

Figure 3.4.4 Tafel plots for anodic and cathodic branches of the current-overpotential curve for $O + e \rightleftharpoons R$ with $\alpha = 0.5$, T = 298 K, and $j_0 = 10^{-6}$ A/cm².

Figure 3.4.5 Tafel plots for the reduction of Mn(IV) to Mn(III) at Pt in 7.5 M H₂SO₄ at 298 K. The dashed line corresponds to $\alpha = 0.24$. [From K. J. Vetter and G. Manecke, Z. *Physik. Chem.* (*Leipzig*), **195**, 337 (1950), with permission.]

- Real Tafel plots for the Mn(IV)/Mn(III) system in concentrated acid
- → The deviations from linearity at very large overpotentials
 - : by mass transfer.
- \rightarrow The deviations at very low overpotentials
 - : by nonnegligible amounts of a reverse reaction

3.4 THE BUTLER-VOLMER MODEL

Figure 3.4.1 Current-overpotential curves for the system $O + e \rightleftharpoons R$ with $\alpha = 0.5$, T = 298 K, $i_{l,c} = -i_{l,a} = i_l$ and $i_0/i_l = 0.2$. The dashed lines show the component currents i_c and i_a .

Figure 3.4.4 Tafel plots for anodic and cathodic branches of the current-overpotential curve for $O + e \rightleftharpoons R$ with $\alpha = 0.5$, T = 298 K, and $j_0 = 10^{-6}$ A/cm².

- At large overpotential of Tafel region (red box),
- \rightarrow Irreversible reaction
- At very small overpotential (blue box),
- → Reversible reaction
- At moderate overpotential (green box),
- \rightarrow Quasireversible reaction
- → Between reversible and irreversible reactions
- → Both anodic and cathode processes contribute significantly to the currents

• Let us reconsider the Butler-Volmer equation for quasi-reversible cases as follows

$$i = i_0 \left[e^{-\alpha f\eta} - e^{(1-\alpha)f\eta} \right]$$

 \rightarrow Can be rewritten as

$$i = i_0 e^{-\alpha f \eta} \left(1 - e^{f \eta}\right) \qquad \Longrightarrow \qquad \frac{i}{1 - e^{f \eta}} = i_0 e^{-\alpha f \eta}$$

 \rightarrow Take the log of both sides

$$\log \frac{i}{1 - e^{f\eta}} = \log i_0 - \frac{\alpha F\eta}{2.3RT}$$

- → Make a plot of log [i/(1 $e^{f\eta}$)] vs. η
 - : obtain an intercept of log i_0 and a slope of $-\alpha F/2.3RT$

- Let us reconsider the current-overpotential equation as follows

$$\frac{i}{i_0} = \frac{C_0(0, t)}{C_0^*} e^{-\alpha f \eta} - \frac{C_R(0, t)}{C_R^*} e^{(1-\alpha)f \eta}$$

$$i = i_0 \left[e^{-\alpha f \eta} - e^{(1-\alpha)f \eta} \right]$$
: the Butler-Volmer equation

- Let us consider its behavior when $i_{0}\ \text{becomes very large compared to any current of}$ interest

 \rightarrow The ratio i/i₀ then approaches zero, and we can rearrange the limiting form of equation

$$\frac{C_{\rm O}(0,t)}{C_{\rm R}(0,t)} = \frac{C_{\rm O}^{*}}{C_{\rm R}^{*}} e^{f(E-E_{\rm eq})}$$

$$E_{\rm eq} = E^{0'} + \frac{RT}{F} \ln \frac{C_{\rm O}^{*}}{C_{\rm R}^{*}} \left[e^{f(E_{\rm eq}-E^{0'})} = \frac{C_{\rm O}^{*}}{C_{\rm R}^{*}} \right]$$

$$\frac{C_{\rm O}(0,t)}{C_{\rm R}(0,t)} = e^{f(E_{\rm eq}-E^{0'})} e^{f(E-E_{\rm eq})}$$

• This equation can be rearranged to the very important result:

$$E = E^{0'} + \frac{RT}{F} \ln \frac{C_0(0, t)}{C_R(0, t)}$$

- → The electrode potential and the surface concentrations of O and R are described by an equation of the Nernst form, regardless of the current flow.
- ➔ In effect, the potential and the surface concentrations are always kept in equilibrium with each other by the fast charge-transfer processes
 - : the thermodynamic equation with characteristic of equilibrium

• Net current flows because the surface concentrations are not at equilibrium with the bulk

 \rightarrow mass transfer continuously moves material to the surface, where it must be reconciled to the potential by electrochemical change

