Programming Methodology

Spring 2009 Variables



Components of a variable

Name

Assignment
I-value and r-value
Scope & Life time

Programming Methodology



Programming language constructs

3
En -
/ Int fOO(Char* l& “‘.---“"""'u.'
int j, k;- “variables
types float x, v, z/
0
expressions
statement
blocks
parameters
procedures/functions

Programming Methodology

......



Variables and assignments

0 Components of a variable

1.

2.

3.

4,

5.

6.

name : identifier composed of letters
memory location : bound to the variable
current value : stored in the location
data type : static/dynamic binding
scope : static/dynamic

life time : interval during which a location is bound to the variable

0 Anassignment changes the contents of some components

of a variable.
float Xx;
X = 1.5; //the type is a real number of value 1.5
X = 10; //now, the type is a real number of value 10.0

Programming Methodology

RANHBAN




location (l-value) and value (r-value)
En 8

o The location of a variable is regarded as a kind of value owned
by the variable. > We call the location the I-value of the variable.
0 To make a distinction, the real value of the variable is called the
r-value. = Ex: char z
o A rule of assignments:

“The left-hand side of an assignment should have the [-value,
and its right-hand side should have the r-value.”

’0”; //Il-value of z is the address of z, and r-value is ‘0’

float x; // create real variable x with the l-value in which the r-value is undefined
float y = 4.1; //create real variable y with the r-value defined by storing 4.1 to I-value of y
X =VY; // store the r-value of y into the I-value of x

y =y * 3.0; // store the r-value of y times 3.0 into the I-value of y

o If different variables have the same I-value, it is called aliasing.

=» Ex: char d;
char & ¢ = d; //candd share the same location

Programming Methodology
©onn




Properties of |-values and r-values
e g

REIN

0 referencing: the operation of getting the 1-value of a variable
EX: char* p = &cC;
0 dereferencing: the operation of going from a reference to the
r-value it refers
- In C++, the right-hand side is always dereferenced once.
char c, d;
char *p, **q, **r;
; // OK! dereferenced once
// OK! dereferenced once

// error! dereferenced twice

// error! no dereferencing necessary

= T QO QO
I
O O T =8 Q

// error! no dereferencing sufficient

Programming Methodology




Properties of |-values and r-values
£

REIN

0 Some expressions, such as id, array reference and dereference,
have both l-values and r-values.

o All other expressions have r-values only.
=>» So they can NOT appear on the left-hand side of assignments.

4.5 = 10.1; // illegal - integers have no l-values
“Jane” = vy; // illegal - strings have no I-values
y + 1 = a[i]; // illegal - arithmetic expressions have no I-values
X = 10.1; // legal - id expressions have l-values

afi] =y + 1 // legal - array references have I-values

employee.name = “jane” //legal

*p = foo(X, y) // legal - dereference expressions have l-values

foo(x,y) = 1.1; // maybe legal, maybe illegal

gnu c++ says error: ‘non-lvalue in assignment’

Programming Methodology




Graphical notation for variables
o g

RANHBAN

name

[:] Location that can contain an ordinary data value

O Location that can contain a reference (address) value

P S

, N

\
«.___-" Location that can contain a reference-reference value

(

Programming Methodology




Graphical notation for variables

char c

char d = c
char& e =

char* p =

char** g

char** r

const char

/

r

» CC

Programming Methodology

.
»
-----
..........

RANHBAN




Name conflicts
£

o Inlanguages, a name can be used to mean several different
ObjectS. =» Ex) Ford: : a name of a man, a car, or a company ...

0 Using the same name to represent different objects in different
places causes a name conflict and potentially ambiguity of the
language.

o But, name conflicts are often necessary to improve naturalness
of a language and readability /writability.

Ford drives a car.
They work for the Ford. = How do we know which Ford means which in each sentence?

She drives a Ford.
Fordl drives a car.

They work for the Ford2. - OK. no more naming conflict! So, the meaning is clearer.
She drives a Ford3. But do you like it?

Programming Methodology
Oonn




Scope

i

O

Programming Methodology
Oonn

Ambiguity due to naming conflicts can be resolved by
associating names with the environments where each name
is defined.

—~> Jane in Ohio, Jane in Maine, Jane in Virginia

In a programming language, a scope is a program
environment in which names are defined or declared.

—> procedures and blocks (Pascal, C/C++), lambda expressions (Scheme)
Through a declaration within some scope, a name is bound to

a variable with certain attributes, and the variable is called a
bound variable.

A variable which is not bound in the scope is called a free
variable.

