Engineering Economic Analysis

2019 SPRING

Prof. D. J. LEE, SNU

Chap. 16 EQUILIBRIUM

- Competitive Market: where each economic agent takes the market price as outside of his (her) control
 - Each consumer or provider is so small that has a negligible effect on the market price
 - In competitive market, each economic agent simply determines their best response given those market prices
- Market demand curve: D(p)
- Market supply curve: S(p) measures how much the provider (or firms) is willing to supply of a good at each possible market price

- "An economic equilibrium is a situation where all agents are choosing the best possible action for themselves and each person's behavior is consistent with that of others"
 - At any price other than an equilibrium price, some agent's behaviors would be infeasible, and there would therefore be a reason for their behavior change.
 - Thus, a price that is not an equilibrium price cannot be expected to persist since at least some agents would have an incentive to change their behavior

Two Special Cases

Fixed supply curve

- Q* is determined entirely by supply
- P* is determined entirely by demand

Two Special Cases

Horizontal supply curve

- P* is determined entirely by supply
- Q* is determined entirely by demand
- In general, P* and Q* are jointly determined by the demand and supply.

Demand & Supply Curve

Example: Linear curves

$$D(P) = a - bP$$
$$S(P) = c + dP$$

• Equilibrium condition

$$D(P) = S(P) \implies a - bP = c + dP$$

• Equilibrium price

$$P^* = \frac{a-c}{d+b}$$

• Equilibrium quantity

$$D(P^*) = a - b\frac{a - c}{d + b} = \frac{ad + bc}{d + b}$$

Inverse Demand & Supply Curve

Inverse curves

$$D(p) \xrightarrow{inverse} P_D(q)$$
$$S(p) \xrightarrow{inverse} P_S(q)$$

- Equilibrium
 - $P_D(q^*) = P_S(q^*)$
- Example: Linear curves

Demand & Supply Curve

• Equilibrium condition

$$P_D(q) = P_S(q) \implies \frac{a-q}{b} = \frac{q-c}{d}$$

• Equilibrium quantity

$$q^* = \frac{ad + bc}{d + b}$$

• Equilibrium price

$$P_D(q^*) = \frac{a}{b} - \frac{1}{b}\frac{ad+bc}{d+b} = \frac{a-c}{d+b}$$

- Quantity taxes: tax levied per unit of quantity bought or sold
 - t: amount of quantity tax per unit sold $P_D = P_S + t$
 - If the tax is levied on sellers then it is an excise tax.
 - If the tax is levied on buyers then it is a sales tax.
- Value taxes: tax expressed in percentage units
 - τ: tax rate

 $P_D = (1+\tau)P_S$

- What happens in a market when a quantity tax is imposed.
- Suppose the supplier is required to pay the tax.
 - Supply depends on the supply price (the amount of the supplier actually gets after paying tax), *S*(*P_s*)
 - Demand depends on the demand price (the amount that the demander actually pays), $D(P_D)$

$$D(P_D) = S(P_S)$$
$$P_S = P_D - t$$

• Thus,

$$D(P_D) = S(P_D - t) \text{ or}$$
$$D(P_S + t) = S(P_S)$$

• When the demander has to pay the tax.

- Demander should pay P_D which includes the tax to buy a good.
- Tax goes to the government and the price supplier can get will be only the remaining amount

$$P_D - t = P_S$$

• Thus,
$$D(P_D) = S(P_D - t)$$

It doesn't matter who is responsible for paying the tax

• When we use the inverse functions, $P_D(q), P_S(q)$

- Note that the quantity supplied must be the same with the demanded amount, *q*^t
- the equilibrium quantity traded is that q^t such that the demand price at q^t minus the tax being paid is just equal to the supply price at q^t

 $\begin{cases} P_D(q^t) - t = P_S(q^t), \text{ when sales tax} \\ P_S(q^t) + t = P_D(q^t), \text{ when excise tax} \end{cases}$

Also same equations!!

Tax(sales tax)

A sales tax lowers the market demand curve by \$t, which lowers the sellers' price and reduces the quantity traded.