Previously, a system that is always at equilibrium is termed a reversible
 System

 \rightarrow an electrochemical system in which the charge transfer interface is always at equilibrium is also called a reversible (or, alternatively, a nernstian) system

3.4 THE BUTLER-VOLMER MODEL

- At extreme η (blue box),
- \rightarrow the current approaches the limiting current
- \rightarrow the current is limited by mass transfer

• Consider the reduction of a species O at a cathode:

$$O + ne \rightleftharpoons R$$

- Once electrolysis of species O begins,
- \rightarrow its concentration at the electrode surface, $C_0(x = 0)$ becomes smaller than the value,

 C_0^* , in the bulk solution (far from the electrode).

- We assume here that stirring is ineffective at the electrode surface,
- \rightarrow so the solution velocity term need not be considered at x = 0.
- This simplified treatment is based on the idea that a stagnant layer of thickness δ_0 exists at the electrode surface (Nernst diffusion layer), with stirring maintaining the concentration of O at C_0^* beyond $x = \delta_0$

- Since we also assume that there is an excess of supporting electrolyte,
- → migration is not important,
- → the rate of mass transfer is proportional to the concentration gradient at the electrode surface, as given by the first (diffusive) term in the equation:

$$J_{i}(x) = -D_{i}\frac{\partial C_{i}(x)}{\partial x} - \frac{z_{i}F}{RT}D_{i}C_{i}\frac{\partial\phi(x)}{\partial x} + C_{i}v(x)$$

$$v_{\rm mt} \propto (dC_{\rm O}/dx)_{x=0} = D_{\rm O}(dC_{\rm O}/dx)_{x=0}$$

- If one further assumes a linear concentration gradient within the diffusion layer,
- \rightarrow then, from the above equation

$$v_{\rm mt} = D_{\rm O}[C_{\rm O}^* - C_{\rm O}(x=0)]/\delta_{\rm O}$$

- Since δ_0 is often unknown,
- → it is convenient to combine it with the diffusion coefficient to produce a single constant, $m_0 = D_0/\delta_0$

$$v_{\rm mt} = m_{\rm O}[C_{\rm O}^* - C_{\rm O}(x=0)]$$

- The proportionality constant, m_o, called the mass-transfer coefficient, has units of cm/s
- Can also be thought of as volume flow/s per unit area (cm³ s⁻¹ cm⁻²).
- Thus, from the following equations and taking a reduction current as positive [i.e., i is positive when $C_0^* > C_0(x = 0)$], we obtain

$$v_{\rm rxn} = v_{\rm mt} = i/nFA$$

$$\frac{i}{nFA} = m_{\rm O}[C_{\rm O}^* - C_{\rm O}(x=0)]$$

$$\frac{i}{nFA} = m_{\rm O}[C_{\rm O}^* - C_{\rm O}(x=0)]$$

$$\frac{i}{nFA} = m_0 [C_0^* - C_0(x=0)]$$

- The largest rate of mass transfer of O occurs
- \rightarrow when $C_0(x = 0) = 0$
- → or more precisely, when Co (x = 0) << C_0^* , so that $C_0^* C_0(x = 0) \approx C_0^*$
- The value of the current under these conditions (maximum current)
- \rightarrow is called the limiting current, i_I, where

$$i_l = nFAm_0C_0^*$$

- When the limiting current flows,
- → the electrode process is occurring at the maximum rate possible for a given set of mass-transfer conditions,
- \rightarrow O is being reduced as fast as it can be brought to the electrode surface.

- When we combine the left equations,
- \rightarrow we can obtain expressions for $C_0(x = 0)$:

- Thus, the concentration of species O at the electrode surface
- \rightarrow is linearly related to the current
- \rightarrow varies from C_0^* when i = 0, to a negligible value, when i = i₁.

- Under the conditions of a net cathodic reaction,
- \rightarrow R is produced at the electrode surface,
- → so that $C_R(x = 0) > C_R^*$ (where C_R^* is the bulk concentration of R).
- \rightarrow Therefore,

$$\frac{i}{nFA} = m_{\rm R} [C_{\rm R}(x=0) - C_{\rm R}^*]$$

• Or for the particular case when $C_R^* = 0$ (no R in the bulk solution),

$$\frac{i}{nFA} = m_{\rm R}C_{\rm R}(x=0)$$

• The values of $C_0(x = 0)$ and $C_R(x = 0)$ are functions of electrode potential, E. (Nernst equation: ch. 2)