RANHBAN




Scope

{ // Beginning of a new environment/scope

int afl10]; int 1; char c; // declarations of three names

. C . // a reference to ‘c’: bound to a character variable

. afn] .. // references to ‘a’ and i’ bound to integer variables

v X // a reference to the free variable x’ within this scope
} // End of a scope
. C .. // The name no longer represents a character variable.

// Then, what is it now?

—> A binding of a name is visible and effective inside the scope where the
name is declared.

0 The idea of a scope is to limit the boundary of a declaration of
a name.

o0 Outside the boundary of a declaration, that declaration and
binding should not be visible.

Programming Methodology
onn




Example: scopes in mathematics

scope 1 gt
0 The notion of a scope also appears i@tics.

Let x be the amount of salary that Susan receives every monthN_ [
and y be the price of the new car she wants to have. > '
Then, the time that it takes for her to buy the car is y/x months. ..

Now, let x be the amount of money that John wastes every day,y
and y be the total amount of money he currently has.
Then, the time that it takes before he goes bankrupt is y/x days.

-
.
........
.
'.

- > scope 2
o Existential, 4, and universal, V, quantlflers provide a formal notion
of scope ______________________________________ »declarations

scope of x 'Scopeofy

—> A declaration of X makes X a bound variable.
Programming Methodology
Oonr




Principle in binding of variables
-

“A bound variable in an expression can be renamed uniformly to
another variable that does not appear in the expression
without changing the meaning of the expression.”

o Example:
vx (3y f(x,y)) = Vx (3v f(x,v))
= Vy (3vi(y,v))
= Vy (3x 1(y,x))
= Vy (3y 1(y,y))

The declaration Yy in Yy (3y f(y,y)) is vacuous and invisible to
f(y,y) in (3y f(y,y)) because 3y supercedes VY.

Programming Methodology



Using the principle

REIN

0 What does this mean to a programming language?

codel 2 int x; { Iint * y; X + *y; ..}
code 2 2 int x; { Int * v; X + *v; ..}
code 32 int y; { Iint * v; y + *v; .. }
code4 2 int y; { Iint * Xx; y + *x; .. }
code5 2 int y; { Iint * y; y + *y; ..}

=» code 1 = :

useful for detecting programming assignment copies?

Programming Methodology
Oonn




Static vs. dynamic scopes
£

o Each language has its own rules that tell us where to find the
declaration for a name in a program. The rules are called the

scope rules (or scope regime).
0 Scope rules can be categorized largely into two kinds:

static scope (Fortran, Pascal, C/C++, Scheme, Common Lisp)
dynamic scope (pure Lisp, APL, SmallTalk)

0 static scope

A scope of a variable is the region of text for which a specific binding
of the variable is visible.

Therefore, the connection between references and declarations can be
made lexically, based on the text of the program.

At compile time, a free variable is bound by a declaration in textually

enclosing Scopes/environments.
Programming Methodology




Static vs. dynamic scopes
p

0 dynamic scope
The connection between references and declarations cannot be
determined lexically since, in general, a variable is not declared until
run-time, and may even be redeclared as the program executes.
At run-time, a free variable in a procedure is bound by a declaration in
the environment from which the procedure is called.
rarely adopted by most existing languages since it generally has more
disadvantages (difficult to read, more expensive ...) than static scoping

0 Ex: Output of foo(10)?  mirnemEiz:

. static PN dynamic | foo(int m

int n = 2; scoping bar(;?ﬁtk { S)cl‘oping Snt n*) é;

bar(int k) { e bar (m) 3,
print k+n; H ¥ | |

} 1?2 fOOSrﬂ'rt]tnmz ‘é callchainl

foog;gtnmz é_ bar(m); bar(int k): {
bar(m); ¥ 154-""}“‘|C""”t k+n;

Programming Methodology
Oonn




Life time

REIN

0 Life time of a variable is the interval of time for which a
specific binding of the variable is active. = cf: scope

o During the life time of a variable, a variable is bound to
memory storage.

0 Let X be a simple/automatic variable declared inside a
scope S.

The life time of X begins when program execution enters the scope S,
and ends when execution leaves the scope.

Only when the binding of X is visible, X is a live variable.

o A global variable is kind of a simple variable whose scope is
global.

Programming Methodology
Oonn




Life time

0 Let X be a static variable declared inside a scope S.

The life time of x begins when program execution starts, and ends when
program execution terminates.

Even when the binding of X is not visible, X remains a live variable.

