Programming Methodology

Spring 2009 Types

Definition of a type
Kinds of types

Programming Methodology

Programming language constructs

........

— ¥
_____________ int foo(char* l&

;'ytypesé: int J 2 k;< variables

float x, v, z;/

0

expressions

statement
blocks

parameters

procedures/functions

Programming Methodology @

Types

0 Types correspond to naturally occurring categories, such as
those found in the real world.

Ex: student, university, car, integer, character, string, stack, heap, ...

0 Types enable us to represent/operate-on bundles of descriptive
data items/attributes for each category with a single name.
Student has name, GPA... University has departments... String has length...
GPA has a real value that is recalculated every semester.
Departments are newly added/removed, or have new names.

Stack length is increased or decreased at time goes by.

0 Once a new type is defined, you can construct any number of
class objects that belong to that class

student objects, university objects, integer objects, stack objects, ...

Programming Methodology
Oonn

Components of a data type
s p

REIN

Data type

/\

Data items/representation Routines/Operations

0 a set of data items/representation that model a collection of
abstract objects in the real world
ex: in C language
m INt < integers, student id, # of departments, stack length ...
m char[] < letters, names, ...

0 a set of operations/routines that can be applied to the objects
Int: + - * / € add, subtract, multiply, divide for integers
char|[]: append, copy, concatenate

Programming Methodology
©onn

Using types ...
o 2

o improves readability and writability. =~

Ex: char* student_name;
struct employee records {

char* name;

int salary;

ks
0 reduces programming errors.
Ex: student name / 5

0 makes memory allocation and data access efficient.
Ex: struct {
int i1;
char* c;
} // 8 bytes = Sizes are statically known.
—> Useful for the compiler to optimize memory
allocation (e.g., use stack in stead of heap)

Programming Methodology
Oonn

Hierarchies of types in most languages

£
data types
primitive/simple pointer composite
Chara{rbole an struct/record array string
integer enum floating-point fixed-point

C/C++ =2 char, int/long, float/double, struct/class, array, string(?]7

Java ... boolean no clear distinction between char and int, no special op for char/string

Programming Methodology
©onn

Selection of data types

o “What kinds of types should be included in a language” is
very important for programming language design.

o Primitive/simple types are supported in almost all existing
programming languages

0 Composite types being supported differ from language to
language based on what is the purpose of the language.

0 Several issues related to the selection of types
fixed-point vs. floating-point real numbers

array bounds
Cobol for string type ?

structure of composite types The class type for OO languages

pointer types
subtypes

Programming Methodology
©onn

RANHBAN

Fixed-point vs. Floating-point
E g

= leEd-pOlnt — decimal point for decimal numbers
Precision and scale are fixed.

—> a fixed radix point for all real numbers of the same type
ex: salary amount of graduate assistants
—> 6 digits for precision and 2 digits for scale
- 1234.56, 2000.00
o floating-point
radix points are floating
ex: 21.32,9213.1, 4.203e+9

o COBOL, PL/1 and Ada support the fixed-point real type, but
most of other languages (Fortran, C, ...) don't.
Ada: type salary is delta 0.01 range 0.0..3000.0

C++: float salary;

Programming Methodology
©onn

Fixed-point vs. Floating-point
g

REIN

o Problem with fixed-point

possible loss of information after some operations at run-time
m ex: double the salary of EE students!

0 Problem with floating-point
Large numbers may be machine-dependent.
m ex: port a C-program to 32-bit and 64-bit machines!
Less secure
m ex: double the salary illegally

Programming Methodology

Composite types
p

........

0 array/string types
a homogeneous aggregation of data elements
- student ids, exam scores, profit earned every day,
An individual element is identified by its relative position in the array.

