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o Sample space Q: collection of all possible experimental outcomes

— E.g., If we look at (sample) a queue, the possible numbers of customers in
the queue are {0,1,2,...}

— E.g., If we sense (sample) a room temperature, the possible outcomes are
[-50, +50]
o Sample point ®: one outcome of a sample
— E.g., The first sample point of the queue = 0;
— E.g., The first sample point of the temperature = -50 degree
« Event A: set of sample points
— E.g., Event A: queue isnotempty = {1, 2, 3, ...}
— E.g., Event B: the temperature is higher than 10 degree = [+10, +50]

— Properties
« P[A]zO
e P[Q]=1
 |f evnets A and B are mutually exclusive (i.e., A (1 B = ¢), then .......
P(AU B) =P(A) + P(B)
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 Random Variable X: a real-valued function that associate a real
number with the outcome of an experiment. (a real-valued function
defined in the domain of Q)
— E.g., X'is the modular 10 of customer count in the queue (discrete)
— E.g., Y is the room temperature in Fahrenheit (continuous)

» A random variable X is usually characterized by probability
distribution function (or probability density function, probability mass

function)
Continuous case Discrete case
Prob. density Prob Prob.
1.0 f-----m--oooomae
R R il H H H Im,
X X X
pdf distribution function pmf




Normal (Gaussian) Distribution

1 1 x—uY
f(x)= — exp[—E(Tﬂj] E(X)=u,Var(X)=0"
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Exponential Distribution (1)

f(x):ﬁe"b‘,x>0 E(X)=%,Var(X)=%
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Exponential Distribution (2)

f(X)=e,x>0  E0)=—Var(x)=—

Markov property (= memoryless property):
P[X >t+h|X >t]=P[X >h]

Suppose that X is the wait time for a event. Under the condition that the event
does not occur for t (X>t), the distribution of further waiting is the same as it
would be if no waiting time had passed. That is, the system does not remember
that t time units have produced no event.

P[(X >t+h)n(X >t)] P[(X>t+h)]

P[X >t+h| X >t]= 51X >1] =Xt

T e X aoateh)
e =% —eM=P[X>h]

_[t "o dx €

E.g., Inter-arrival time of events with the average arrival rate A.

E.g., Service time with the average service rate A..



Poisson Distribution (1)

k

P[X =k]=e—ﬁ%,x=o,1,2,.-. E(X)=A,Var(X)=4

Poleson distrbutionswkh different mean s




Poisson Distribution (2)

o Examples
— Number of ob arrivals in a unit time
— Number of jobs completed in a unit time

 Property 1

— Sum of two Poisson random variables X and Y with the average rate of o and
B, respectively, i.e. X+Y, is also a Poisson random variable with rate o, + 3.

* Property 2 (Equivalence with Exponential distribution)

— ConS|der a Poisson occurrence of events with the rate A. Let, 0 <t; <t, <tj
. be the successive occurrence times of events and let the mterarrlval tlmes
{rn} be defined by t,=t;, t,=t,- T = t,-t, ;. Then the interarrival times {z,}
are exponential random varlab es eac Wlth mean 1/,

—  Proof

L™ N

Plr, <s]=1-e™
f(s)=2e"

P[z >s::P[X.s:O]:{e

-1 (lsl)k :| — e—ﬂs
LG

* For modeling a count, use a Poisson distribution. For modeling the time,

use an exponential distribution.



Two Important Laws In

Probability Theory

e Central Limit Theorem
 Law of large numbers



Central Limit Theorem

o If X, X X, are 11D (independent and
Identic 2IIy dlstrlbuted) random varibles with
mean w and variance 2, then the sum of the
random variables closely follow the normal
distribution with mean ng and variance no? as

n =2 infinity, that Is,

" X. ~normal(nu,+/no) asn—» o«

1=1



Example

e Suppose that on average one job Is submitted
to a computer system each minute with
standard deviation 0.5 and that the numbers of
jobs submitted In the sequence of minutes are
Independent.

e \What is the probability that more than 68 jobs
are submitted in 64 minutes?

