446.305A MANUFACTURING PROCESSES

Chapter 4. Surfaces, Tribology, Dimensions, Inspection & Quality

Sung-Hoon Ahn

School of Mechanical and Aerospace Engineering Seoul National University

Introduction

Surface properties affect

- Friction and wear
- Lubrication
- Painting, coating, welding, soldering, adhesive bonding, corrosion resistance
- Crack initiation
- Thermal and electrical conductivity

Tribology

- Friction
- Wear
- Lubrication

Surface structure

Oxide layer (hard, brittle, abrasive)

- Iron: FeO, Fe3O4, Fe2O3
- Aluminum: Al₂O₃
- Copper: Cu₂O, CuO
- Stainless steel: CrO
- Beilby layer: melting & surface flow-> rapid quenching
- Work-hardened layer: residual stress

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", $3^{rd}/4^{th}$ ed. Addison Wesley

Surface texture

■ Flaw (흠)/ defect (결함), lay (가공무늬), roughness (거칠기), waviness (파상도)

Ref.

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Surface roughness

profiles produced by (c) lapping, (d) finish grinding, (e) rough grinding, and (f) turning processes. Note the difference between the vertical and horizontal scales. *Source*: from D. B.

Dallas (ed.), Tool and Manufacturing Engineers Handbook, 3d ed.

(f) Turning

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

R_a and R_q

Arithmetic mean value

- arithmetic ave. (AA)
- center-line ave. (CLA)
- Root-mean-square ave. (RMS)

$$R_{a} = \frac{y_{a} + y_{b} + y_{c} + y_{d} \cdots}{n} = \frac{1}{n} \sum_{i=1}^{n} y_{i} = \frac{1}{l} \int_{0}^{l} |y| dx$$
$$R_{q} = \sqrt{\frac{y_{a}^{2} + y_{b}^{2} + y_{c}^{2} + y_{d}^{2} + \cdots}{n}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}} = \left[\frac{1}{l} \int_{0}^{l} y^{2} dx\right]^{\frac{1}{2}}$$

- Rough surface:
 - Lower precision, short fatigue life, higher electrical & thermal contact resistance, lower corrosion resistance, better painting & coating, lower cost

Atomic Force Microscope (AFM) Tip

Before PZT process

After PZT process

Friction

- Adhesion theory of friction (응착이론)
 - Intimate contact of asperities creates an adhesive bond

ļ

Ļ

FIGURE 4.5 (a) Schematic illustration of the interface of two contacting surfaces, showing the real areas of contact. (b) Sketch illustrating the proportion of the apparent area to the real area of contact. The ratio of the areas can be as high as four to five orders of magnitude.

■ Friction coefficient (마찰계수)

FIGURE 4.6 Schematic illustration of the relation between friction force F and normal force N. Note that as the real area of contact approaches the apparent area, the friction force reaches a maximum and stabilizes. Most machine components operate in the first region. The second and third regions are encountered in metalworking operations, because of the high contact pressures involved between sliding surfaces, i.e., die and workpiece.

$$u = \frac{F}{N} = \frac{\tau A_r}{\sigma A_r} = \frac{\tau}{\sigma} \qquad friction(shear) \ factor, \ m = \frac{\tau_i}{k}$$

$$k(shear \ yield \ stress) = Y/2$$

$$\mu = \frac{\tau}{hardness} = \frac{\frac{\tau}{\sqrt{3}}}{\frac{1}{3Y}} \approx 0.2$$

$$\mu = \frac{\tau}{\sigma} = \frac{\frac{\tau}{\sqrt{3}}}{\frac{1}{3Y}} \approx 0.577$$

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Measuring Friction

Ring compression test

FIGURE 4.8 Charts to determine friction in ring compression tests: (a) coefficient of friction, μ_5 (b) friction factor, *m*. Friction is determined from these charts from the percent reduction in height and by measuring the percent change in the internal diameter of the specimen after compression.

Ref. S Kalpakijan "M

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", $3^{rd}/4^{th}$ ed. Addison Wesley

Wear (1)

 Progressive loss of material from a surface

■ Adhesive wear (응착마멸)

Archard wear law

$$V = k \frac{LW}{3p}$$

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Wear (2)

Abrasive wear

FIGURE 4.11 Schematic illustration of abrasive wear in sliding. Longitudinal scratches on a surface usually indicate abrasive wear.