• If the kinetics of electron transfer are rapid,

 \rightarrow the concentrations of O and R at the electrode surface can be assumed to be at equilibrium with the electrode potential, as governed by the Nernst equation for the half-reaction

$$O + ne \rightleftharpoons R$$
$$E = E^{0'} + \frac{RT}{nF} \ln \frac{C_0(x=0)}{C_R(x=0)}$$

- Let us derive the steady-state i-E curves for nernstian reactions under several different conditions.
 - 1) R Initially Absent
 - 2) Both O and R Initially Present
 - 3) R Insoluble

(a) R Initially Absent

• When $C_R^* = 0$, $C_R(x = 0)$ can be obtained from:

$$C_{\rm R}(x=0) = i/nFAm_{\rm R}$$

$$C_{\rm O}(x=0) = \frac{i_l - i}{nFAm_{\rm O}}$$

$$E = E^{0'} - \frac{RT}{nF} \ln \frac{m_{\rm O}}{m_{\rm R}} + \frac{RT}{nF} \ln \left(\frac{i_l - i}{i}\right)$$

$$E = E^{0'} + \frac{RT}{nF} \ln \frac{C_{\rm O}(x=0)}{C_{\rm R}(x=0)}$$

• Note that when $i = i_1/2$,

$$E = E_{1/2} = E^{0'} - \frac{RT}{nF} \ln \frac{m_0}{m_R}$$

- → where $E_{1/2}$ is independent of the substrate concentration and is therefore characteristic of the O/R system.
- \rightarrow When m_o and m_R have similar values,

:
$$E_{1/2} \approx E^{\circ'}$$
.

Figure 1.4.2 (a) Current-potential curve for a nernstian reaction involving two soluble species with only oxidant present initially. (b) $\log[(i_l - i)/i]$ vs. E for this system.

1.4.2 Semiempirical Treatment of Steady-State Mass Transfer

(b) Both O and R Initially Present

- When both members of the redox couple exist in the bulk, we must distinguish between
- \rightarrow a cathodic limiting current, $i_{l,c}$, when $C_O(x = 0) \approx 0$,
- → and an anodic limiting current, $i_{l,a}$, when $C_R(x = 0) \approx 0$.
- The limiting anodic current naturally reflects the maximum rate at which R can be brought to the electrode surface for conversion to O

$$i_{l,a} = -nFAm_{\rm R}C_{\rm R}^*$$
$$C_{\rm R}(x=0) = \frac{i - i_{l,a}}{nFAm_{\rm R}}$$
$$\frac{C_{\rm R}(x=0)}{C_{\rm R}^*} = 1 - \frac{i}{i_{l,a}}$$

 \rightarrow Sign convention: cathodic currents are taken as positive and anodic ones as negative

$$C_{\rm R}(x=0) = \frac{i - i_{l,\rm a}}{nFAm_{\rm R}}$$

$$C_{\rm O}(x=0) = \frac{i_l - i}{nFAm_{\rm O}}$$

$$E = E^{0'} + \frac{RT}{nF} \ln \frac{C_0(x=0)}{C_R(x=0)}$$

$$E = E^{0'} - \frac{RT}{nF} \ln \frac{m_{\rm O}}{m_{\rm R}} + \frac{RT}{nF} \ln \left(\frac{i_{l,\rm c}}{i - i_{l,\rm a}}\right)$$

- When i= 0, $E = E_{eq}$ and the system is at equilibrium.
- → Surface concentrations are then equal to the bulk values.
- When current flows, the potential deviates from E_{eq},
 → the extent of this deviation is the concentration overpotential.

Figure 1.4.3 Current-potential curve for a nernstian system involving two soluble species with both forms initially present.

(c) R Insoluble

• Suppose species R is a metal and can be considered to be at essentially unit activity as the electrode reaction takes place on bulk R.

 \rightarrow When $a_R = 1$, the Nernst equation is

• When i = 0, $E = E_{eq} = E^{0'} + (RT/nF) \ln C_{0}^{*}$

- If we define the concentration overpotential, η_{conc} (or the mass-transfer overpotential, η_{mt}), as

$$\eta_{\rm conc} = E - E_{\rm eq}$$
 $\eta_{\rm conc} = \frac{RT}{nF} \ln\left(\frac{i_l - i}{i_l}\right)$

1.4.2 Semiempirical Treatment of Steady-State Mass Transfer

Figure 1.4.4 Current-potential curve for a nernstian system where the reduced form is insoluble.