X, :number of jobs submitted in I-th minute
X :sum of random variables X, X,,--- X,

P(X >68)=1-P(X <68)=1— P(X ;64 £1j

~1— P(standardNormalVariable <1) ~ 0.16



Law of Large Numbers

o Weak: If X, X,, ..., X, are IID (independent
and |dent|cally dlstrlbuted) random variables
with mean g, then for all >0,

e
P{Z'l —,u>8]—>0 asn— oo
n

X,, ..., X, are independent
artables v Allfh ry1—,, then for all ¢

Vvvitll I_I_I\ HI y LII\;II IUI

/ all ¢
ere exists an integer N such that for all

X Y
P[Zl L it <g]zla

N N

Cy




Example

* |n a computer lab, we observed the daily log-
on times of 100 users. The average of them Is

2hrs 25mins.
* What is the expected log-on time of a user in a

day?

100

2. X

=L — 2hr 25mins
100

Thus, the expected value of X, is 2hr 25mins with a high probability



Stochastic process
(= Random Process)

 Stochastic process

— When the probability distribution depends on time, it is
better to use a sequence of random variables X(t)
depending on time.

— E.g.: The number of customers in the queue has
difference distributions at different times

— E.g.: The room temperature has different distribution at
different times.

— A stochastic process is a family of random variables,
each of which Is associated to a time instant t
(continuous time parameter t, discrete time parameter n).

{X (t):t T }= continuous time process
{X, :n=012,---}= discrete time process



Two Important stochastic
process

e Markov Process
e Birth-and-Death Process



NMarlkknv Procace (1)
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* A stochastic process {X(t), tin T} is a Markov
process If for any set of times t; <t, < ... <t, <t 4

In the Index set and any set of {X,, x2, r]+1} of
n+1 states, we have

PIX (ty,1) = X | X () = X, X (1) = Xy, 0+, X (8,) = X, ]
— P[X (tn+1) — Xn+1 | X (tn) — Xn]

e That Is, the future of the process depends only on

the present state and not upon the history of the
process.

o Markov Chain: If its state space Is discrete



ab)
-

1vi I\ \')
Type of time State Space
parameter Discrete Continuous

Discrete Time

Discrete time
Markov Process

Discrete time
Markov Chain

Continuous Time

Continuous time
Markov Process

Continuous time
Markov Chain




Markov Process (3)

A discrete-time Markov Chain Is characterized by
the one-step transition probability

= j| X, =ilni, j=012,---

P[X

n+1

* |If the one-step transition probabilities are
Independent of n, such a Markov chain is said to

have Stationary Transition Probability. =¥ P;;

I:)00
Fio

I:)01
Ry

POZ

P, - Transition
L. Probability
R. - Matrix




Example 1

» Consider a sequence of Bernoulli trials in which the
probability of success on each trial is p and of failure
IS g, where p+g=1 and O<p<1. Let the state of the
process at trial n be the number of uninterrupted
successes that have been completed at this point. For
example, if the first 5 outcomes were SFSSF, we
would have X,=1, X,=0, X,=1, X,=2, and X,=0.

* What Is the state transition probability matrix?

_Poo Po P = g p 0 0 00
P, P, P, - g 0 p 0 0 O
P=l: =+ + ..=/q 0 0 p 0 O
Fo P R - q 0 0 0 p O




Example 2

e Consider a communication system that transmits the
digits 0 and 1 through several stages. At each stage
the probability that the same digit will be received
by the next stage, as transmitted, iIs 0.75. What Is the
probability that a O that is entered at the first stage Is
received as a 0 by the fifth stage?

o_ 0.75 0.25
1025 0.75
o . [0.75 0.25]1.0
1St Stage recepuon .
0.25 0.75[ 0.0

_ 0.75 0.25|0.75 0.25| 1.0
2nd stage reception :
0.25 0.75]0.25 0.75(0.0

~ J0.75 0.251°(1.0) [0.515625 0.484375](1.0
5th stage reception:: =
025 0.75|10.0) |0.484375 0.515625 | 0.0



rth-Death Process (1)
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« Consider a continuous time parameter stochastic process
{X(1), t z 0} with the discrete state space 0, 1, 2, ....

o X(t) = n means that the system Is in state n at time t.

o This system is said a birth-death process if there exists non-
negative birth rate {A, n=0,1,2...} and non-negative death
rates {u,, n=1,2,3,...} such that

— 1. state changes are allowed only between n and n+1,

— 2. the transition probability from n to n+1 between time t and t+h is
Ah+o(h),

— 3. the transition probability from n+1 to n between time t and t+h is
w...n+o(h), and

— 4. the probability that, in the time interval from t to t+h, more than
one transition occur is o(h).
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Let P[X (t) =n|be P,(t): Compute P, (t)

