Engineering Mathematics |

- Chapter 4. Systems of ODEs
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Basics of Matrices and Vectors

Systems of ODEs as Models

Basic Theory of Systems of ODEs

Constant-Coefficient Systems. Phase Plane Method

Criteria for Critical Points. Stability

Qualitative Methods for Nonlinear Systems

Nonhomogeneous Linear Systems of ODEs
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Basics of Matrices and Vectors
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o Systems of Differential Equations

— more than one dependent variable and more than one equation

| Vo= apy, tapy, tota,y,,
Yo =apy, tapy,,

y J i+, Vo =Au Yy Ay, ++a,y,,
2 — Yo 2221 :

yn :an1y1+an2y2+.“+annyn’

+ Differentiation

— The derivative of a matrix with variable entries is obtained by
differentiating each entry.

ol = el

~



Basics of Matrices and Vectors Wi,
Eivenvalues (12 5= XI) and Eivenvectors (11 5= &t &)
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Let A=[a,] be an n x n matrix. Consider the equation Ax = AX
where A Is a scalar and x is a vector to be determined.

— A scalar A such that the equation AX = AX holds for some vector
x # 0 is called an eigenvalue of A,

— And this vector is called an eigenvector of A corresponding to this
eigenvalue A.

AX = AX
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Basics of Matrices and Vectors R
Eivenvalues (11 5= X|) and Eivenvectors (11 7 21 &)
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AX=AX —> AX-Alx=0 ——» (A—M)x=0

— n linear algebraic equations in the n unknowns *u:"**»%. (the
components of x).

— The determinant of the coefficient matrix A — Al must be zero in
order to have a solution x # 0.

* Characteristic Equation

det(A-11)=0

— Determine A, and A,

— Determination of eigenvector corresponding to A, and A,
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Basics of Matrices and Vectors
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Eivenvalues (1 57 Xl) and Eivenvectors (11 =81 &)
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Example 1. Find the eigenvalues and eigenvectors

~40 4.0
A=
{—1.6 1.2}

* If x is an eigenvector, so is kx



Systems of ODEs as Models (i

/d“‘-bx&‘-
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10 gal/min

— VS.

10 gal/min

10 gal/min

Single ODE Systems of ODEs



Systems of ODEs as Models il
Example 3. Mixing problem (Sec 1.3)
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— Initial Condition: 1000 gal of water, 100 Ib salt, initially brine runs in
10 gal/min, 5 Ib/gal, stirring all the time, brine runs out at 10
gal/min

— Amount of salt at t?

10 gal/min

EE——

)

10 gal/min

y
BO00 == === === - -
40001
3000
2000t /
1000/

100 L | | | | [
o 100 200 300 400 500 ¢

Salt content ¥{6)




Systems of ODEs as Models i,
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— Tank T, and T, contain initially 100 gal of water each.

— In T, the water is pure, whereas 150 Ib of fertilizer are dissolved in T,.

— By circulating liquid at a rate of 2 gal/min and stirring the amounts of fertilizer ()

inT,and y,(¢) in T, change with time t.

2 gal/min

— Model Set Up

) ) 2 2
'= Inflow/min - Outflow/min =—vy, ——
Bz 100y2 100y1 (

) ] 2 2
"= Inflow/min - Outflow/min =—vy, ——
Y 100)/1 100y2 (

Ay AL ~0.02 0.02
y =2 1 0.02 -0.02

Tank 7,) = y,'=-0.02y,+0.02y,

Tank 7,) = y,'=0.02y,-0.02y,



Systems of ODEs as Models

150

SEOUL NATIONAL UNIVERSITY

150 p
100 100
s =
S50 S50
y,=75-75 %0k
OO 2IO‘ I ‘4IO‘ ‘ I6IO‘ ‘ I8I0‘ ‘ “1CI)0 OOHI‘1IOHH2IO‘H‘3IO‘IH4IO‘H“\")IOHH(SIOHHTIOII
Time (minutes) V()
y.-Y, plane - phase plane (&M & ™ )
Trajectory (# &) :
. AHIH O

O O

HAH2 =&
- &Ml ol &gl ¢
Phase portrait (& £

HI X O| OFALS At IT & 5F

— M oo 2 2 4L 0O

AH): trajectories in phase plane

O



Systems of ODEs as Models i,
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« Example 2. Electrical Network

L]
I(t) L5
1+ -
L(t) 05
1 0L | | | | |
3 5 4 0 1 P 3 4 5 !

y+-¥, plane - phase plane (& & H )

Trajectory (H &) :

-AEHHML 2

- &N oHEES LUt™Ol HMS A HEHEL

Phase portrait (& & &): trajectories in phase plane



Systems of ODEs as Models iy
Conversion of an nth-order ODE to a system
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« 2" order to a system of ODE — Example 3. Mass on a Spring

11 1
my''+cy'+ky =0
N
Nn=y Y=y "'= V—LJ . .
> k c —> y'=Ay={_£ _il{yl}
Yo=="MN——"W R
m m
.y 1 .
det(A-al)=| k ¢ |=2+Sa+k_0 = Calculation same
I Al m m
m m

as before!