C++ extern i1nt omnipresent; // Global nonstatic variable
int QO {
static int die_hard; //Static variable, as it says
int short lived; // Automatic variable
. FO ..
}
main() {
. TO ..
}

What are the life time and scope of die_hard?
What are the life times and scopes of short_livedand omnipresent?
What happens to them when f is recursively called?

Programming Methodology
onn

RANHBAN




Arrays
Constant variables

Programming Methodology



Array variables

£
o0 In some languages like Pascal, when you declare
X, y - array [1..5] of iInteger;
the compiler creates not only the storage for 5 integers, but also
a pointer to its beginning address.

x =
O— s [ e ) e
When we have an array a551gnrnent f B
| . . . copy
Yy = X, : . :
the whole contents of the array X are copled to the location of
the array . | | , _ _ write (x[11,y[11);

y[1] = 10;

y —O { 3 I : I . I : I4 ] write (x[11,y[11);

x[1] = O;
Programming Methodology
Oonn

write (X[1]1.vy[1D);




Array variables
£

o ButinJava/C++, an array is really a pointer. =~

Java arrays int[] a = { 10, 20, 30, 40 };
int[] b = { 50, 60, 70, 80 }:
int[] c = new Int[4];

o So, arrays and pointers can be mixed.
Thus, after b = a, we should have ...

3 =C—>——{10] 20 [30 J40 ] \
b = =3_ 50 I 60 I70 180 ] - What happens to

this array?

b = a; // legal - Java arrays

cC = a; // legal
System.out.printin(a[1] + b[1] + c[1]);

b[1] = 1:
System.out.printin(a[1] + b[1] + c[1]); ”
a[1] = 99;
System.out.printin(a[l] + b[1] + c[1]);

Programming Methodology




Array variables

£
0 In C++, the result is slightly different since C++ has explicit
pointer types while Java does not.

C++ arrays int a[] = { 10, 20, 30, 40 }; //static array
int b[] = { 50, 60, 70, 80 }; //static array
INnt *c = new int[4]; //array pointer (dynamic array)

o In C++, array assignment is illegal. (element-wise copies needed)
b = a.; //lllega14>{9++ ”ISO C++f0rbids ClSSignmentS Ofarr'ayS”

Visual C++: “left-hand side must have I-value”
C = a; // legal
cout << a[l] << c[1];
c[1] = 99; -»
cout << a[l1l] << c[1];
Static arrays use stack memory; their pointers cannot change dynamically.

C = a:r-value of a (address of the agra\v)}is store to I-value of pointer C.
So in this respect, Java arrays act more likely as C++ array pointers.

Programming Methodology
Oonn




Multidimensional arrays

0 Declaration of 2-dimensional and 3-dimensional arrays

float a[3][4];
int b[4][5]112]:;

0 The elements of a are shown as a table.

a[0][0] alOol[1] a[ol[2] a[01[3]
a[1][O] a[1]1[1] a[11[2] a[1]1[3]
a[2][0] a[2]1[1] a[2]1[2] a[2]1[3]

0 Two schemes to represent a or b in programming languages

Mapping onto an 1-dimensional array

—> adopted by many languages like Fortran (up to 7-dimensions
possible)

Using the array-of-arrays
—> adopted by Java/C/C++

Programming Methodology
Oonn

RANHBAN




Mapping onto an 1-D array

£
0 The elements in a matrix/cube are mapped sequentially to
an 1-dimensional contiguous space in the memory.

0 Row/Column-major mapping
—> converting an mxn 2-D array into an 1-D array with

length m-n by collecting elements by rows/columns aoo i .
= » = |8g0|Q01|Q02|Q10|Q11|@12|800|@p1|80p| *** rowmajor alOall 'a12
r =+ 800 @10/820/@01/811/821[B07@12/8pp| ***  columnmajor :'-._.azl';o:: dq| App
Qa[] a;; 2 Mem[a+i-w-n+j-w] |
o Example: Fortran90 %ij > Memlotj-wn+i-w]
=>» column major X11 [X21|X31 | X12|X22| X32|X13[X23[X33

N\,

integer x(3,3) = (/ 4,5,9,0,9,6,2,8{//;)
. xX(2,3) . —> offset from the beginning = 7
—> byte address = X+28

Programming Methodology
©onn




Using array-of-arrays

o Java and C++ basically have only 1-D arrays.
o Conceptually, their multidimensional arrays are simulated with
arrays of arrays. (Maybe this is why we write a[ 1] [j] instead of a[i,j])

Ex: a 2-D array is viewed as an 1-D array of rows each of which is also

represented as an 1-D array.

x.length = 3

stored as
four 1-D
arrays

x|0].length = x|1].length = x|2].length = 4
o Physically, their static arrays are stored to 1-D memory in row-

major order.