I:)n (t + h) — I:)n (t)(l_ ﬂ’nh _ :unh + O(h)) + I:)n—l (t)(/ﬂtn—lh + O(h)) + I:)n+1 (t)(:un+1h + O(h))
Pn (t + h) o Pn (t) — _(’ "n + /un)th (t) + 'Z’n—thn—l (t) + /un+1th+1 (t) + O(h)

Ilm Pn (t i hr?‘ — Pn (t) — _(/In + /un) I:)n (t) + )Ln—lpn—l (t) + :un+1Pn+1 (t)

h—0

% - _(ﬂvn + ,un) I:)n (t) + ﬂ’n—l I:)n—l (t) + lun+1 I:)n+1 (t)

dF:;)t(t) =—1,P, (t) + 14 R, (1)




Birth-Death Process (3)

In general, finding the time-dependent solutions of a birth-death process
Is very difficult

However, if P (t) approaches a constant value P, as t 2infinite for each
n, then we say that the system is in “statistical equilibrium”.

(O =—(A, +u,)P.+A P+ ,P.. =0,=0,n=123,...=>
0=—A,P, + 1P

oo T AN p = pn-o12.
— /un+1
(:unJrl Pn+1 - ﬂ“n I:)n = H, I:)n - ﬂ“n—l Pn—l —

P, - 4,P, =0

i 0" 0 P]_:ﬁPO,PZZiPl:ﬂi//LO Po;---;
Let 9, =4, I:)n _ﬂ“n—lpn—l' Then H Hy Moty

= A A oA
gn+l gn Pn — n-1""m-2 0 Po
9, = 0 Y R ]

an:p0+p1_|_ p, +--=1 p0(1+ﬂo+ﬂ1ﬂ*o +.../1n—1--.ﬂiﬁo+“.]:1
n=0 o L My oty




Birth-Death Process (4)

The Birth-Death Process is an example of the Continuous time Markov chain.

A discrete time (h) Birth-Death process is an example of the Discrete time
Markov chain. (Characterized by the one-step transition prob.)

P[X(t+h)=n+1| X(t)=n]=4h+0o(h), n=012,---
P[X(t+h)=n—-1] X (t)=n]= g h+0(h), n=1,2,3.--
P[X(t+h)=n|X({t)=n]=1-4h-uh+o(h), n=0,2,3---
P[X (t+h) =m| X (t) =n]=0, for all other cases

The above probabilities are independent of time parameter t. By definition, the
discrete time Birth-Death process has “Stationary transition probabilities”.

Supposing h->0 ...

Po Pu Pe | rican an 0 0 -]
p_ o B R | wh 1-Ah—uh Ah 0
P, B, B, | | O ph  1-dh—ph zh -

I:)n (t + h) — I:)n (t)(l_ ﬁ'nh o :unh) + I:)n—l (t)ﬁ'n—lh + I:)n+1 (t):un+1h

« Statistical Equilibrium? -> Don’t know



Example

Consider a computing server with NO waiting line. We assume a
Poisson arrival with parameter A and an exponential service time
distribution with parameter p.

What is the probability that the server is busy?
The probability of an arrival in the interval (t, t+h]

P[X >1]=1-P[X :O]:l—(eﬂh (’lkhl)k) —1-e = ih+o(h)

When the server is busy at t, the probability of an service completion by

t+h .
P[X <h]=1-P[X > h] =1—jh e *dx =1—e* = sh+o(h)

Birth-death process with A,=A (A,=0 for all other n), and p, = p (u,=0

for all other n) A4 A
P = ;1 FR=—F

U
P0(1+i)=1,P0: SIS

H 7, U+ :y+i



Queueing System
Mean Arrival Rate —>

}\‘ —
source| " F—— 2 I
T Queue

Inter Arrival Time

W(q: time a customer —>
spends in the queue

before service begins

WSs: service time

NQ: # of customers in
the queue

Ns: # of customers in
the service facility

W: total time a customer spends in the system

N: # of customers in the system

« Kendall notation: A/B/c/K/m/Z
— A:inter-arrival time distribution
— B: service time distribution
— C: # of servers
— K: system capacity (queue length + c)
— m: the number in the population or source
— Z: queue discipline (FIFO, LCFS, PRI, etc.)



n::l\l
J \l Iuly

nfﬂl
UI\(

nao Sv<teme
| H U JLuwIiiliJ
The queueing model fits well the birth-death process in
general.

