Programming Methodology

Spring 2009 Blocks

Definition of a block
Block structures
Implementation of block structures

Activation Records
Runtime stacks
Heaps

Parameter passinng

Programming Methodology

Programming language constructs
I

int foo(char* 1) {
int j, k;
float X, vy, Z;
J = 0;
while

) (j < .

FeesssnevsNams smessanlPanannnnsnnnnnn
O

hil

m = Ffoo(list);

Programming Methodology

Blocks

o A block
is a section of code that consists of a set of declarations and a sequence of
statements.

provides its own environment or scope for variables.

allocates storage to variables local to a block when execution enters the
block; the storage is deallocated when the block is exited.

is delimited by keywords or special characters

m procedure bodies ex: Fortran — function . . . end
m begin/end ex: Algol > begin . . end
m special characters ex:C—>{ . . .}

o The programming languages that allow programs to define blocks
are called block-structured languages.

block-structured: Pascal, PL/I, Algol, C/C++, Scheme
non-block-structured: Cobol, Basic, Assembly

Programming Methodology
Oonn

Terminology for blocks

A block enclosed by other blocks is called a nested block.
A block enclosing other blocks is called a nesting block.

O O 0O

Local varial
=» Bindings o
0o The declara

bles are the variables declared /bound in a block.
f local variables of a block are visible only inside the block.

tions of local variables in a block are implicitly

inherited by nested blocks.

=» [tis not all

owed to export a declaration to nesting blocks.

0 Non-local variables of a block are those whose declarations
are implicitly inherited from nesting blocks.

=>» They aren

ot bound in the block, but bound in one of the nesting blocks.

o Global variables are bound in the outermost nesting block.

=» Their bind
anywhere i

ings are visible in entire program, and they are accessible

na program.
Programming Methodology

RANHBAN

Types of blocks

&]
o Disjoint block structure 0 Nested block structure
The body of a procedure is A block contains other blocks
a block. nested inside it.
There is no nesting of ex: Pascal, Algol, C, Scheme
blocks. main main
main proc 1 {
ex: Fortran { }
proc 1 oroc 2 3
proc 2 proc 3
proc 1
proc 3 proc 2
{ }

Programming Methodology

Disjoint block structure (Fortran)

program main

integer 1, jJ(30), k
real x, y(50)
character c(10)
common /soar/ X, C <
common /soap/ J<.._

call procl(i)
y(2) = proc2() + X

~.
~.
~

block1

subroutine procl(m)
integer m, n

real Xx, .
character c(10) ¥~

common /soar/ y, C

| block2 .~

real function proc2
real p

integer m(15),J(1Ol
common /soap/ m,

,.

block3

Globals(=common blocks)

X |C

AY | €

soar

e j
; soap

Am

B

Locals to block1(=main)
i, k., y(50)

Locals to block2(=procl)
m, n, X

Locals to block3(=proc2)
P

RANHBAN

Procedures communicate with common variables or parameters using call-by- reference
Programming Methodology

gann

Nested block structure (C/C++)

o blockl ﬁf
0 Blocks communicate with int x. J¥: block2
main() {]
non-locals or parameters. %?%a{’z‘é 10);
- - - block3
{ int k, n;
- - - block4
L !n? ?%oo(z)
-
¥
- - - block5
{ Tloat w(3), X;
3 -
y
block6
char foo(int n) {
int i, m;
char c;
- - - block7
{ char d;
int m;
y

Programming Methodology 1
©onn

Advantages of block structure
o

0 The block structure provides a mechanism for structuring
programs, which may improve writability of programming.
For instance, a given task is decomposed to several subtasks.

A main procedure performs the whole task by distributing the subtasks
to its sub-procedures within it.

o Itimproves program readability by delimiting the scope of a

RANHBAN

binding, while nested blocks allow some bindings to be shared.

The storage location of shared bindings can be used for communication
between different blocks.

0 It saves storage since we need remember the binding of a
variable only when the innermost nesting block is executed.

Upon return of a block, the storage for the local variables can be
deallocated unless a variable is static.

Programming Methodology
Oonn

Problems with global in block structure
p

RANHBAN

o Itis generally difficult to exercise sharing bindings (or
declarations) effectively.

0 So, there is a tendency to move the declarations to the
outermost block, which results in many global variables in a
program.

o0 This exacerbates the following problems:

Side-effects

Indiscriminate accesses

Screening problems

Programming Methodology
©onn

Problems with global in block structure
p

RANHBAN

0 Side-effects

Debugging/maintaining programs are more difficult

0 Indiscriminate accesses

Due to implicit inheritance of bindings, all bindings in a block can be
accessed by all nested blocks even when they are not supposed to.

This results in less secure code.

e.g.) typos in a nested block may not be recognized, and yet producing
incorrect output.

O Screening problems

The visibility of a declaration in a block can be accidentally lost when
a variable with the same name is re-declared in an intervening nested
block. = This often happens when a program is large.