301N 00 0 0 0 0 s T Y R

A[0] A[1] AL2]

o struct/record/union types
used to model collections of data that are of heterogeneous forms
—> personal record of each student (name,addr,sex,id,...}, table entries,...
Each data element is identified by its name. struct Sty {

Iint m;
m|H0E [EOWET] o [TORETH | dotpte x:
Y . [

String 1I;

long n;
S.m . S.x. S.n .. S.1. S.1[3] + S

Programming Methodology
©onn

Composite types
l

O union types
Similar to struct types in that both store heterogeneous data.
A union saves memory by sharing locations among its elements.
[t may store different type data elements in the shared locations at

different times during program execution.
Strlng

union Uty , x L us
int long/double e n
o Ex:agroup of members in a company
Everybody has a name and a SS#. struct Member {
A 1 has the d t t String name;
n employee has the departmen long SSN:
that he/she belongs to. union { String dept; .
An employer (stock holder?) has the 3. float share; } T

percentage of share in the company. yionper M[100] :
. M[1]-name .. M[1]-f.dept ..

Programming Methodology

Determination of array bounds
£

o static arrays (C/C++, Fortran, Pascal) =

array bounds determined at compile time and static storage allocation.
ex: int a[10], b[5]; -2 efficient

0 dynamic (C/C++, Fortran90):

array bounds determined at run time and dynamic storage allocation
int *a, *b; >

€X' a = b = new int[10]

expensive, but flexible (useful

for scientific/engineering apps)
delete [] a; // ais freed only when explicitly demanded

. b[3] .. // error: dangling pointer
b = new 1nt[20];

o stack-dynamic (C/C++, Ada)

array bounds determined at run time but static storage allocation

ex: void foo (int n) {
int* g = (int*) alloca(n); // stack dynamic
Int* p = new int[n]; // dynamic

¥ //qis freed when oo returns

Programming Methodology
Oonn

Array bounds as a data type
p

0 Many languages (e.g., C/C++ and Fortran) don’t include array -
bounds as a type.

needs complex memory managements and error-prone

ex: Ffloat *x = new Int[5]; //OK
x[i] = ..; // what ifi > 57?
X = new int [10]; // OK
but more flexible = consider the function foo in the Pascal code

0 Some languages (e.g., Java and Pascal) where security is of
high priority include array bounds as a data type.

=» What does this imply to programming?

Programming Methodology
©onn

Array bounds as a data type

0 Including array bounds as a data type implies ...

1. All arrays are static.

2. Illegal array assignments & parameter passing can be detected at
compile time, or critical faults will be prevented at run time via
exception control.

€X: int z [] = new int [5]; // OK: creation w/o initialization
inty [] ={3, 6, 9, 12, 15 }; // OK:creation w/ initialization
int x [];
X = new iInt [5]; // OK
X = new Iint [10]; // error: X's size must be static!
z[5] = ..; // error: out of bound < detectable at compile time
. =vy[r] + . //ifi>5 ori< 0, an exception will be raised at run time

Exception in thread “main” ava.lang.ArrayIndexOutOfBoundsException: line#

Programming Methodology
©onn

RANHBAN

Equivalence in struct types

: : ? struct man { char* name; iInt age; } o
0 Is this assignment legal' struct woman { char* name; int age; }

man Tom;
woman Jane;
Jane = Tom;
If yes = structure equivalence
If no = name equivalence/compatibility
For C++ :error! “man cannot be converted to woman”
=» To avoid this error, assignment operator ‘="for class woman/man
must be explicitly defined for type conversion from man to woman

o Pros and cons of name equivalence
easy type checking by string comparison - fast compilation
more secure and less error-prone compilation = Jane = Tom; (unsafe!)
But!... less flexible programming
= Cannot be compatible with anonymous type > Strgﬁ;ri ame-
m Type must be globally defined. > Why? int age;

Programming Methodology } Tom;
Oonn

The pointer type

0 In

some (old) languages, the pointer has no data type.

This is more flexible and may save memory, but is error-prone!

declare p pointer;
declare 1 iInteger;
declare c, d char; PL/l

b = address of(c);

p = address of(i); _ _
d = dereference(p); // Error won't be detected until run time

Memory cost becomes less critical, and S/W quality is more important!

o Thus, in most existing languages, the pointer type is a part of
data types. int* p;

Oonn

int 1;

char c, d; C/C++

p = &i;

d = *p; // Error can be detected by the compiler

Programming Methodology

RANHBAN

User defined types

o Ordinal types

The range of possible values can be easily associated with the set of
positive integers. =2 i.e., the values are countable.

