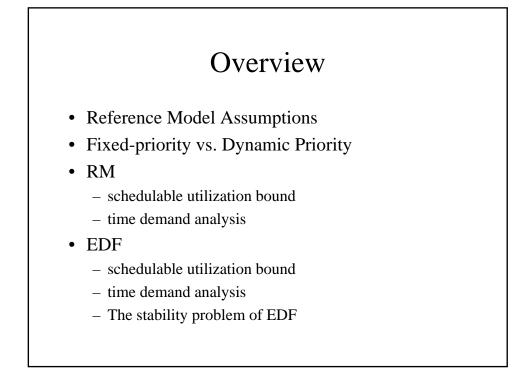
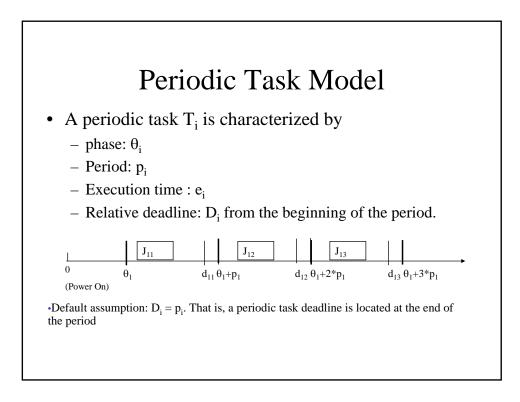
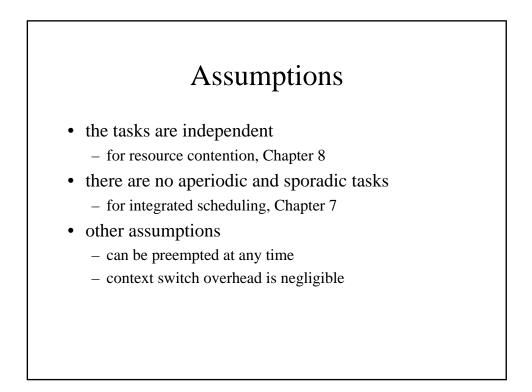
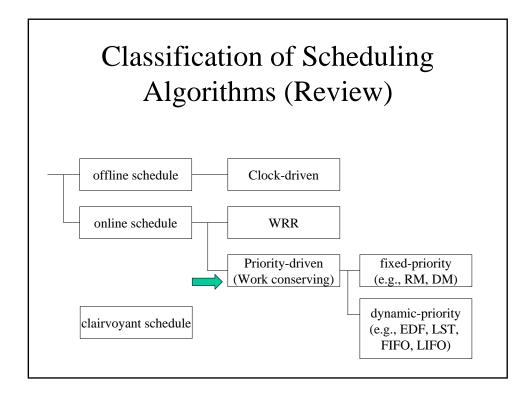
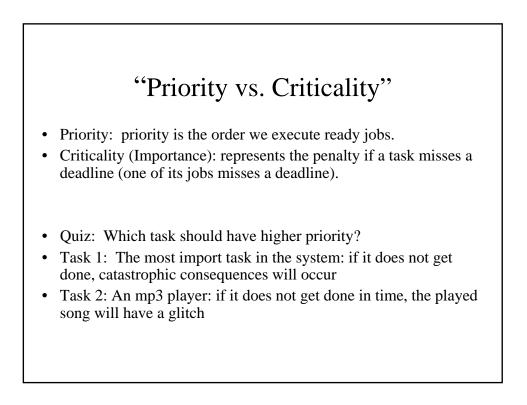
Priority-Driven Scheduling of Periodic Tasks (1) - Chapter 6 -