- When $i = i_{l'} \eta_{conc} \rightarrow \infty$.
- Since η is a measure of polarization, this condition is sometimes called complete concentration polarization

1.4.2 Semiempirical Treatment of Steady-State Mass Transfer

$$\eta_{\rm conc} = \frac{RT}{nF} \ln\left(\frac{i_l - i}{i_l}\right)$$

• The equation can be written in exponential form:

$$1 - \frac{i}{i_l} = \exp\left(\frac{nF\eta_{\text{conc}}}{RT}\right) \qquad e^x = 1 + x + \frac{x^2}{2} + \dots \approx 1 + x \text{ (when } x \text{ is small)}$$

- Under conditions of small deviations of potential from $\mathrm{E}_{\mathrm{eq'}}$

 $\boldsymbol{\rightarrow}$ the i - η_{conc} characteristic is linear:

$$\eta_{\rm conc} = \frac{-RTi}{nFi_l}$$

- Since -η/i has dimensions of resistance (ohms),
 - \rightarrow we can define a "small signal" mass transfer resistance, R_{mt} as

$$R_{\rm mt} = \frac{RT}{nF|i_l|}$$

: the mass-transfer-limited electrode reaction resembles an actual resistance element only at small overpotentials

3.4.6 Effects of Mass Transfer

• Let us reconsider the current-overpotential equation as follows

$$\frac{i}{i_0} = \frac{C_0(0, t)}{C_0^*} e^{-\alpha f \eta} - \frac{C_R(0, t)}{C_R^*} e^{(1-\alpha)f \eta}$$
$$\frac{C_0(x=0)}{C_0^*} = 1 - \frac{i}{i_{l,c}}$$
$$\frac{C_R(x=0)}{C_R^*} = 1 - \frac{i}{i_{l,a}}$$
$$\frac{i}{i_0} = \left(1 - \frac{i}{i_{l,c}}\right) e^{-\alpha f \eta} - \left(1 - \frac{i}{i_{l,a}}\right) e^{(1-\alpha)f \eta}$$

• For small overpotentials ($\alpha f\eta < <1$),

$$\frac{i}{i_0} = \frac{C_0(0, t)}{C_0^*} e^{-\alpha f\eta} - \frac{C_R(0, t)}{C_R^*} e^{(1-\alpha)f\eta}$$

$$\frac{i}{i_0} = \frac{C_0(0, t)}{C_0^*} - \frac{C_R(0, t)}{C_R^*} - \frac{F\eta}{RT}$$

$$\frac{C_0(x=0)}{C_0^*} = 1 - \frac{i}{i_{l,c}}$$

$$\frac{C_R(x=0)}{C_R^*} = 1 - \frac{i}{i_{l,a}}$$

$$\eta = -i\frac{RT}{F}\left(\frac{1}{i_0} + \frac{1}{i_{l,c}} - \frac{1}{i_{l,a}}\right)$$

$$\eta = -i\frac{RT}{F}\left(\frac{1}{i_0} + \frac{1}{i_{l,c}} - \frac{1}{i_{l,a}}\right)$$

$$R_{\rm mt} = \frac{RT}{nF|i_l|}$$

$$R_{\rm ct} = \frac{RT}{Fi_0}$$

$$\eta = -i(R_{\rm ct} + R_{\rm mt,c} + R_{\rm mt,a})$$

- Here we see very clearly that when i₀ is much greater than the limiting currents,
 → R_{ct} << R_{mt,c} + R_{mt,a}
- \rightarrow the overpotential, even near E_{eq} , is a concentration overpotential.
- On the other hand, if i₀ is much less than the limiting currents,
- \rightarrow then R_{mt,c} + R_{mt,a} << R_{ct}
- \rightarrow the overpotential near E_{eq} is due to activation of charge transfer.

3.4.6 Effects of Mass Transfer

• i- η curves for several ratios of i_0/i_{l} , where $i_l = i_{l,c} = i_{l,a}$

Figure 3.4.6 Relationship between the activation overpotential and net current demand relative to the exchange current. The reaction is $O + e \rightleftharpoons R$ with $\alpha = 0.5$, T = 298 K, and $i_{l,c} = -i_{l,a} = i_l$. Numbers by curves show i_0/i_l .

3.4 THE BUTLER-VOLMER MODEL

Figure 3.4.1 Current-overpotential curves for the system $O + e \rightleftharpoons R$ with $\alpha = 0.5$, T = 298 K, $i_{l,c} = -i_{l,a} = i_l$ and $i_0/i_l = 0.2$. The dashed lines show the component currents i_c and i_a .

- For the cathodic branch at high η values, the anodic contribution is insignificant,

→ useful for obtaining kinetic parameters for systems in which the normal Tafel plots are complicated by mass-transfer effects