X

nnnnnnnn

-—§£9; alblcl|d

x[1]

——— e |f|g|h

2T TR

X

int x[3][41; // static 2-D array

E RESEARCH GROUP

alblc|d|e|Flglh|i|j|k]|] x[271[1]
(1] t/*(x[Z]ﬂ)
x[0] x[2]+1
xX[1]+5

Programming Methodology

@



Mixing arrays and pointers in C++

0 Code int v[3][2]:
int *t = (int *)(v + 1); //Vv[1]
int *s = (int *) v + 1; //v[0]+1, *v+1 or &v[O][1]
iInt *u = v + 1; //error: cannot convert int(*)[2] into Int*
Int **p = &t;
int **w = v; // error: cannot convert InNt(*)[2] into Int**
int **qg = p + 1;
int *r = ++*p;
-~ PLOII1] . /7 *(t+1)
. p[1]1[0] .. // runtime error: segment fault *-~_
*q .. // runtime error: segment fault 4~

o Graphical notations

50

V —

]
I , et
.
.
f—— hLY

o e
~~~~~
..............
e
en
ey,




Dynamic multidimensional arrays

2 g
0 Create a dynamic 2 = new int**[4]:
array of dimension Fif (z 1= NULL) _
. for (int 1 = 0; 1 < 4; i++) {
4x5x9 for a pointer z. z[i] = new int*[5]:
Int ***z; if (z[i] '= NULL)
_ create< for (int j = 0; j < 5; j++)
0 How about this? z[i1[i1 = new int[9];
z = new int[41[51[91; ~ ?
z[i]l31IKk]l = .. //access itlike ordinary 3-D array

- error: cannot convert

F for (int jJ = 0; J < 5; j++) {
o Explicit arrays of delete [1 zLilG1: 2[i1Li] = o:
arrays to simulate a }
3-D array. delete [] z[i1]; z[1] = O;

clean-up < ¥
delete [] z; z = 0;

Programming Methodology
onn




Constant variables p
~_ —
ER p

o Typical way to specify a name for a constant
#define Ten 10

; = Ten * y; /J/ X =10 * vy
o C/C++ provides a special construct ‘const’ to declare a

variable whose value is constant during program execution.
const Int ten = 10;

; = ten * y; /J/ X =10 * vy
0 A constant variable must be invariable.

ten = x + 1; // error: const var ten cannot be assigned a value
ci: Ten = x + 1; // error: left hand side of =" must have l-value

0 It may be viewed as a static variable with a constant value.
- No dynamic memory alloc/dealloc is needed whether it is visible or not.

Programming Methodology
Oonn




Constant variables

RANHBAN

0 Comparison with ‘#define’d names
Const vars have scopes, so their visibility can be controlled.
They can be bound to specific types: const float, const char?, ...

They can be applied to diverse constructs.
const struct { .. }, const int foo() { .. }

o const for pointer types

int x, y; // ordinary variables
const iInt ten = 10; //a constant variable

const Int * tp = &ten; //a pointer to a constant variable
= Ctp = &X; // error! How about tp = &ten again here?
Int const * tq = &ten; //a pointer to a constant variable
*tq = VY; // error! How about *tq = 207?
Int * const tr = &x; // a constant pointer to a variable
tr = &ten; // error! How about tr = &y?
*tr = 20; // Is this OK? How about *tr = y?

const int * const ts = &ten; //a constant pointer to a constant variable

const iInt * const tt = &x; //error!
ts = &X; // error! How about ts = &ten again or*ts = y?

Programming Methodology
onn




Advantages over ordinary variables

o safer code void foo(.. &) { .. X = .. }
int main() { \\‘\\-
(safeguard enforced const int ten = 10: S0 this is orror
by the compiler) int tin = 10; )
.. Foo(ten) .. // foo should not change ten
ten = .. //Compile error! Did you mean tin?

0 better quality code
Option 1: use static memory for ten instead of runtime stack

=» efficient memory utilization especially for recursion
Option 2: use immediate addressing for ten

Assembly code
C code load ri1,<m>
const int ten = The compiler may load r2.<tin>

\/—’ propagate ten=10.

add rl1,rl1,r2
1oad r3 <n>.
add r3, r3 10

m
n

m + tin;
n + ten;

Programming Methodology
©onn