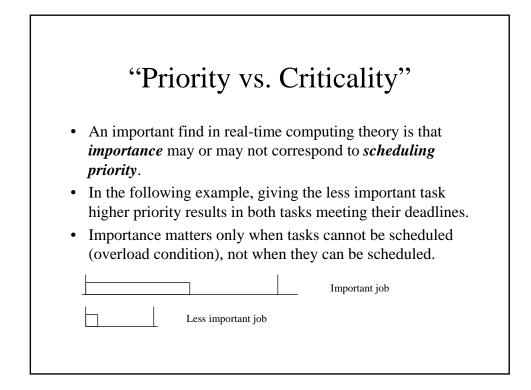


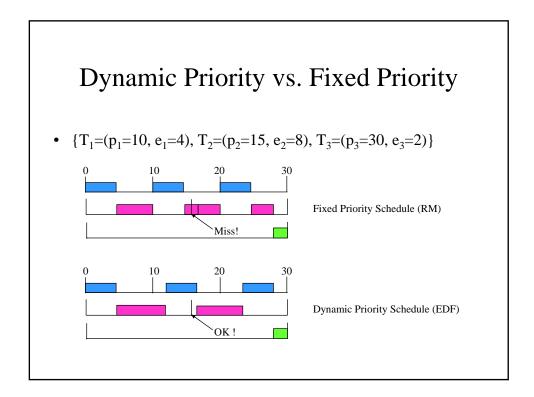












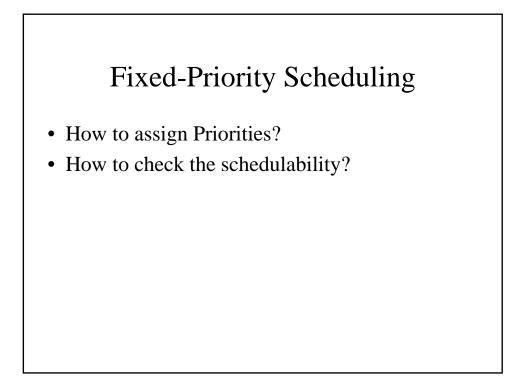
What are advantages of prioritydriven schedule over clock-driven?

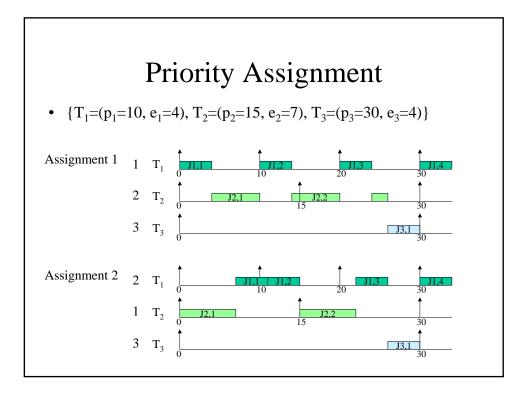
- Scheduling decision is made online, and hence *flexible*
 - Jobs of a task doesn't need to be released at the fixed time (exact periodic)
 - period = minimum inter-release time
 - Tasks can dynamically enter and leave the system
- Good! BTW, how can we validate the timing behavior?
 - Predictability: can we say the system is schedulable a priori?
 - Fortunately, we have sound theory on the schedulability of priority-driven schedule

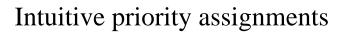
OK, Let's study such theory

- Is it enough to simply memorize important theorems? -

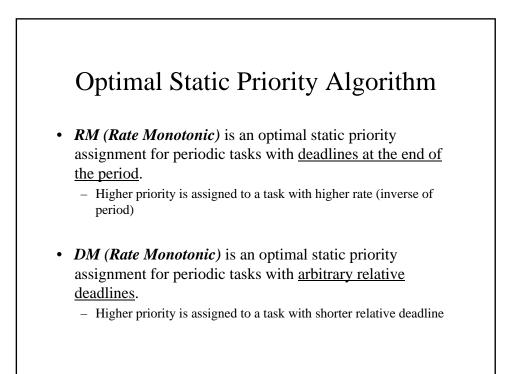
- Facts
 - "RM is optimal"
 - "DM is optimal"
 - "The system is schedulable if $U < n(2^{1/n}\text{-}1)$ according to RM schedule"
 - "EDF is optimal"
 - "The system is schedulable if U < 1 according to EDF schedule"
- Not that useful!
 - Most facts are true under some limited conditions
 - Our problem does not exactly meet those conditions
 - Most of time, we cannot directly apply the fact to our problem
- Deep understanding
 - how people developed the facts?
 - how to prove the facts?
 - how to change the facts for our problem?