Ex) y"+2y'+0.75y =0
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Systems of ODEs as Models %;v,
Conversion of an nth-order ODE to a system >

SEOUL NATIONAL UNIVERSITY

Conversion of an ODE

An nth-order ODE

(8) },(n) _ F(f \ }}r', - )__,(n—l))
can be converted to a system of n first-order ODEs by setting

. ! " P, —
(9) Vi=y. Yo=Y, ya=y oy, =y

This system is of the form

!
Y1 = Y2
!
Y2 = Vs
(10) .
1’ P 1
Yn—-1 = Yn
1/
Yn = F(t Y1, Yo, =+ 5 Yo)-

— solve single ODE by methods for systems

— Includes higher order ODEs into ...first order ODE
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Basic Theory of Systems of ODEs G
Concepts (analogy to singie ODE) e
+ First-Order Systems 4| f kA

y=| : |, f=]|:
yl'zfl(tlyll""yn) v, | _f;zj
Yo :fz(t;yv'”vyn) y':f(t,y)
v,'= Lty )
« Solution on some interval a<t<b
— A set of n differentiable functions n=h(t), - v, =h()

* Initial Condition: ()=, 1,(,)=K,, - »(4)=K,



Basic Theory of Systems of ODEs (LY
Existence and Uniqueness "
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Theorem 1. Existence and Uniqueness Theorem

— Let £, - f, be continuous functions having continuous partial
derivatives %/, - %/, . - ¥/, in some domain R of oy,--y, -
space containing the point (%, k.. - K,), Then the first-order system
has a solution on some interval % - <t<f,+a gatisfying the

initial condition , and this solution is unique.



Basic Theory of Systems of ODEs ER
Homogeneous vs. Nonhomogeneous

° I ay - 4, N &1
Linear Systems AP }yHgH
yllzall(t)yl"'"""ain(t)yn+g1(t) i ’ g =
' y'=Ay+(g
v, =a,(t)n+-+a,(t)y, +g,(1)
— Fomogeneous. y':Ay

— Nonhomogeneous: y'=Ay+g, g#0



Basic Theory of Systems of ODEs G
Concepts (analogy to single ODE) "
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* Theorem 2 (special case of Theorem 1)

Existence and Uniqueness in the Linear Case

Let the ap.’s and g;’s in (3) be continuous functions of t on an open interval
a <<t << B containing the point t = ty. Then (3) has a solution y(t) on this interval
satisfving (2), and this solution is unique.

* Theorem 3

Superposition Principle or Linearity Principle

Ify'Y and y*? are solutions of the homogeneous linear system (4) on some interval,
so is any linear combination y = ¢;y'P + coy?.

y' = [cly(l) +cy? I =y +c,y? =, Ay® +c,Ay?
= Aley® +cy?) = Ay



Basic Theory of Systems of ODEs Fiid
General solution "
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. . . 0|2 ot
« Basis, General solution, Wronskian

/

— Basis: A linearly independent set of n solutions y“, ---, y" of the
homogeneous system on that interval

— General Solution: A corresponding linear combination

y=cy?+ e,y (¢, -, c, arbitrary)

— Fundamental Matrix : An n x n matrix whose columns are n
' (1) (n) 1 n
solutions yo ... y Y:[yo, ...,y<>] v =Ye
— Wronskian of y%, -, y™ : The determinant of Y

© L0 ., EX)
W(y(l), e y(n)): yz: y2: . yz'

: : Cs ® @\ 25705t _15¢ c 5 1
() @ . () y=Yc= yl(l) yl(z) 1 |=| € o ¢ L5 L= o e +c, et
yn yn yn yz y2 cZ e 4 _1.56_ -t cz 1 _
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Constant Coefficient Systems.
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y'=Ay

» Homogeneous linear system with constant coefficients

— Where n x n matrix A=|q, | has entries not depending on t
- Try Yy =xe"

= y'=Axe" = Ay = Axe” = Ax=AX
* Theorem 1. General Solution

— The constant matrix A in the homogeneous linear system has a

linearly independent set of n eigenvectors, then the corresponding
solutions y", -, y" form a basis of solutions, and the
corresponding general solution is y — ¢ W™ ... 4 ¢ XA



Constant Coefficient Systems.
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 Example 1. Improper node (8| 11 = 0L

y

.

