
1

Overview of
Commonly used Approaches to

Real-Time Scheduling
- Chapter 4 -

Overview of Chapter 4 topics

• The nature of the “game”

• Overview of common approaches
– Clock-Driven Approach
– Weighted Round-Robin Approach
– Priority-Driven Approach

• EDF, LST, RM

• How to prove a scheduling is optimal
• Optimality in limited sense

2

How to schedule?
• Four control-law tasks

– Task 1 (left arm control): p1=30ms
– Task 2 (right arm control): p2=30ms
– Task 3 (left leg control): p3=50ms
– Task 4 (right leg control): p4=50ms

timeTask1

timeTask2

timeTask3

timeTask4

The Clock Driven Approach
• It is also known as cyclical executive or timer driven approach.
• Scheduling decisions are made at specific time instants. These

instants are chosen a priori before the system begins its
execution.

• The timer kicks off the execution of a segment of code from a
table

It is still in use and useful for
– small and simple embedded systems
– safety critical flight control systems
(slowly phased out by static priority scheduling)

T1,1

T1,2

T2

T3
T4

T5

T6

3

Weighted Round Robin (WRR) Approach

• It is the old time token passing approach with a twist. When
the token pass to you, you get a slice of CPU. If you have
nothing to do or you finish early, the token is given to the next
guy right away – scheduling message transmissions in
ultrahigh-speed networks

• A time slice is typically in the order of tens of milliseconds.
• WRR let some tasks to hold the token longer (larger slice) than

others
• Quiz: How does WRR or RR differ with Clock driven

approach? Ready queue (FIFO)

CPU

Weighted Round Robin (WRR) Approach

Ready queue (FIFO)

Link

J1, 6
J2
,2

J3
,4

2
1
1

J1
time

0 5 10 15 20

J2J3 J1 J2J3 J1 J3J3

round1 round2 round3 round4

CPU

211

4

Priority Driven Approach
• This approach assigns priority to tasks. The highest

priority task present in the ready queue gets the CPU and:
– runs to completion or
– is preempted by a higher priority job that has arrived.

• Quiz: Ok. Tasks have priorities, highest priority task gets
the CPU. FIFO seems the ultimate “anti-priority”
algorithm. Why is it classified as one of the priority
scheduling schemes in scheduling theory?

• Answer: FIFO “assigns” higher priorities to the tasks
arriving earlier. Theoretically, any algorithm that orders
tasks in someway and never let CPU idle whenever there is
a ready job is called a priority scheduling scheme (or work
conserving scheme).

Priority Management
• Per task: (static priority) every job in the same task has the same priority.

RM algorithm: the higher the rate, the higher is the priority of the task.
• Per Job: (dynamic priority) each job in a task can have different priority.

e.g.,: EDF.
• Per time-tick: jobs priority will be reassigned after each tick, e.g., LST

• Can you tell me in the following diagram which 2 algorithms are used? And
which is which.

0 10 20 30T1 = (10,2)

T1 = (14,9)
0 14 28

0 10 20 30T1 = (10,2)

T1 = (14,9)
0 14 28

5

Least Slack Time (LST)
• Per time-tick: (also called dynamic priority): jobs priority will be reassigned

after each tick, e.g., LST
– Slack is the distance between the deadline and the job completion time, assuming that

the job gets the processor
– When a job is executing, its slack ______________
– When a job is suspended, its slack _____________.

– At some time t, the slacks of two jobs become equal. We break the tie and let J1
execute first.

– After 1 clock tick, which task will execute next and why?
– …
– What is wrong with LST? _________________

0 10

0 11

5

5

J1

J2

Schedule?

Classification of Scheduling
Algorithm

offline schedule

online schedule

Clock-driven

WRR

Priority-driven
(Work conserving)

fixed-priority
(e.g., RM, DM)

dynamic-priority
(e.g., EDF, LST,

FIFO, LIFO)

clairvoyant schedule

6

Is any known algorithm good?
-“Scary” Results-

• When job arrivals are unpredictable, offline schedule does not have
much a chance. Online schedulers perform poorly. Research showed
that in worst case it can only schedule 0.25 of what could be scheduled
if we would know the future.