Let N be a random variable that represents the number of
customers in the system.

Thus, the steady state probability is ....

P _ ﬂ"O'ﬁ'l'“ﬂ"n—i P
T 0

YRy

Poziwheres =1+ ° Oﬂl
S H ILllILlZ



 The number of arrivals follows the Poisson distribution
* The service time follows the Exponential distribution
 The number of servers is ONE

A, =Aforalln=01.2,---
u, =wpforalln=223,---

Letizp

y7i
2
S =1+—+/1—2+---=1+p+p2+...:_1
Hoou 1-p
Thus,

P,=1-p
I:Jn :/On(l_p)
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o L=E(N): Expected number of customers in the system

L=E(N)=)> n(l-p)p" _1L (see geometricdist.)

n=0 _

e VAR(N): Variation of number of customers in the system

o, ..
VAR(N) = . - (see geometric dist.)

e \W: Average waiting time of a customer in the system
— Use Little’s Law



Little’s Law
(by John D. C. Little)

L = AW
RN

Avg. # of Customer Avg. time a
customers in arrival rate  customer spends
the system In the system

Proof is difficult. See Stidham’s paper.



M/M/1 Oueuelno
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o L=E(N): Expected number of customers in the system

L=E(N)=)> n(l-p)p" _1L (see geometricdist.)

n=0 _

e VAR(N): Variation of number of customers in the system

o, ..
VAR(N) = . - (see geometric dist.)

e \W: Average waiting time of a customer in the system
— Use Little’s Law

wotitn/ 2o u_w

A lplplp
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* L, Expected number of customers in the queue
« W, Average waiting time of a customer in the queue

W,
1-p 1—,0

2

W, =W —W, =

S

L =aw, =2 2 _ P
1-p 1-p

* Probability that the server is busy?

Lszlwszﬂul:p

7



Average Number in the System

15
ogui02

10

0.5

Traffic Intensity

Qg



Example

Traffic to a message switching center arrives in a random pattern (e.g.,
exponential distribution) at an average rate of 240 messages per minute.
The line has a transmission rate of 800 characters per second. The
message length distribution (including control characters) is
approximately exponential with an average length of 176 characters.

L, W, Lg, Wg? w_=176/800=0.22sec, A =240/60sec=4msg/sec
=21 u=0.88
L=p/l—p)=7.33, W =L/A=1.83sec
Wq=W —W, =1.61sec, Lq = zwq =6.44

Probability that 10 or more messages are waiting to be transmitted?

P(N211)= > (1-p)p" =(A-p)(p" + p? +--) = p =0.245

n=11
What would be the average response time W, if the traffic rate into the
center increased by 10%?

p'=(Ax1.1)/ u=px1.1=0.968
L'=0.968/(1-0.968) =30.25, W'=L"/(1x1.1) =30.25/4.4 =6.875
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A, =Aforalln=012,--- K-1
K

u, =upuforalln=123,---,

Leti:p
7]
2 K
S=1+i+/1—2+-~-+—K=
HoH H
Thus,

1+ p+p°+--+p~ =£

1_IOK+1

1-p

What if A = p?

J



1- do" 1- d &,
- 1_ I§+1 pz '0 :( fﬂjp Zp

P = do (1-p do "o
~ l_p d 1_pK+l ~ p (K+l)pK+l
1_,0K+1 'Odp 1_,0 1_,0 1_,0K+1

e W: Average waiting time of a customer in the system
— Use Little’s Law

A, = A(1-P,) averagearrivalrate : arriving is not allowed when n = K

W=t
/13.



Example

Traffic to a message switching center arrives in a random pattern (e.g.,
exponential distribution) at an average rate of 240 messages per minute.
The line has a transmission rate of 800 characters per second. The
message length distribution (including control characters) is
approximately exponential with an average length of 176 characters.---
same as before. (p = A/u =0.88)

If we want to provide only the minimum number of message buffers
required to guarantee than Prob(N=K) < 0.005, how many buffers
should be provided?

K+1

P(N = K) = p¥ 11_p <0.005= K > 25.142607

no.of buffers=K -1=25
L, W, Lq, WQg?

L =6.449(cf.7.33), W =1.62sec(cf.1.83sec)
W =W -W, =1.40sec(cf.1.61), L, =5.573(cf.6.44)