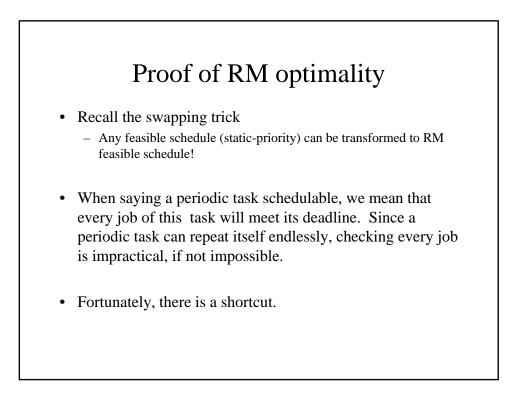


- Random mostly perform poorly
- Functional Criticality (Semantic importance)
 - T₁ is a video display task
 - T₂ is a task monitoring and controlling patient's blood pressure
- Urgency
 - If all tasks are feasibly schedulable, the critical task doesn't have to be the highest priority task
 - RM and DM are examples



What does optimality mean?

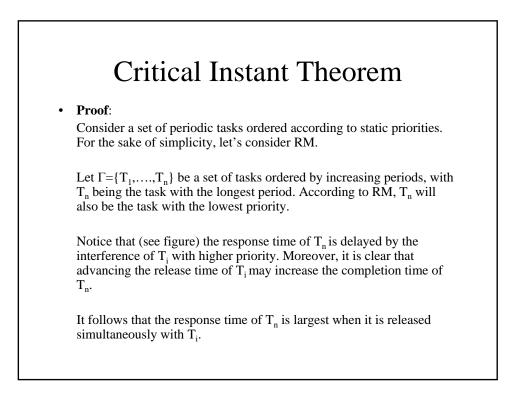
- Optimality: I am an optimal algorithm
 - If I cannot find a feasible schedule, nobody else can!
- Quiz: EDF is optimal, RM is optimal too...... Is RM as powerful as EDF (why or why not)?
- RM is optimal under limited conditions
 - fixed-priority domain
 - · deadlines are the end of periods