primitive ordinal types in C/C++/Java: char, int, long, boolean(Java)
Language constructs for user defined ordinal types
m enum(C/C++/C#), subrange(Pascal,Ada)

m The user defined ordinary types are called subtypes, since they are
created by restricting existing primitive types.

o Abstract data types
More generalized forms of user defined types

Languages provides constructs for encapsulating the representation for
a certain data type and the subroutines for the operations for that type.

class (Smalltalk/C++/Java), package(Ada)

Programming Methodology
Oonn

Why do we need subtypes?
o Primitive types provided by languages are not enough. Why?

int day, month;
month = 9; //It's OK..but need more... _
day = -11; // Non-sense! Semantic error! may not be caught even at run time

=» How can we capture this semantic error with data types?

0 Users need to restrict the primitive types. = subtypes
enumerated types (C++, Pascal)

m(C++ enum day type {first = 1, second, .., thirty first};
enum month_ type {Jan, Feb, . . . , Dec}; // Jan =0
day_ type day;
month_type month = Sep;

// That'’s better. More readable.
day = O;

'/ Error detected at compile time!
m Pascal type month_type = (Jan, Feb, , Dec);

subrange type (Pascal) - in some case, more compact and flexible
subtype day type is integer range 1..31;
— 11 -

day 1= -11; // Error still can be detected. ™™ 97 e for 1.999997
day := day + 20; // Also it can be used in integer operation.

// This may be error. But error can be easily detected at run-time

Programming Methodology
onn

Subtype example with C++ enum

0 The enum type improves software quality in terms of
readability and maintainability. (Recall Note 1)

enum Month {Jan = 1, Feb,

Month m;
Iint n;

while (m >= Jun && m <= Aug)
for (n = Jan;
cout << “enter 1 for January, 2 for February, ..

cin >> n; // enum type variable cannot take integer directly
switch (n) { // for each different month

case Jan: ..

case Feb: . _

C bilitv b e d sub 4
0 Compatibility between primitive types and subtypes A

Month m = Mar; e
InNtn = m; '/ OK! Conversion from Month toint —.—.—-.--="~""" analogy\
n = Jun + 1; // n =17, indicating July !
m=n+ 1; // must be compiler : Conversion from int to its subtype--~
m=m+ 1; // .. why? These two errors are due to ensuring type safety
m = (Month) (n + 1); //OK! Ifusers insist type conversion, it must be done so.

Oonn

n <=

Dec;

// during summer
n += 2)

Programming Methodology

// for every odd month

, Dec}; //subtype ofint ,

RANHBAN

superset

Abstract data types

Type Example: Stack o
/\ interface
Representation Operations 4 _ *f_\top :
& representation:
&
L 4
,: operations: push() pop() top()
L 4
NS RSN AN
L4
P ”0, implementation

. . . 7€ ~
representation: linked list €m) s NN

head —Pp > > i B @ L

./
--¥ index=0 :

e . - - e / /

operations: insert(idx,elem)<-- R R
remove(Idx)<————" B
get(IdX)< ————————————— E(O)

Programming Methodologies

Implementing the ADT Stack w/ class
g

A class defines an ADT (blue-print?). template <class T> class Stack {

o (private?) data representation publ ici:<)
+ (public?) methods f t WLk :
(public?) methods for operations void push(T& elem);
An object is an instance of that ADT. T pop();
. . : T& top(Q);
* [tis created by declaring a variable int is_empty();
of the ADT or by dynamic allocation private: .
e All instances share all thel‘r\r_ngjch_c_)d_s,____}::__.l_-.'_r_‘_e_"’}[‘!‘~ 'ft<T> L;
but each one has its own set of data. ’

template <class T>
T* LinkedStack<T>::pop() {
it (is_empty())
exit(l); // error
return L->remove(0);

}

template <class T>
voild LinkedStack<T>::push(T& data) {
3 L->add(0,data);

Programming Methodology
©onn

Why do we need user-defined ADTs?

struct Element {
ElemType data;
Element* next;

};

struct Stack {
Element* top;
int num_of_elems;

};
main() {

Element* d, e;
Stack s;

:s_num_of _elems = 0;:

e = new Element
.e->data =
fe->next = 0;
.s.top = e

{am; 2 topgm"m"m"m""
:s.top = s.top- >next;;
:data = d->data;

...