And demanders pay $p_d = p_s + t$.

Tax(excise tax)

An excise tax raises the market supply curve by \$t, raises the demanders' price and lowers the quantity traded.

And sellers receive only $p_s = p_d - t$.

Tax(example)

• Linear functions

$$D(P) = a - bP_D$$

$$S(P) = c + dP_S$$

• Equilibrium condition after quantity tax

$$\begin{cases} a - bP_D = c + dP_S \\ P_D = P_S + t \end{cases}$$

Solving

$$a - b(P_S + t) = c + dP_S$$

• Equilibrium prices

$$P_{S}^{*} = \frac{a - c - bt}{d + b}$$
$$P_{D}^{*} = P_{S}^{*} + t = \frac{a - c - bt}{d + b} + t = \frac{a - c + dt}{d + b}$$

Tax(example)

• Equilibrium quantity

$$q^{t} = D(p_{D}) = S(p_{s})$$
$$= \frac{ad + bc - bdt}{b + d}$$

• As t increases, p_s falls, p_D rises, and q^t falls

- Social cost of a tax using the consumer's and producers' surplus
- A quantity tax imposed on a competitive market reduces the quantity traded and so reduces gainsto-trade (*i.e.* the sum of Consumers' and Producers' Surplus).
- The lost total surplus is the tax's deadweight loss, or excess burden.

- Producers' surplus: changes in a firm's welfare can be measured in dollars much as for a consumer.
 - Profits

- The interest rate serves as a price in the market for loans
 - D(r)= demand for loans by borrowers
 - *S*(*r*)=supply of loans by lenders
 - Equilibrium interest rate r*

 $D(r^*) = S(r^*)$

Tax system

- There is a income tax on the interest earned for lenders
 - Income from interest will decrease from r to (1-t)r
- There is a tax deduction on the interest charges for borrowers
 - Expense by interest will decrease from r to (1-t)r

Equation for interest rate determination

$$D((1-t)r') = S((1-t)r')$$

• Note that
$$D(r^*) = S(r^*)$$

• Therefore, if
$$r^* = (1-t)r'$$

$$D((1-t)r') = S((1-t)r')$$

• Thus the interest rate in the presence of tax will be higher r^*

$$r' = \frac{r}{(1-t)}$$

Inverse functions approach

- Inverse demand function (r_b(q)): what the after-tax interest rate would have to be to induce borrowers to borrow q
- *Inverse supply function* $(r_l(q))$
- Equilibrium amount lent, q^* $r_b(q^*) = r_l(q^*)$
- Tax system when market interest rate is r
 - After-tax rate facing borrowers will be $(1-t_b)r$
 - The quantity of borrowing will be determined by

$$(1-t_b)r = r_b(q)$$
 or $r = \frac{r_b(q)}{1-t_b}$

Tax system when market interest rate is r

- After-tax rate facing lenders will be $(1-t_l)r$
- The quantity of lending will be determined by

$$(1-t_l)r = r_l(q)$$
 or $r = \frac{r_l(q)}{1-t_l}$

• Combining two equations gives

$$r = \frac{r_b(\hat{q})}{1 - t_b} = \frac{r_l(\hat{q})}{1 - t_l}$$

• If $t_b = t_l$, then $\hat{q} = q^*$

• Equilibrium in the loan market when $t_b = t_l = t$

• After-tax interest rate and the amount borrowed are unchanged

Tax in the market for loans has impacts on

- Subsidizing borrowers
- Taxing lenders
- How about net effects?
 - When $r_b(q) > r_l(q)$, then net taxing (and vice versa). *Why*?
 - We know that

$$r = \frac{r_b(\hat{q})}{1 - t_b} = \frac{r_l(\hat{q})}{1 - t_l} \qquad \Longrightarrow \qquad r_b(\hat{q}) = \frac{1 - t_b}{1 - t_l} r_l(\hat{q})$$

• Therefore, $r_b(q) > r_l(q)$ implies

$$\frac{1-t_b}{1-t_l} > 1 \qquad \Longrightarrow \qquad t_l > t_b$$