2000).

« Strong progress over last decades

AlGalnP/GaP —*——— TIP
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Com parison across spectrum
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Fig. 7.14. Overview of luminous performance of visible LEDs made from the phosphide,
arsenide, and nitride material system (adopted from United Epitaxy Corporation, 1999;
updated 2000),
. and orange (605nm) AlGalnP and green (525nm) InGaN LEDs
are excellent choices for high luminous efficiency devices.
e Lack of LEDs at 550 nm is sometimes referred to as the “green gap”.
- Maximum eye sensitivity occurs in the green at 555 nm.
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Comparison: Light bulb vs. LED
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Fig. 7.15. LED lumi-
nous flux per package
and LED lamp purchase
price per lumen versus
vear. Also shown are the
values for a 60 W incan-
descent tungsten-fila-
ment light bulb with a
luminous performance
of about 17 Im/W and a
luminous flux of 1000
Im with an approximate
price of US $ 1.00 (after
Krames et al., 2000).

« The luminous flux per LED package has increased by about four
orders of magnitude over a period of 30 years.

« cost of ownership: less electrical power consumption over time
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Optical characteristics of high-brightness LEDs
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Fig. 7.16. Typical emission spectrum of GalnN/GaN blue, GalnN/GaN green, and
AlGaInP/GaAs red LEDs at room temperature (after Toyoda Gosei Corp., 2000).
* Note that green emitters shows broadest emission line.
« alloy broadening: random fluctuation of the chemical composition
* broadening greater than 1.8 kT
* Green emitters need further development.
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Light output power vs. current
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* AlGalnP is more mature than InGaN.

* The green LED has a large deviation from the unit differential quantum
efficiency slope due to the lower maturity of the InGaN material system,
especially with high concentration of In.
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Temperature dependence
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« lI-V nitride diodes have a much weaker temperature dependence
than the AlGalnP LED due to

1) The active-to-confinement barriers are higher in 1ll-V nitride system.

2) Carrier localization in InGaN

3) AlGalnP has a direct-indirect transition of the bandgap at about 555nm.
- Increasing population of the indirect valleys at elevated temperature
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Electrical characteristics of high-brightness LEDs
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* AlGalnP is more mature than InGaN.

* The larger resistance in InGaN LEDs due to,

1) Lateral resistance in the n-type buffer layer grown on sapphire substrate
2) Strong polarization effects in nitride system

3) lower p-type conductivity in the cladding layer

4) higher p-type contact resistance
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Forward voltage vs. temperature

Ambient temperature T ("C)

* Forward voltage decreases with temperature due to the decrease of the bandgap
energy.

*In InGaN diodes, the lower forward voltage is due to the decrease in series
resistance occurring at high temperatures. This resistance decrease is due to the
higher acceptor activation occurring at elevated temperatures and the resulting higher
conductivity of the p-type GaN and InGaN layers.
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