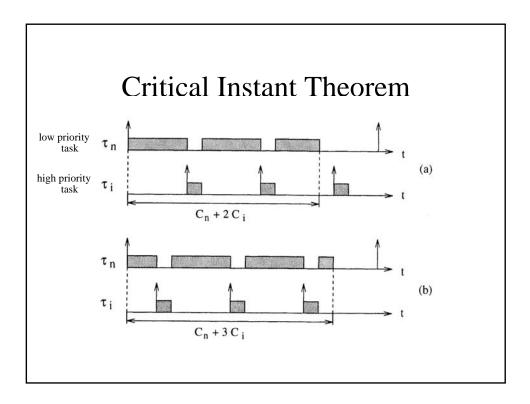


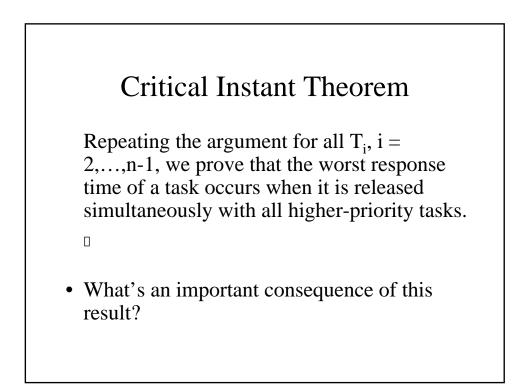
The Critical Instant Theorem

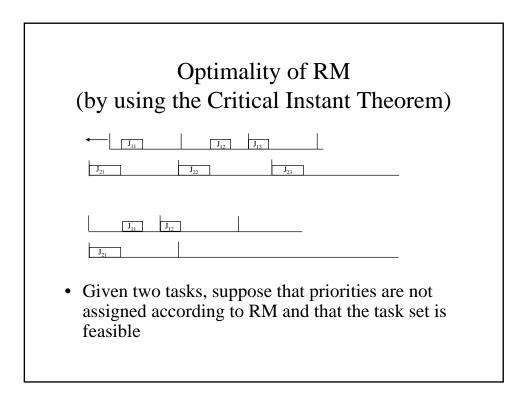
- In static priority scheduling, the completion time of a job is the sum of its own execution time plus the sum of preemptions from higher priority tasks.
- Critical instant theorem claims that maximum preemption occurs when all higher priority tasks line up at time 0. So if a job can make it under maximum preemption, it can certainly make it when preemption is lighter.

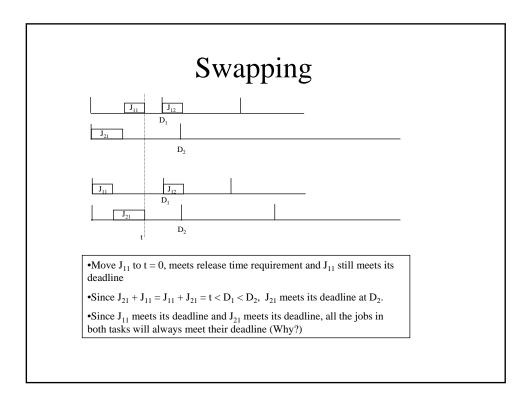
• **Critical instant theorem:** in static priority scheduling, a task is schedulable if its first job meets its deadline, under the condition that all the higher priority tasks and this task start at the same time, e.g., t = 0.