»
0

4900000050 000)H00ES00 0000000 000000000000 00000 0

ordinary C code
Oonn

& check if it is emptj;

»initialize<¢

Class Stack {
public:
Stack(); { initialize %}

void push(ElemType* data);

ElemType* pop();

Boolean is_empty();
private:

Element* top;

int num_of_elems;

¥

main() {
.............. Stack s; //internally initialized

- // by the constructor
S. push(data)

‘‘‘‘‘‘
....

}

P Tt

The ADT Stack hides
low-level details of
its implementation.

Soin the code, it acts

like ordinary types
such as Int or char.

Thus the Stack object
can be treatedin the
same way as the
objects of other types.

Consequently, the
resulting code has
better readability
and maintainability.

C++ code with class Stack

Every implementation detail (i.e, linked list) is exposed w/o ADT Stack.

Programming Methodology

Type binding and checking
Type conversion
Polymorphism

Programming Methodology

Type checking

0 Recall > data type = set of data items + set of operators

o A data item is compatible with an operator if it can be passed
to the operator as the operands.

int 1, j;
1 * 3 // legal: integer value(= item of 1Nt type) is compatible with *
1 * “eesnu” // illegal: string (of char[] type) must not be compatible with *

(1.3, 3.01, 2.0) //legal
>(3-2, j, 1) // illegal in principle (but in reality it can be avoided = ex: coercion)

o Type error occurs if an operator is applied to incompatible
items.

0 A program is type safe if it results in no type error while being
executed.

o Type checking is the activity of ensuring that a program is

type sdfe.
Programming Methodology
Oonn

Static vs. dynamic type binding
g

o Instatic type binding, a variable...
is bound to a certain type by a declaration statement, and

should have only one type during its life time.
float Xx; // X is of a real type
char* x; // This is an error

=» most existing languages such as Fortran, PL/1, C/C++ and ML
0 In dynamic type binding, a variable ...

is bound to a type when it is assigned a value during program
execution, and

can be bound to as many types as possible.
> (define x 4.5) // X is of a real type
> (define x "(a b ©)) // how, X is of a list type

=» Scheme, LISP, APL, SNOBOL, virtual functions in C++

Programming Methodology
©onn

Static type checking

o0 Type checking performed during compile time

Pascal, Fortran, C/C++, Ada, ML, ...
The type of an expression is determined by static program analysis.

0 To support static type checking in a language, a variable (or
memory location) and a procedure must hold only one type

of values, and this type must be statically bound or inferred.

Pascal

C++

var X - real;
w - array of [1..10] of real;
function foo(n : iInteger): real

begin

w[9] := foo(b5) / w[l] // OK

w[10] := foo(x) + -4, // error
#include <stream.h>
main() {

int 1 = bar(); // error: undefined function bar

Programming Methodology

RANHBAN

Dynamic type checking

o type checking performed during program execution
0 required by languages that

Oonn

perform dynamic type binding, or
class Employee {

. virtual void print() = 0; // pure virtual
lass Researcher: public Employee {

_virtual void printQO) { . . .}
%Iass Secretary: public Employee {
virtual void print() { . . . }

e
Employee™* p;

IT (.) p = new Secretary else p = new Researcher;
p->print(); // which print() is called is determined at run time

check the value of a program variable at run time.
enum Month {Jan = 1, Feb, . . . , Dec};
Month m;
int n;
m = (Month)(n * 2); // no compiler error, butis 1 < n < 67
Programming Methodology

RANHBAN

Strongly vs. weakly typed languages

o strongly typed (Java, Ada, ML, Pascal) if (almost) all programs

are guaranteed to be type safe by static/dynamic type checking

enum Month = {Jan, Feb, .., Dec};
J2SE Ver.5 Month m = Feb;

int x;
boolean b;
X = m; // Java discourages this conversion, although C++ allows it
while (x < 100) .. // OK
it (x++) .. // error
it (b)) . // OK

o weakly typed or untyped (Fortran, C/C++, Scheme, LISP)

C++ float foo(char cc, float x) { cout << cc << X; }

main() {
float x = foo(100.7,"c"); //itruns!=» output: d 9
it (x++) .. // OK: boolean ‘true’ ify # O
char(100.7) =2 char(100) =2 ‘d’

Fortran real r

character c float(‘c’) = 99.0
equivalence (r,c)
print*, rj; // maybe wrong, but maybe still OK

Programming Methodology
Oonn

Overloading

o Often it is more convenient to use the same symbol/operator
to denote several values or operations of different types.
Pascal subtype day type = 1..31

= The numbers 1 ~ 31 are overloaded because the numeric symbols of type
day are also of type Integer in Pascal.

