
Losses in Fuel Cells



Fuel Cell Thermodynamics



Thermodynamics

Nobel laureate Richard Feynmann said,

“ In physics today, we have no knowledge of what energy is.”

Self-consisting “laws” from fundamental assumptions based on 
human experience.

Q: How to “prove” Newton’s Law or Schrodinger Equation?

Internal energy (U)

No movement in macroscopic view,

but microscopic movement exist.

• Kinetic energy

M l l &– Molecular movement &

vibration

• Chemical (potential) energyChemical (potential) energy

– Bonding between atoms



Laws of Thermodynamics

First law: conservation of energy

d(Energy) = d(Energy) + d(Energy) = 0d(Energy)univ = d(Energy)system + d(Energy)surroundings = 0  

d(Energy)system = -d(Energy)surroundings 

dU = dQ – dW

(dW)mech= pdV

dU = dQ – pdV

Second law: Entropy of a system increases (dS ≥0)Second law: Entropy of a system increases (dSuniv≥0)

Macroscopic: dS=dQrev/T

Microscopic:  S = k log Ω

k: boltzmann’s constant

Ω: No. of possible microstates accessible to the system



Entropy Example

a) A perfect crystal of 100 atoms: only 1 microstate 
(configuration)(configuration)

S = k log Ω = k log 1 = 0

b) A crystal of 97 atoms with 100 lattice space:

Ω=100C3=1.6 * 105

S = 1.66 * 10-22 J/K



Thermodynamic Potentials

Rules describe energy transfer form one form to another

Let’s define four potentials U(S,V), H(S,p), G(T,p),F(T,V) for the 
i bl S V Tvariables S, V, T, p

Starting from dU = dQ – pdV = TdS – pdV ⇔ U = U(S, V ) or

(T, p)                               (S, p)                          (T, V)



Thermodynamics Potential



Available Work Under Constant T, P
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Enthalpy of Reaction

Heat of reaction

dH = TdS + Vdp
STP (standard temperature & pressure) 
is defined as thermodynamic quantity 

(
⇔ dH = TdS = dQ (heat of reaction)

= dU + dW for p=const

at 298.15 K (so-called room 
temperature) and 1 bar (or 1 atm). All 
the thermodynamic potentials defined 
at STP are tabulated as reference

For general reactions (molar based)

aA + bB -> mM + nN

at STP are tabulated as reference, 
often denoted with superscript 0. (e.g. 
∆H0)

aA + bB > mM + nN

Δhrxn = { mΔh(M) + nΔh(N) } - { aΔh(A) + bΔh(B) }

similar for entropy: Δsrxn = {mΔs(M)+nΔs(N)}-{aΔs(A)+bΔs(B)}

Temperature dependency



Gibbs Free Energy

Lab environment (p=const, T=const)

Among four thermodynamic potentials, 
Gibbs energy difference drives the 
spontaneous chemical reaction

Reaction:

A ⇔ BA ⇔ B

Extent of a reaction ξ: amount of 
b t h th t t f A t B dsubstahce that reacts from A to B and 

vice versa dξ=-dnA=dnB

ΔG 0 ti i i E ilib iΔG=0   reaction is in Equilibrium

ΔG<0   reaction is in Forward direction

ΔG>0 reaction is in Backward directionΔG 0   reaction is in Backward direction



Gibbs Free Energy

Gibbs Energy: potential under constant p & T
G = H – TS by definition

⇔ dG dH TdS SdT⇔ dG = dH – TdS – SdT

⇔ Δg = Δ h – TΔs (can be found from tables.)

Electrical work
dG = d(U+pV) – TdS – SdT

= dU – TdS – SdT + pdV + V에 dU TdS SdT  pdV  V에

usedU = dQ-dW = d(TS) – dW

= SdT + TdS – (pdV + dWelec)

⇔ dG = – dW l⇔ dG  dWelec

⇔ Welec = -Δgrxn

This is valid for any T & p not-changing through reaction

Voltage of electric work
Welec= EQ = EnF

F: Faraday number, n: number of electrons involved in reaction

⇔ E = -Δg/nF



Gibbs Free Energy

Dimensional 
analysis



Standard Electrode Potential

Cell potentials of most p
reaction are tabulated 
from reaction energy.

Ecell = ΣEhalf-reactions



Standard Electrode Potential



Standard Electrode Potential

Hydrogen fuel celly g

Direct methanol fuel cell



Standard Electrode Potential



Maximum Possible EfficiencyFuel Cell Efficiency
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Temperature Effect
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Pressure Effect
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Concentration Effect: Nernst Equation 



Concentration Effect: Nernst Equation 



Example: Available Work at Constant T
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Nernst Equation

NMbBA1

Consider the following electrochemical reaction

nNmMbBA +⇔+1

Using the definition of the chemical potential
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Nernst Equation: Examples

1 OHOH ⇔+

Consider the hydrogen-oxygen reaction at 120C

pRT

)(222 2 gOHOH ⇔+

Using the Nernst Equation E120C is calculated 
considering 
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Q: At STP, how to calculate the voltage? (when water is liquid)
1

)(222 2
1

lOHOH ⇔+

A: For pure component activity = 1 (read the textbook) ThusA: For pure component, activity = 1 (read the textbook). Thus
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Concentration Cell

HH ⇔

From Nernst Equation:

.).(2.).(2 plph HH ⇔
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Q H f l ll ith t h i l ti i ibl ?Q: How a fuel cell without chemical reaction is possible? 

What is the driving force?

A: Electrochemical potential will answer your question.



Electrochemical Potential

In concentration cell, concentration gradient will 
drive the migration (or diffusion) of hydrogen. 
Previously, we found chemical potential is:

Thus, high pressure hydrogen has higher 
chemical potential. The difference in chemical 
potentials generates the voltages in the cell.

More conveniently, we may use “electrochemical potential” defined as

iiiiiii FzpRTFz φμφμμ ++=+= ln~ 0



Electrochemical Potential
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At electrochemical equilibrium, the net change in the electrochemical 
potential is 0. (Remember ∆g=0  at chemical equilibrium)
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Heat Dissipation by Fuel Cells
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1. Entropy loss 

ˆP T s J= Δ

2 96,400( / )nF C mol×

2. Internal loss in fuel cells: activation, ohmic, concentration losses

2Therm HP T s J= Δ

3. Heat of condensation

ˆ
cond cond HP h J= Δ

2cond cond H



Heat Dissipation by Fuel Cells



Heat Dissipation by Fuel Cells



Heat Dissipation by Fuel Cells



Mass Balance in Fuel Cells
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If air at 20 mol/s is supplied to a 
hydrogen-air fuel cell that generates 1000 
kA, we can find the oxygen output flux 
from the fuel cell:

V

V
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from the fuel cell:
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Here, wO2 represents the volume ratio of oxygen in air (=0.21)



Maximum Possible EfficiencyReal Fuel Cell Efficiency 
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Fuel Cells Stacks
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