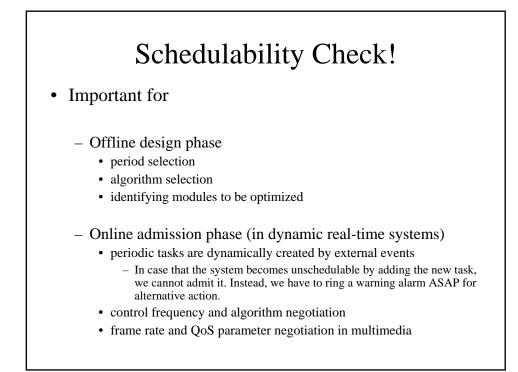


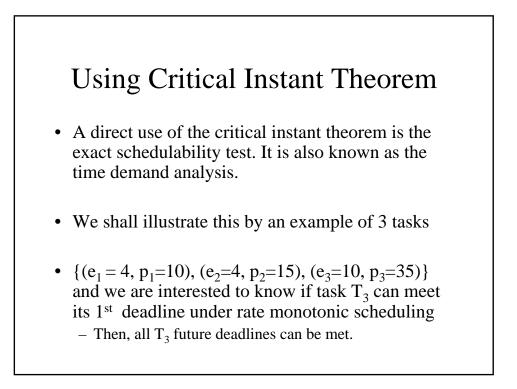










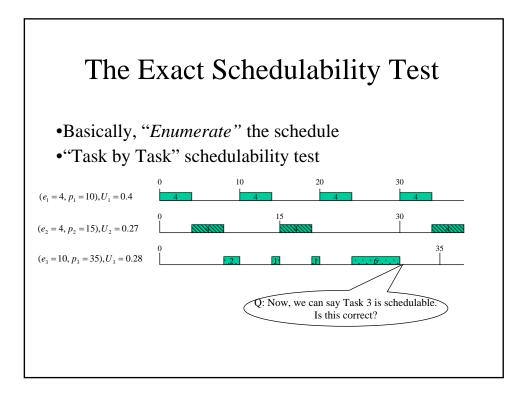


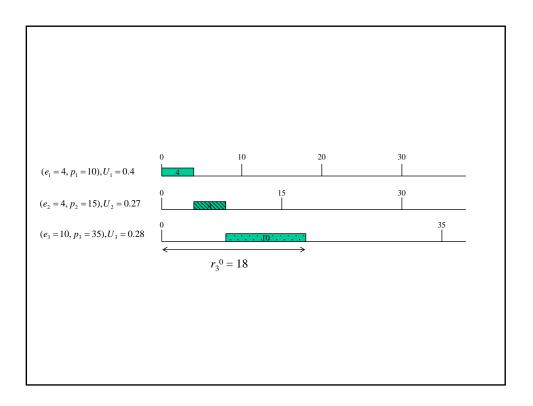
Formulation (Exact Analysis)

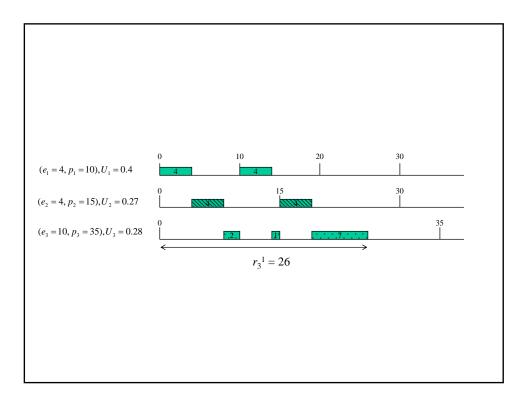
$$r_i^{k+1} = e_i + \sum_{j=1}^{i-1} \left[\frac{r_i^k}{p_j} \right] e_j, \text{ where } r_i^0 = \sum_{j=1}^i e_j$$

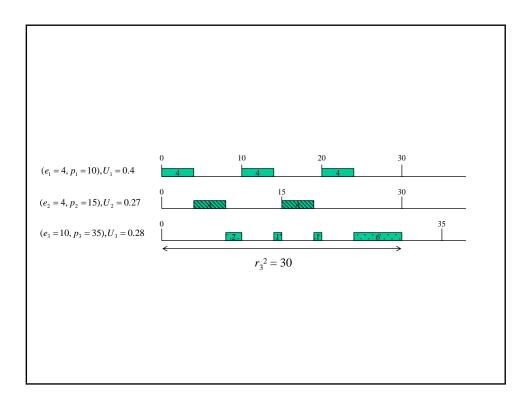
Test terminates when $r_i^{k+1} > p_i$ (not schedulable) or when $r_i^{k+1} = r_i^k \le p_i$ (schedulable).

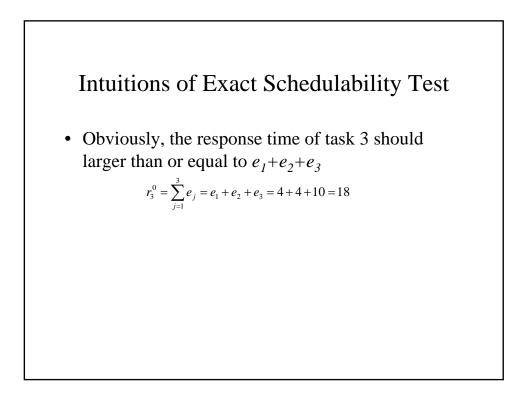
• Tasks are ordered according to their priority: T₁ is the highest priority task.