C++ int -:operator+(int, int) { . . . }
float ::operator+(float, float) { . . . }

= This built-in symbol + is overload because it is used for the addition for
integer and real types.

o In C++, users can overload operators with the class construct.

class complex {

complex operator+(complex, complex);

Programming Methodology
Oonn

RANHBAN

Overloading

0 Type checking tries to resolve ambiguities in an overloaded
symbol from the context of its appearance. [qoiifo(int)
7 ; :
float foo(int x } < // code for this foo
void foo(char* vy, HerType z) { ..} K B :
main //'l """""""""""""""""""""""""
enué)Mgnth - {Jan, Feb, ., Dec}: . | . void foo(char*y, HerType z) {
int a, b; eI - - . // code for this foo
Month m;)

.~ 4.3 +°1.3 .| //float addition oo S — .
a+.b . . // integer addition ifloat ::operator+(...) {
Foo(a)s<=2___//foolintx) . .~ // code for float add

. 3.46 + 2 . // float addition??? ~~--__ | 1 |
m+ 1 .. // integer addition??? Ny S

foo a,b,m int,int,Month)??? 1

() /7 Joo(int,int, Month) . int ::operator+(...){ |
o If the ambiguity cannot be resolved, // code for integer add

type error occurs.

Programming Methodology

RANHBAN

Type conversion

g
0 Inordertoallow3.46 + 2insteadof3.46 + 2_0, one

solution is to create extra two overloaded functions

float ::operator+(float, int) { . . . }
float ::operator+(int, float) { . . . }

—> But, this solution is tedious and may cause exponential explosion of
the overloaded functions for each possible combination of types such
as short, i1nt, long, float, double, unsigned, ..

o0 A better solution: type conversion
=> convert the types of operands.

o Two alternatives for type conversion
explicit: type cast
implicit: coercion

Programming Methodology
Oonn

Type cast

o Explicit type conversion

enum Degree = {LOW = O, MID = 10, HIGH = 100};
float x = 3.46 + (float) 2;

int *ptr = (int *) OxXFFffff;

Degree d = MID;

X = x + (float) *ptr;

*ptr = 5 * (int) d;

o Drawback of type cast
Heedless explicit conversion may invoke information loss. (e.g. truncation)
enum Degree = {LOW = O, MID = 10, HIGH = 100};
float x = 3.49;

int n = (float) Xx; // no error, but 0.49 is truncated
Degree d = (Degree) nj; //no error, but semantically incorrect (no valid Degree value)

A solution? = implicit type conversion (coercion)!
m Languages provide coercion to coerce the type of some of the
arguments in a direction that has preferably no information loss.

Programming Methodology
onn

Coercion
£

=EEIN

0 is the rule in most languages (PL/1, COBOL, Algol68, C, Java).

0 provides a predefined set of implicit coercion precedences.

Generally, a type is widened when it is coerced.
C/Java character — int
pointer —» iInt
int »> float
float —» double

=» Convertion table (D: double, F: float, I: integer, L: long)

Calculation[Types| Result type | Stored in variable of type divide operation
x=5.0/3 | D/I D D double ::opeator/
y=5/3.0F| I/F F ForD float ::opeator/

z=5/3 I/1 I ILForD integer ::opeator/
v=5/3.0 | I/D D D double ::opeator/

—> A constant like 3 is double by default.
Programming Methodology
Oonn

Coercion
£

o Coercion may still suffer informationloss.
Ex: 32 bit integer — 32 bit float with 23 bit mantissa
m Format for a 32-bit floating-point number (IEEE standard 754-1985)
m Value = +1.f x 2¢127 (exponent = a biased sign number)
m 32 bits =1 (sign) + 8 (exponent) + 23 (fraction)

= 11000001111100000000000000000000 > 1.875 x 2*
=» So this is safe to coerce an Int-constant to double. (ex: 5/3.0)

o The generous coercion rules make typing less strict, thereby

possibly causing run time overhead (e.g., COBOL),

making code generation more complicated, and

in particular, making security that typing provides lost by masking

serious programming errors.

