

해양플랜트 공학 입문

Upstream & Downstream

Source : Dutch-SHELL Website (SHELL's Business Scope)

CPF (Central Processing Facilities)?

Gas / Condensate Production for Dawin LNG Project (AU)

Design process

Subsea production system

- 1 Well fluid characteristics
- 2 Flow-stability free of erosion & corrosion
- ③ Flow assurance study (multiphase flow)
- (4) Chemical inhibitor (HI, CI) consumption
- Analysis on max. liquid surge volume in slug catcher

Export Pipeline Design

- 1 Flow stability (ex. Two phase formation?)
- 2 Flow assurance study
- 3 Surge analysis

Topside process design

- 1 Slug catcher & G/L separator design
- 2 Gas sweetening unit design
- ③ Mercury removal unit design
- ④ Gas dehydration unit design
- (5) Gas compression unit design
- 6 Oil/condensate stabilization unit design
- ⑦ Oil / condensate storage tank design
- 8 Produced water treating unit design
- (9) Utility design (Hot oil / Fuel gas)

Sale Gas & Sales Oil (enough for sales spec.)

Form Reservoir To Products

Typical CPF : Oil Field

Typical CPF : Gas Field (1)

Typical CPF : Gas Field (2)

Design Process

Client Requirements & Onshore or Offshore?

Well Test Data Analysis (Fluid / Flowing P & T) Block Flow Diagram Completion

Process and Equipment Design / PFD & PID ...

CPF Design Completion

Project comparison

Project	Reservoir Fluid	Product	IOR ¹⁾ /EOR ²⁾	CCS ³⁾	
SARB-4 (UAE_Abu dhabi)	Oil	Stabilized Oil Reinjection Gas	Y (Gas/Water Injection)	Ν	
TouatGaz (Algeria)	Gas	Sales Gas Stabilized Condensate	Ν	Y	
MIDYAN (Saudi)	Gas	Sales Gas	Ν	Ν	
AKKAS (Iraq)	Gas	Sales Gas Stabilized Condensate	Sales Gas N zed Condensate		
RHIP (Omen)	Gas	Sales Gas Stabilized Condensate LPG	Y (SG Injection)	Y 4)	

Note 1> IOR means "Improved Oil Recovery" as technology for 2nd and 3rd recovery

2> EOR means "Enhanced Oil Recovery" as technology for 3rd recovery

3> CCS means "Carbon Capture & Storage"

4> RHIP process includes CO₂ EOR facilities for another oil field. CO₂ EOR plays a role of CO₂ storage role as well as enhanced production.

Ex. SARB-4 (Client : ADMO-OPCO / Abu Dahbi)

Work-scope

- 1. Process Design on CPF (Zirku Island)
- 2. Process Design on Artificial Islands
- Hydraulics on subsea pipeline
- 4. Flow assurance on subsea pipelines

Product (CPF)

- 1. Stabilized oil (200,000 stb/d)
- 2. Reinjection gas and fuel gas
- 3. Reinjection water (sea water)

Oil FPSO

- Processes hydrocarbons from subsea template into oil, LPG, sales gas, etc.
- A converted tanker or purpose built vessel may be ship shaped
- Eliminate the need for costly long-distance pipelines, which is effective in remote or deep water developments

Oil FPSO topside facilities

FPSO in West Africa

- Girassol (TotalFinaElf)
 - : Located of NNW Luanda, Angola 1350m of water
 - : Producing 32° API crude oil from 23 wells
 - : Total storage capacity 2 million bbl of crude oil
 - : Liquid processing 180,000 bpd
 - : 3 million m³/d gas lift with 8 million m³/d gas compression and dehydration

FPSO in Western Australia

Vincent oil field

- : Located offshore Exmouth in Western Australia
- : Water depth 350m, 17° API crude from 8 wells
- : Oil column thickness 8.5 ~ 19.0 m
- : Total Liquid processing capacity 120,000 b/d with total storage capacity of 1.2 million barrels of oil
- : Water (150,000 b/d) & Gas (80 MMscf/d) Injection
- : Dual sided hull and disconnectable mooring

LNG value chain

Why natural gas?