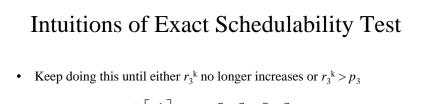
Intuitions of Exact Schedulability Test

• Obviously, the response time of task 3 should larger than or equal to $e_1 + e_2 + e_3$

$$r_3^0 = \sum_{j=1}^3 e_j = e_1 + e_2 + e_3 = 4 + 4 + 10 = 18$$

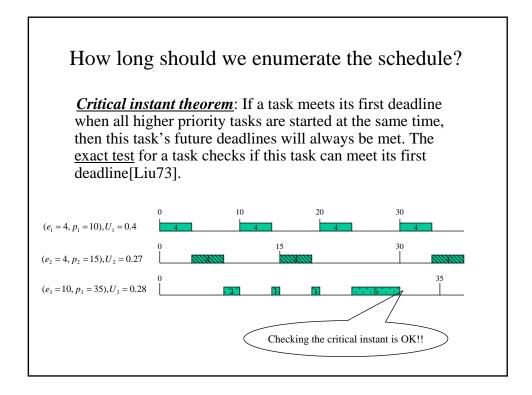
• The high priority jobs released in r_3^{0} , should lengthen the response time of task 3

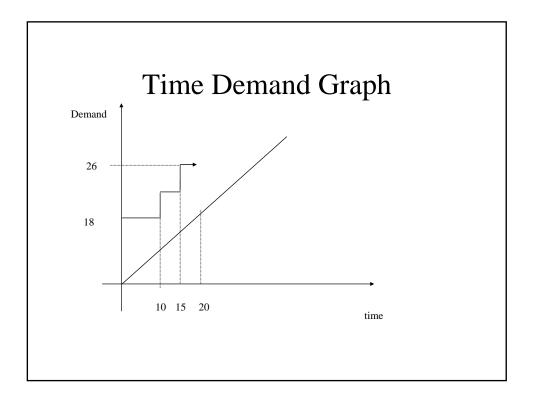
$$r_3^1 = e_3 + \sum_{j=1}^2 \left[\frac{r_3^0}{p_j} \right] e_j = 10 + \left[\frac{18}{10} \right] 4 + \left[\frac{18}{15} \right] 4 = 26$$

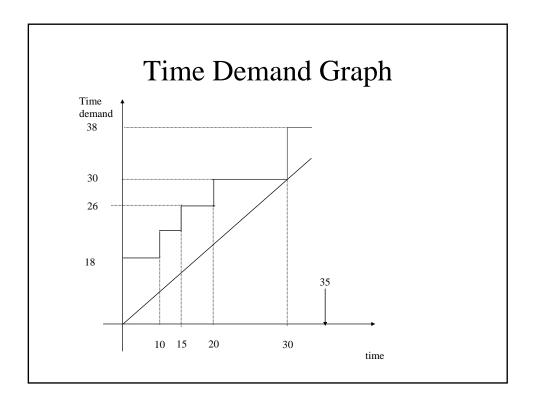


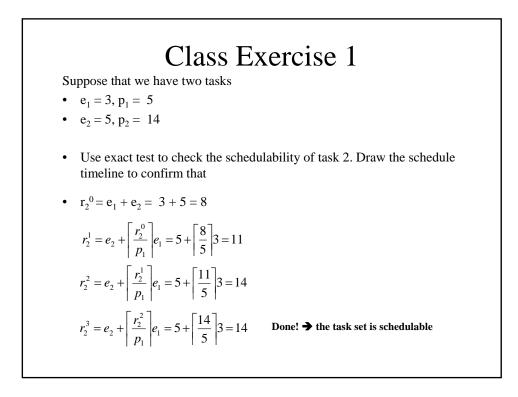
$$r_3^2 = e_3 + \sum_{j=1}^2 \left| \frac{r_3^1}{p_j} \right| e_j = 10 + \left\lceil \frac{26}{10} \right\rceil 4 + \left\lceil \frac{26}{15} \right\rceil 4 = 30$$