Programming Methodology
©onn

Implementation of block structure
g

0 When a program block is invoked in a block-structured
language, the body of the block is executed.
Each execution of the body is called an activation of the block.

Associated with each activation of a block is storage of the variables
declared in the block and any additional information needed for the
activation.

0 The storage associated with an activation is called an
activation record (AR) or a frame.
AR is defined for each function invocation at run time.
AR represents execution environment of the function.
AR includes local variables, parameters, return value, etc.
=» Its component may vary depending on languages.

Programming Methodology
©onn

AR(activation record)/Frame
r

RANHBAN

The size of storage for locals can be easily calculated at
/ compile time if the language uses static type binding.
If the block is a procedure, additional

Local variables storage is needed for arguments

Formal arguments - If the block is a function which has to return the

Return values 11— result, storage is allocated in the activation record.

Return address

|

—, Inorder to resume execution of the caller after
Saved states d the current block is exited, the address of the

caller's code to return to should be kept.
Staticlink \\

Miscellaneousinfo about the caller
site when this block was invoked.

Dynamic link

[t points to the activation record
of its innermost enclosing block.

[t points to the activation record of the caller.

Programming Methodology
©onn

Local variables in AR
p

o In C/C++ code, variables refer to abstract memory locations. o

o In assembly, they refer to actual locations in physical memory
The compiler usually divides physical memory into multiple regions.
Variables are stored to different regions according to their storage types.
So, how to access these variables in different regions must be specified.

0 Ex: int foo(int* p) { ' (allocate p[5])
int In;
static iInt st;

load rO,(in) |
mult r1,r0,4 |
load rO,(p) |
add rO,rl1,r0 |
load r1,(r0)

'p = new int [5];!

st = st - n[in];i

} load rO,(st)
sub r0,r0,rl i
void main() { str (st),r0
. FooC.) . I T 1T 1T 0]
}

Programming Methodology static/global
©onn

Storage types for the implementation
g

o Inside AR€ automatic variables: int in:
Local variables in a function store their r-values in the AR for the function.
In many languages, ARs are managed in a stack at run time.
m When a function is invoked, its AR is created and pushed into the stack.
m When the current function exits, its AR is popped and deleted.
So, local variables with their r-values in a stack are called stack variables.

o Static location €= static variables: static int st;

The addresses of static variables are fixed before run time since their life
times persist during the whole execution of the code.

So, some storage is reserved for r-values of these variables at compile time.
0 Heap € dynamicvariables: 1nt* p = new int [5];

Typically, a heap is used for dynamic/pointer variables.
It is very flexible but expensive to maintain.

Programming Methodology
©onn

Run-time stack

0 Languages that hold ARs in a stack are said to main y
foo

a stack-discipline.
=» Most existing languages like C/C++ obey the discipline.

o0 Operations on the ARs in the stack
Push the AR of function F on the stack when ¥ is called.

Pop the AR when T returns.
Top AR = the AR of currently executed function

o This stack mechanism is necessary to support recursion.
Recursion has significant implications for language implementations of
block structure.

To support recursion, a separate AR has to be allocated for each
procedure block invocation

With the LIFO stack implementation, ARs can be created and stacked up
for different activations of the same recursive function.

Programming Methodology
Oonn

bar

gee

stack

Stack operations with ARs

o Example: fO 4.}
dgO { ... FO ..
hO { .. 90
main() {

g ... }
.}

. hOQ .. FQ ... }
0 ARs can be efficiently managed with an LIFO stack.

o Stack AR configurations at run time

=» Usually the stack grows downwards from high to low address.

LY [N 7/ [N £ x [N [N

maiﬁ/—]%ain main

main main

main main main mai

n imain

h

h

h h

h h h h

h

g

g g
f

g g g g
g

Programming Methodology

RANHBAN

Static and dynamic links in a stack
v

0 A dynamic link is used to restore access to / main ~ =
the AR where the current block is activated:| [")

that is, the AR of the caller of the block.

o A staticlink in an AR of a block points to
the AR of the next nesting block.

0 Assume that X is a block whose AR is
currently on the top of the stack when a
new block Y is invoked. The dynamic and

staticlink values of anew ARof Yare: s
Dynamic = address of the base of the AP of X~ dynamic []
Static= guddress of the AR of d+17 th outer nesting block of X if d >0
ddress of the base of the AP of X if d = -1

where d = nesting level of X — nesting level of Y.
Programming Methodology
©onn

main

O] =N§Q|©

Note: in case of the
C language,d =0

Access to (non)-local data in a stack
£

0 Local accesses are fast:
address of a local variable = address of base of current AR + an offset

foo (int i) { stack memory

double x, y; AR(Frame)_ _____| : heap
char* c; for foo C/W -
’ y| 1.2e+6 offset(x) = FP+x= FP+i+4
X
1

offset(y) = FP+y = FP+x+8
offset ------ 5 offset(c) = FP+c = FP+y+8
... = FP+c+4

Frame Pointer (base address) - g

0 Nonlocal accesses are slower because they require extra

pointers chasing following static or dynamic links.
If dynamic scoping is used, follow the dynamic links until the
nonlocal variable is found. = static links can be removed from ARs
If static scoping is used, follow the static links until the nonlocal
variable is found. = this is generally more efficient