- Sufficient reserves: onshore and offshore
- New solutions to non-conventional gas development (FPSO, Shale gas production)

- Greener: Less CO2
- Less polluting: Negligible NOx, No SOx, No PM
- More economical: Cheaper than crude-driven fuels

LNG utilization like crude

Short-lead time for LNG infrastructure

LNG

LNG-fuelled ship propulsion

FLNG opening more gas to development

- Accesses gas unsuitable for baseload development
- Eliminates pipeline & loading infrastructure costs
- Reduces security and political risks
- Constructed in controlled shipyard environment
- Can relocate facility upon field depletion

Two distinct development paths emerging

Characteristic	Small-scale Floating LNG	Large-scale Floating LNG		
Liquefaction capacity:	less than 3.0 mtpa	3.5 to 6.0 mtpa		
Required reserves:	0.5 to 3.0 Tcf	more than 3.0 Tcf Barge-like more than 250,000 m ³ Baseload-type processes		
Hull:	Ship-like			
Storage capacity:	up to 220,000 m ³			
Liquefaction processes:	Simpler processes			
	(e.g., Single Mixed Refrigerant processes, dual expander processes)	(e.g., Dual MR, Mixed Fluid Cascade)		

Prelude FLNG

Prelude FLNG in operation

FLNG process overview

Field specific and pre-treatment systems

Field specific and pre-treatment systems

- Field specific and pre-treatment systems are conventional and not new to the offshore environment.
- Energy optimization is required to integrate the heat- and energy demanding systems in the overall topside.
- Optimize and include the pre-treatment and field specific systems in the fuel gas balance.
- Tall columns with internals must be carefully designed in order to minimize flow maldistribution.
- Avoiding stabilization issues of the condensate or recycle of middle components like propane and butane through the process system.

SYSTEMS	FPSO	LNG FPSO
Liquid separation and stabilisation	x	x
MEG injection and reclamation	x	x
Bulk acid gas removal system	x	x
Acid gas polishing system	V	x
Molsieve dehydration system	Limited	x
Mercury removal system	X	X
LPG fractionation and stabilisation system	Limited	x
Produced water treatment	X	x
N2-Rejection	V	X
BOG handling	X	X

Liquefaction choices far from mature

 Need simple, robust and compact liquefaction solutions
Single mixed refrigerant cycles
Gas expander-based cycles

Concerns

Process efficiencies Scale-up performance LPG refrigerant storage

Marine performance and reliability

Black & Veatch PRICO SMR Process

Source: Black & Veatch

Mustang NDX-1 Process (patent pending)

LNG Properties

- LNG는 천연가스를 저장과 수송이 용이하도록 액체로 전환시킨 것
- LNG와 천연가스 부피비는 1/600 (- 162°C, 상압 조건에서 액화)
- LNG의 매우 낮은 온도로 인해 cryogenic liquid로 취급되며, 취급을 위해 특수한 기술과 설비가 요구됨.
- Cryogenic 상태의 LNG에 접촉되는 모든 물질은 빠르게 냉동되면서 강도와 기능 을 잃어버리기 때문에, LNG 보관을 위해서는 container 매체 선정에 주의를 기울 여야 함.
- LNG는 무색, 무취하며, 부식성이 없고, 불연성이고, 무독성.
- LNG 물성은 다음의 사항들로 구분된다.
 - ▶조성
 - ≽끓는점
 - ▶밀도 및 specific gravity
 - ▶가연성
 - ▶발화 온도

LNG composition

- 천연가스의 조성은 가스전의 특성과 처리 공정의 종류에 따라 달라짐.
- 일반적으로 LNG 생산에 사용되는 천연가스는 메탄과 에탄, 프로판, 부탄 그리고 소량의 heavy 탄화수소로 이루어지는 혼합가스.
- 불순물로는 질소와 이산화탄소, 황화수소 및 물 등이 포함될 수 있지만, 액화 공정 전에 모두 제거됨. 메탄이 주요 성분으로 보통 85 vol% 이상.