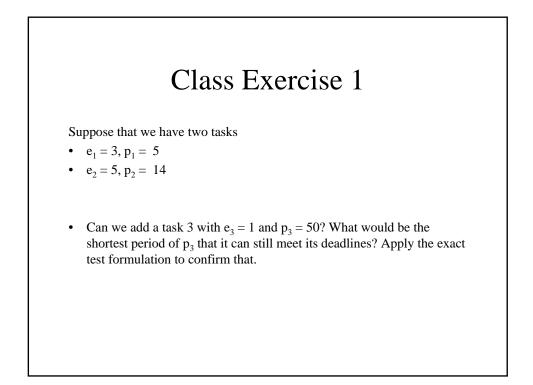
$$r_3^3 = e_3 + \sum_{j=1}^2 \left[\frac{r_3^2}{p_j} \right] e_j = 10 + \left[\frac{30}{10} \right] 4 + \left[\frac{30}{15} \right] 4 = 30$$
 Done!

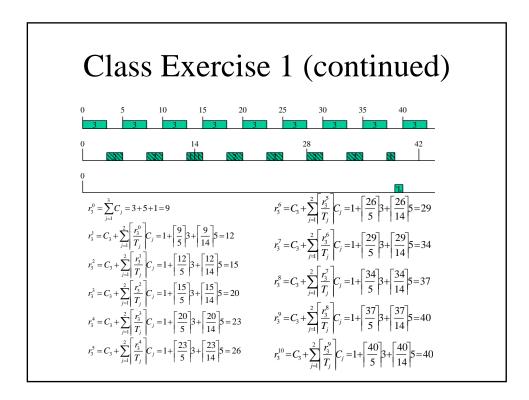












Formulation (Exact Analysis)

Quiz: Can we use the exact analysis formulation for non RM static priority scheduling?

Quiz: Can we extend the exact analysis to tasks with deadlines less than periods? How?

Quiz: Can we use the exact analysis for a task set where the critical instant never occurs?

Class Exercise 2

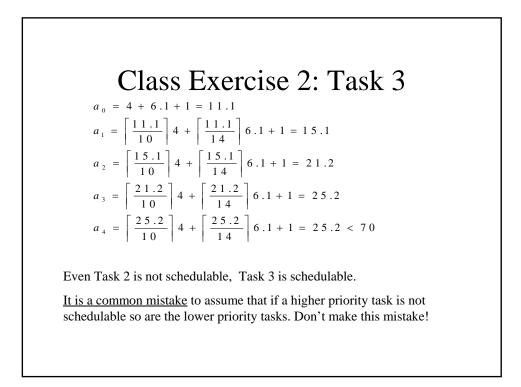
Suppose that three tasks are scheduled under RMS

- $e_1 = 4$, $p_1 = 10$
- $e_2 = 6.1, p_2 = 14$
- $e_3 = 1$, $p_3 = 70$
- Is task 2 schedulable?
- How about task 3?

Class Exercise 2: Task 2

•
$$e_1 = 4$$
, $p_1 = 10$
• $e_2 = 6.1$, $p_2 = 14$
• $e_3 = 1$, $p_3 = 70$
 $r_2^0 = 4 + 6.1 = 10.1$
 $r_2^1 = \left\lceil \frac{10.1}{10} \right\rceil \cdot 4 + 6.1 = 14.1 > 14$

Task 2 is not schedulable!



Summary of Exact Test

- Exact test is sufficient and necessary condition for the schedulability!
 - when the critical instant actually occurs
 - execution times and periods are constant as given
 - applicable to non-RM priority assignment
 - applicable even when the deadlines are shorter than the periods
- Still sufficient condition
 - even if task phase never make critical instant
 - execution times are smaller than the given values
 - inter-release time is longer than the given periods
- Problems
 - applicable only when execution times e and periods p are known
 - high complexity not practical for online admission control