

Technical Issues in Wireless Networking - Wireless Transport -

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

WIRELESS NETWORKING, 430.752B, 2020 SPRING SEOUL NATIONAL UNIVERSITY

TCP/IP Protocol Stack (5 Layer Architecture)

Applications (e.g. Telnet, HTTP)			
ТСР	UDP	ICMP	
IP			ARP
Link Layer (e.g. Ethernet, ATM)			
Physical Layer (e.g. Ethernet, SONET)			

TCP/IP Packet Structure

MSS: Maximum Segment Size MTU: Maximum Transmission Unit

IP Hourglass: End-to-End Semantic

TCP Version History in BSD

TCP & <u>AQM</u> Control Approach

AQM: Active Queue Management

TCP Overview - Flow & Congestion control

What is the capacity of my end-to-end connection?

What is the fair-share of my end-to-end connection?

SEOUL NATIONAL UNIVERSITY

WIRELESS NETWORKING, 430.752B, 2020 SPRING SEOUL NATIONAL UNIVERSITY

Problems in Wireless Transmission

- Packet loss in wireless networks
 - Bit errors (channel degradation)
 - Handoffs (mobility)
 - Congestion and timeout
 - Reordering
- □ TCP always assumes that "packet loss" is due to
 - Congestion (+ Reordering)
- □ TCP reactions to wireless problems
 - Reducing packets in flight (data rates)
 - Consecutive losses make the data rate almost ZERO

Problems in Wireless Transmission

WIRELESS NETWORKING, 430.752B, 2020 SPRING SEOUL NATIONAL UNIVERSITY

Problems in Wireless TCP

Flat TCP congestion window observed in cellular networks

Problems in Wireless TCP

Potential Solutions

- □ Entirely new transport protocol
 - Hard to widely deploy
 - End-to-end protocol should also efficiently work in wired networks
- Modifications to TCP mechanism
 - Maintain end-to-end semantics
 - Add new wireless-related features to TCP
 - May not be backward compatible
- Splitting a connection into wireless and wired
 - Breaks end-to-end nature
 - May be backward compatible with end hosts
 - New issues in migration of TCP states when doing handoffs
 - Extra TCP processing burden is given to base-stations

Potential Solutions

□ Link-layer protocols

- Invisible to higher-level protocols (hide lower-level problems)
- Does not break end-to-end semantics (in high-level)
- May negatively affect delay-sensitive applications
- May bring algorithmic failures which need another fix
- □ Snoop protocol
 - Does not break end-to-end semantics
 - Like a link-layer protocol, some algorithmic failures follow
 - No termination but soft states are maintained at base stations

Potential Solutions

Split TCP

Split TCP

Split TCP

- □ Critical Issue (BS Failure)
 - For those packets buffered and already ack'ed by BS
 - If BS fails, those packets already removed from the sender are not recoverable (price for discarding end-to-end semantic)

Link-Layer Recovery

 $\Box \text{ Expected Transmission Count: E[X]}$ $E[X] = 1(1-p) + 2p(1-p) + 3p^2(1-p) + \cdots$ $= \frac{1}{1-p}$

- □ Effective wireless bandwidth
 - Nominal data rate $\times(1-p)$

- □ Link Layer Recovery
 - Makes the link slower
 - But, makes the link robust (similarly to wired)

Packet Error Rate (PER)

Link-Layer Recovery

Snoop Protocol

- □ TCP Hacking (Eavesdropping) at BS
- □ Snoop protocol buffers data packets at BS
 - for link layer retransmission
 - but not breaks end-to-end semantic
- □ When Duplicated ACKs received by BS from MH
 - BS retransmits buffered packets
 - And drop the dupacks to hide them to the TCP sender

Snoop Protocol