Chemical	Chemical Formula	Low	High	
Methane	CH4	87%	99%	
Ethane	C_2H_6	<1%	10%	
Propane	C_2H_8	>1%	5%	
Butane	C₄H ₁₀	>1%	>1%	
Nitrogen	N ₂	0.1%	1%	
Other Hydro- carbons	Various	Trace	Trace	

LNG boiling point, density & specific gravity

- LNG의 끓는점은 조성에 따라 변할 수 있지만, 일반적으로 -162°C (-259°F).
- 저온의 LNG가 따뜻한 공기 또는 물에 노출되는 경우, 주변 온도가 LNG의 끓는점보다 높기 때문에 LNG 표면에서 기화가 시작됨.

LNG Carrier

• Which type of tanks in it?

Cargo handling and fuel gas system

BOG liquefaction technology

- Effective to treat continuous BOG
- To treat the BOG during LNG bunkering
 - Considerable capacity: 40 ton/hr to treat 40 ton BOG for 1 hr
 - Intermittent operation: 1 hr operation + 9 hr stop

LNG-fuelled ship propulsion

Regulation on ship CO2 emission

Regulation on fuel quality in ECA

LNG-Fuelled Ship Propulsion

Fuel economics

Regulation on fuel quality within emission control area (ECA)

- Currently, the seas around Europe and the North America are ECAs.
- ECAs are expanding, ultimately all over the world.

Regulation on fuel quality within emission control area (ECA)

- Regulations on emissions from ships, especially for SOx
 - Stringent regulation on fuel quality
 - Effective from 2015 for ECAs (emission control areas)

from 2020 or 2025 globally

* Depending on the outcome of a <u>review of fuel oil availability</u>, to be completed 2018, the 2020 date could be deferred to 2025

MARPOL Annex VI Requirements - SOx

Impact of LNG fuelled propulsion

Shipping is consuming 3% of total world energy.

- → 300-375 million tonnes, 250 billion US\$/yr
- → LNG-fuelled shipping will consume 1.5 times the current world LNG trade.
- → The world LNG consumption will increases to 250%.

LNG fuelled propulsion growing

• LNG fuelled propulsion: in service

Year	Ship Name	Ship Type	Ship Owner	Location	Tank	Engine	Fuel Type	Ships	Note
2000	Glutra	Car/pass. Ferry	Fjord1	Norway	2 x 32 m3	Mitsubish	LNG	1	
2003	Viking Energy	Offshore Supply	Eidesvik	Norway sea	1 x 234 m3	Wartsila	LNG (DF)	1	
2003	Stril Pioneer	Offshore Supply	Simon Mokster	Norway sea	1 x 234 m3	Wartsila	LNG (DF)	1	
2006	Bergens fjord	Car/pass. Ferry	Fjord1	Norway	2 x 123 m3	Rolls-Royce	LNG	1	
2007	Fana fjord	Car/pass. Ferry	Fjord1	Norway	2 x 123 m3	Rolls-Royce	LNG	1	
2007	Raune fjord	Car/pass. Ferry	Fjord1	Norway	2 x 123 m3	Rolls-Royce	LNG	1	ln
2007	Stavanger fjord	Car/pass. Ferry	Fjord1	Norway	2 x 123 m3	Rolls-Royce	LNG	1	use
2007	Mastra fjord	Car/pass. Ferry	Fjord1	Norway	2 x 123 m3	Rolls-Royce	LNG	1	
2008	Viking Queen	Offshore Supply	Eidesvik	Norway sea	2 x 234 m3	Wartsila	LNG (DF)	1	
2008	Viking Lady	Offshore Supply	Eidesvik	Norway sea	2 x 234 m3	Wartsila	LNG (DF)	1	
2009	Tidekongen	Pass. Ferry	Tide	France	1 x 29 m3	Mitsubish	LNG	2	
2009	Barentshav	Military Vessel	Norwegian Coast Guard	Norway	1 x 234 m3	Mitsubish	LNG	2	
2009	-	RO-RO	Sea Cargo AS	Norway	2 x 216 m3	Rolls-Royce	LNG	2	Under Building
2010	Molde fjord	Car/pass. Ferry	Fjord1	Poland	1 x 125 m3	Mitsubish	LNG	4	Dunung
-	H	Offshore Supply	н	Norway	1 x 210 m3	Mitsubish	LNG	1	

Thank you!