- For the last reason, some strongly typed languages (Ada, Pascal) has
almost no coercion rules. (but, possibly due to compatibility with C++,
Java allows the same coercion rules as C++)

Programming Methodology
©onn

Monomorphic/polymorphic objects
’

o A monomorphic object (function, variable, constant, ..) hasa
single type.
constants of simple types (character/integer/real): ‘a) 1, 2.34, ...

variables of simple types: Int 1; (C), X :real; (Pascal)
various user-defined functions: int foo(char* c);

0 A polymorphic (generic) object has more than one types.
the constant ni 1 in Pascal and O(integer,virtual function, pointer) in C
basic operators for tnt and float: +, —, =, ==, <, >, /,
*(multiply, dereference), ...

functions with the same name but with different argument lists:
foo(int 1), foo(char c, Int x)

subtype objects

m subrange types

m a base class pointer referencing its derived class objects in OOP
m virtual functions in OOP

Programming Methodology
©onn

Polymorphic functions

1. Ad-hoc polymorphic

functions that work on a

finite number of types .

float ¥ (char) {

overloaded functions
m built-in> +, *,
m user-defined
int foo(int 1);
float foo(char c);
functions with parameter coercion

Ex: convert to

int i, j;
float x, y;

oo(“t?);
y = 3.2 + X .
J = foo(n + 3);

After the ambiguity is resolved,
a different piece of code is used.

int £ (int) {

}

Programming Methodology

RANHBAN

code for

float

addition
*

code for
integer
addition

_ type,
L S T o

Polymorphic functions e e
v object + param;
g

RANHBAN

2. Universal polymorphic functions that work on an unlimited

numbers of types
inclusion polymorphism: an object can be viewed as belonging to many
different classes that need not be disjoint; that is, there may be inclusion
of classes. = subtypes, derived classes in C++/Java
parametric polymorphism: a polymorphic function has an implicit or
explicit type parameter which determines the type of the argument for

each application of that function. > * (dereference), template in C++.
Cf: Java does not support parametric polymorphism

Typically, the same code is used regardless of the types of the parameters,

and the functions exploit a common structure among different types.
m The template function foo<>() defines the common code to be

used with the template parameter T. template <class T>
m The dereference operator * returns the foo(T& x) {

value stored at the address where its input ~ 3:

argument points.

Programming Methodology
Oonn

Parametric polymorphism in C++
£

RANHBAN

class SNU {
}_public: void TO { .. } Origina] Code
ciass EE {

public: void fO { .. }
¥

template <class T>
void foo(T& x) {

x.TQ;
3 - main() {
SNU s;
EE e;
The template function foo takes as its parameters foo(s);
not only variable x but also type T. foo(e);
=>» Here, T is called a type variable. }

@ DHH Programming Methodology 1999, U. Eisenecker

Inclusion polymorphism in C++

Programming Methodology 1999 U. Eisenecker

Overloading in C++

Programming Methodology 1999 U. Eisenecker 6

Coercion in C++

class SNU {

public: void fO { .. }
};
class EE {

public: void fQO { .. }
operator SNUO { } // type conversion operator

}; (
i . . .)
void foo(const SNU& X) { Without this, we will have an error!

x.TQ;
1: main() {
SNU s;
EE e;
foo(s);
e changesto S, so this code is not equivalent to the original code & foo(e);
ke

Programming Methodology _
@DHH 1999, U. Eisenecker

Coercion in C++

p
class EE {
public: void fO { .. }
};
class SNU {
public: SNU(EE&) { } // type conversion constructor
SNUO { } // ordinary constructor
void FO { .. }
operator SNUO { }
}:
voild foo(const SNU& x) {
x.FO; mainQ) {
" SNU s;
}3 EE e;
foo(s);
e changesto S, so this code is not equivalent to the original code & foo(e);
+

Programming Methodology _
@Oﬂﬁ 1999, U. Eisenecker