- Corrosive wear
- Fatigue wear

FIGURE 4.12 Types of wear observed in a single die used for hot forging. Source: Top die T. A. Dean. 153421 2 (5) 15341 (5) Bottom die Ejector 1. Erosion 2. Pitting (lubricated dies only) 3. Thermal fatigue 4. Mechanical fatigue 5. Plastic deformation Ę.

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Lubrication

4 regimes of lubrication

Ref.

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Surface Treatment (1)

- Shot peening, water-jet peening, laser peening
- Roller burnishing (surface rolling)
- Cladding (clad bonding)
- Mechanical plating
- Thermal spraying
- Surface texturing

FIGURE 4.15 Examples of roller burnishing of (a) a conical surface and (b) a flat surface and the burnishing tools used. *Source*: Cogsdill Tool Products.

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", $3^{\rm rd}/4^{\rm th}\,\text{ed}.$ Addison Wesley

Surface Treatment (2)

- Vapor deposition (CVD/PVD/ Ion implantation)
- Electroplating/ electroless plating
- Electroforming
- Anodizing
- Diamond coating

Ref. S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Cold spray (1)

- High deposition rate at low temperature
- Accelerated powder particles are sprayed onto substrate.
- Fabrication type : constructive process
- Typical substrate materials : metal

Schematic diagram

Cold spray (2)

Repair of damaged mold

Nano particle deposition system (NPDS)

- High deposition rate at room temperature
- Aerosol with particles is accelerated by a gas flow and sprayed onto substrate.
- Fabrication type : constructive process
- Typical substrate materials : metal, ceramic

Schematic diagram

Fabrication envelop

Mn-Zn ferrite coating on Al 6061 with niddles

TiO₂ coating on Stainless steel

Measurement

- Length: dial indicator, LVDT
- Straightness : autocollimators
- Flatness: interferometry
- Roundness: total indicator reading (TIR), full indicator movement
- Profile
- Coordinate measuring machines (CMM) and layout machines
- Gages
- Microscopes

Precision & Accuracy

- Accuracy(정확도)
 - degree of conformity of a measure to a standard or a true value(closeness to the true value, δ_m)
- Precision(정밀도)
 - the degree of refinement with which an operation is performed or a measurement stated(size of standard deviation, σ)

Precision & Accuracy – example

- Precise
- Not accurate

- Accurate
- Not precise

- Accurate
- Precise

Dimensional Tolerance

FIGURE 4.19 (a) Basic size, deviation, and tolerance on a shaft, according to the ISO system. (b)–(d) Various methods of assigning tolerances on a shaft. *Source:* L. E. Doyle.

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", 3rd/4th ed. Addison Wesley

Quality Assurance

Normal (Gaussian) Distribution

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
Range, $R = x_{\max} - x_{\min}$

$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n - 1}}$$

Control Chart

Upper control lmit($UCL_{\overline{x}}$) = $\overline{x} + 3\sigma = \overline{\overline{x}} + A_2\overline{R}$ Lower control lmit($LCL_{\overline{x}}$) = $\overline{x} - 3\sigma = \overline{\overline{x}} - A_2\overline{R}$

- Six sigma (3~4 ppm)
- ISO 9000 (quality management & quality assurance)
- ISO 14000 (environmental management)

Ref.

S. Kalpakjian, "Manufacturing Processes for Engineering Materials", $3^{\rm rd}/4^{\rm th}\,\text{ed}.$ Addison Wesley

Control Chart

Process Capability Indices

Process Capability Index, Cp

$$C_p = \frac{USL - LSL}{6\sigma_x}$$

- Minimum acceptable value for C_p is 1
- Desirable value : 1 ~ 2

Process Capability Index, Cpk

$$Z_{USL} = \frac{USL - \mu_x}{\sigma_x} \qquad \qquad Z_{LSL} = \frac{LSL - \mu_x}{\sigma_x}$$

 μ_x : process mean $Z_{\min} = \min |Z_{USL}, or (-Z_{LSL})|$ $C_{pk} = \frac{Z_{\min}}{3} \ge 1.0$

Process Capability Indices - example

= -3