Evaluation of material properties using IIT

2018.04.18. <u>원종호</u>

> What is IIT?

- > Evaluation of materials properties
 - Strength
 - Residual stress
 - Fracture toughness

Introduction

Seoul National University

Introduction

Introduction

In-situ & In-field System

Simple & fast

Convenient

Non-destructive & Local test

& Forensic Safety Lab.

A novel method to characterize mechanical properties

Strength

Contact Area

-D.Tabor, <u>The Hardness of Metals</u> (1951) -J.H. Ahn et al, <u>JMR</u> (2000)

Representative Stress Definition

$$\frac{P_{m}}{\sigma_{R}} = \Psi \qquad P_{m} = \frac{L_{max}}{\pi a_{c}^{2}}$$

$$\Psi: \text{ Constraint Factor} (about 3)$$

Representative Strain Definition

$$\varepsilon_{R} = \frac{\alpha}{\sqrt{1 - (a_{c} / R)^{2}}} \frac{a_{c}}{R} = \alpha \tan \gamma$$

Seoul National University

Seoul National University

Residual stress

Concept

Seoul National Universit Dep. of Materials Science & Engineering

Vickers

indenter

Condition : same indentation depth

Evaluation

Fracture toughness

Approach

* How to correlate flat punch indentation with crack tip behavior in CRB test

* Scibetta (1999)

"Maximum load can be evaluated by limit load in case of cracked round bar geometry"

* Limit load

* For cracked round bar geometry

$$P_{L} = \pi b^{2} \sigma_{YS} \begin{cases} 3.285 & for \quad \frac{a}{R} > 0.65 \\ \frac{R}{b} & for \quad \frac{a}{R} < 0.65 \end{cases}$$
Von mises yield criterion
a : crack length
b : ligament radius
R : specimen radius

* J-integral formula from fracture mechanics

Total Displacement, v

$$J_{IC} = J_e + J_p = \frac{(1 - \nu^2)K_l^2}{E} + \eta_{pl}\frac{A_{pl}}{\pi a^2}$$

A_{pl}: area under force versus displacement record η_{pl} : factor for specimen geometry and crack size πa^2 : ligament area

$$K_{JC} = \sqrt{\frac{J_{IC} \cdot E}{(1 - v^2)}}$$

Accurate measurement at nano-scale without specific sample preparations

 W_{total}^* - W_{total} = $W_{sdhesion}$

Thank You for Your Attention