• Consider the case of a non-preemptable job J1 which becomes ready at
t=0.

J1

J2

Suppose that we run J1 right
away. J2 comes later and
misses its deadline

J1

J2

Suppose we run J1 as late as possible.
Guess what? J2 could have come late
being unschedulable.

Life Goes On
• Fortunately, in real-time systems, you do not need

to have a “crystal” ball to be clairvoyant most of
time.

• The predominate hard real-time tasks are periodic.
You are “clairvoyant” in this case.

• Randomly arrival jobs mostly are soft real-time, so
performance is statistically determined and there
cannot be a “clairvoyant” adversary to generate
jobs against you.

7

Optimality

• The art of “me too” : A scheduling algorithm
S is optimal under some giving condition, if any
algorithm can schedule a set of tasks, so can S.

• Other algorithms can tie, but cannot beat S.

• So the key of proving the optimality is to
demonstrate that you have a way to transform any
(successful) schedule into a schedule produced by
your algorithm.

The Swapping Trick - 1
• A key step (technique) in comparing schedules is the “swapping trick”.

• How can we prove that EDF is optimal? Giving a schedule (that
meets all the deadlines), we need to show that we can transform it into
an EDF schedule.

• At R2 both J1 and J2 are ready, we will let J2 go first since D2 < D1.
That is, we swap the execution of J12 with J2

J2

R1

R2

D1

D2

J1,1 J1,2

t

8

The Swapping Trick - 2

Swapping is legal if it observes given scheduling constraints. Swapping J1,2 with J2 is legal, because:

• Execute J2 earlier at R2 meets release time constraint and J2 still meets deadline D2.

• R2 + (J1,2 + J2) = R2 +(J2 + J1,2) = t < D2 < D1

J2R1

R2

D1

D2

J1,1 J1,2

t

J2R1

R2

D1

D2

J1,1 J1,2

t

Any pair, not a particular pair
• We have given an example of legally swapping two tasks.

But to claim EDF is optimal, we need to show that we can
swap any two jobs not in deadline order. The swapping
trick can apply to any two jobs not in deadline order.
– We can always execute job J2 earlier at its release time. This

cannot cause J2 missing its deadline
– After swapping, J1’s finishing time becomes J2’s finishing time t.

Since t < D2 < D1, swapping cannot cause J1 to miss its deadline D1
either.

J2

R1

R2

D1

D2

J1

t

9

Work Conserving/Nonconserving
Schedules

• Quiz: Is this schedule produced by EDF? Why and why
not?

J2

J1

R1

R2 D2

D1

• Quiz: Is this schedule produced by any priority scheduler at all?
Why and why not.

• Priority schedule is said to be work conserving, meaning that if
there is a job ready to execute, we can’t let the processor idle.

Non-preemptive EDF
(Can’t Preempt, Can’t Swap)

J2

J1

R1

R2 D2

D1

J2

J11 J12

R1

R2 D2

D1X

Answer: EDF, as with any priority scheduling algorithm, CANNOT let processor
idle. Hence J1 must execute first. Unfortunately, when J2 is ready, it cannot preempt
J1 since jobs are not preemptable

Quiz: Is non-preemptive EDF optimal? Why and why not?

10

EDF on more than one processor

CPU1

CPU2

Feasible schedule
on more than one processor

CPU1

CPU2

Is EDF optimal with multiprocessor systems?

11

Summary of EDF Optimality
• Optimality of EDF: EDF is optimal when preemption is

allowed, only a single processor is used, and jobs are
independent

• To prove the optimality of a scheduling algorithm S under
a giving set of constraints (rules), we must show that
under these rules any successful schedule can be
transformed into a S schedule.

• Trick of the trade is the swapping operation that
– Observes the constraints
– And tries to transform any successful schedule into a S schedule by

swapping.