Programming Methodology
©onn

Storage allocation for static variables
g

0 A static variable declared in a block should retain its value

between activations of the block.
If static variables are stored in ARs, this requirement cannot be met
because the AR for each activation is removed after the activation is
killed and, thereby, the values of all the variables in the AR is lost.
One solution is to store static variables in separate memory space
with fixed addresses. For this, the compiler reserves some static
storage space for static variables when it compiles the program.
foo (int i) { : stack Memory

static Int s = 0; AR for Too a{ 5
; St++: s>al | / -
_ base address of
' i tatic st
0 Access to static data is fast: statiestorage |
addressofs=oa +0

address of static data = base address of static storage + offset
—> the base address and offsets can be determined at compile-time.

Programming Methodology
©onn

Heap allocation/deallocation

o If ARs are managed with a heap, life times of the ARs need
not be tied to the LIFO flow of control between activation.
o Even after control returns from a procedure block, an AR for

the block can Stay in StOI‘age. =>» So, local variables are bound as long as needed.

This is useful for functional languages that provide thunks for a
function returned as a result.
Even in imperative languages, the size of an AR may not be
determined when the AR is created because of dynamic arrays.
So, languages that use a stack for AR allocation still need a heap to
allocate dynamic structures and to put pointers to them in the AR.

foo() {
int* p;

pm: new Int[5];

}

stack

p 4

Programming Methodology

AR for foo /—\

k, The size of a pointer is fixed

depending on machines.

Ty,
(ks e

RANHBAN

Allocation of dynamic arrays/lists

0 Most languages support dynamic allocation primitives.

Pascal
C++
Ada
Scheme

o0 The primitives allocate storage for a struct/record on a heap,

type 1tem
yP list

“list;

record
head : iInteger;
tail : 1tem

end;

var_p - i1te

begin ™
new ;
pA.hgad

p/.-tail

list* p
p->head
p->tail

n
3

item p = ne

(define p (

m;

3;
nil; // p=1{3}

ew list;

,iO’;

w list(3, nil);
cons 3 “(0)))

RANHBAN

and store a pointer to itin p that is located in the AR on a stack.

Programming Methodology

How to deallocate dynamic data?

£
o implicitly at every blockexit
fO { Int* g = new Int[10]; ... return q; }

gO { --- mnt* p = FQ); ... }
= What would p point to if q is deallocated when f returns?
0 implicitly at program termination
hO { ... nt* p =TFQ; ... p=Ff0O; --. }
= If p is not deallocated before the second call to f, memory leak occurs due to garbage
o use deallocation primitives: dispose (Pascal), delete (C++)
hQ { --- int* p =Ff(Q; ... delete p; p = fQ; .. }

—> versatile and flexible, but more difficult and less secure because the user must
deallocate dynamic arrays explicitly.

0 use garbage collection: Java, Ada, CLU, Scheme, Emacs (Lisp)

A background process monitors all the objects in the heap and deallocate
garbage if it is found.

—> more secure and convenient but expensive because of run-time overhead
Programming Methodology
onn

Common errors w/ dynamic allocation

o Explicit deallocation may cause dangling pointers.
void F O {
char* ¢ = d = "this i1s a list";
delete c;
y cout << d; //Error! The string may no longer exist

0 Mixing stack-allocated variables and pointers may cause errors
float* g() {
float* s = new float;
float t;
return &t;

+
void hQ {
float* r = g(); //nosyntax error butr is a dangling pointer

// s is garbage if it is not explicitly deallocated in g

Programming Methodology
Oonn

Parameter passing in block structure

0 Implementing
call-by-value /reference

int* foo(int a,

{

int* b, 1INnt& ¢)

5 =c * 2;
delete b;
b = new Int[4];

b[0] = a + 1:
return b;

L
void bar()

{

Int X = 4;

int *y = new int[2];
int z = 1;

y = foo(X, vy, 2);

Stack memory

bar AR

X
local variables {y
Z

foo AR A

local variables { (b: S~

returnvalue

Heap memory

Programming Methodology

b———————————

RANHBAN

Recall this slide from Note 4!

0 Call-by-reference causes aliasing, which makes the code ...
generally more efficient (ex: long arrays); but
error prone due to side effects, and
in some cases, even less efficient because call-by-reference
is often implemented with an extra level of indirection thru

a Frame Pointer (FP)

‘memory

.

Seo
.....

~ =~

g(int c, Int& d) {
.= c +d G
d::%\“
+ \
O {
"3 b: ar
s b=
3 -

~
~,

PR

Programming Methodologies

RANHBAN

'i'oad ri, [FP,+<c>]

< C
load r2, [FP,+<FP¢>] € FPg
load r3, [r2+] << d=0D
add r4, rl1, r3 < c+d
'i'oad r14, [FP¢t<a>] < a
load rl15, [FP¢t] < b

call g