N

2

-3

':A =
y =AYy [1

} = Cly(l) + Czy(z) = C{

1
_3y

y1’ = _3y1 + ),
v, =3 -3y,
1
-1

S|
(=]

)

Trajectories of the system (8)
(Improper node)



Constant Coefficient Systems. i,

SEOUL NATIONAL UNIVERSITY

+ Example 2. Proper node (12 5= OtC| &)

y'=Ay=(1 ij "=

0 1 :
Yo =X2
1 0 = ! - A .
y=c¢l| le'+c,| ¢ = < Clet h
0 1 YV, =C,€

Trajectories of the system (10)
(Proper node)



Constant Coefficient Systems. i,
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« Example 3. Saddle pomt(@ & &)

I_A 0
y'=Ay= Y

1 0 =ce
Yy=c| le'+c,| e’ = 7 Cle_
0 1 Y, =c,e”

Trajectories of the system (11)
(Saddle point)



Constant Coefficient Systems.
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 Example 4. Center (= 4&))

y':Ayz(O (])'jy )ﬁ,:)’z
4 ,
y, =4y,

1 ' 1 . —c eZit s e—2it
y = ol - eth +¢, e 2it — N | 1 . 2 o
2i —2i yy =2ice” —2icye

Trajectories of the system (12)
(Center)



Constant Coefficient Systems.
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« Example 5. Spiral Point (L} & &)

Y'=Ay=(

-1 1
-1 —1y

J’1, =-Nt);

Vo

V=V

Trajectories of the system (13) (Spiral point)



Constant Coefficient Systems. Gy

- DREHIIIJIME 4ot e EF: HE0]
%

CH &I 24 Lt 2+CH 2 (skew-symmetric) ©
M2 20 glS

_ - ) T
(4 1 Yt =xe R
& [_ 1 ZJy y@ =xre™ +ue* \\%—\
\ \\\
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Constant Coefficient Systems. )
oummary A is discriminant (ZH Al) of

determinant of (A-Al)

Improper node (Hl 2 K 0HCI &): A>0, 44, >0

— Real and distinct eigenvalues of the same sign
Proper node (.2 = OtC| &):

IATIONAL UNIVERSITY

A=0,4=4 =~
— Real and equal eigenvalues
« Saddle point (Ot & &): A>0, A4 <0

— Real eigenvalues of opposite sign
Center (=S 4&J):

A <0, pure imaginary
— Pure imaginary eigenvalues

Spiral point (L+& &):

A <0, complex
— Complex conjugates eigenvalues with nonzero real part

*: when two linearly independent eigenvectors exist. Otherwise, degenerate node



Improper node
(Bl )= 0tCI &)

Proper node
(1= 0O &)

Saddle Point

(IESE)

Center

(Sa)

Spiral Point
(Lhd &)

A>0

A=0

A>0

A<O

A, <0

Pure imaginary
egd., +;

Complex number
€9, 1+

Iy



Criteria for Critical Points. Stability il
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* Critical Points of the system
dy,
dt _ _ Auh taxn),

y'=Ay = 2—
/t noapytany,

dn/ .
— dy; A unique tangent direction of the trajectory passing
through  P:(»..y,) , except for the point  p=p,:(0,0)

d
— Critical Points: The point at which * 2 dy, becomes undetermined, 0/0




Criteria for Critical Points. Stability Gh)
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* Five Types of Critical Points

— Depending on the geometric shape of the trajectories near them

] Improper Node
] Proper Node
§Saddle Point
§Center

| Spiral Point
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Criteria for Critical Points. Stability

730 BN
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« Stable Critical point (24X A H).

- OfH &7k =% oM AAFO| otz 74 A H2ol

=
- —
AT 0| 0|20 AIZHI M E A F 0| OFF 77to] 2
ME|R o A BE.

« Unstable Critical point (224X 2 A H):

- oFgT o] oftl YAH

« Stable and Attractive Critical point (24X Z Ol
AAR):

M AAHEO|D, LA™ 2N T LRSS
= 2= HA0] t 50 E F
L_

g O Y%

d

M

Il




Criteria for Critical Points. Stability
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Stable &
attractive

Stable

Unstable

Stable &
Attractive

Unstable

'|'|



Qualitative Methods for Nonlinear (Y
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 Qualitative Method

— Method of obtaining qualitative information on solutions without
actually solving a system.

— particularly valuable for systems whose solution by analytic
methods is difficult or impossible.

Nonlinear systems

yllzfl(ypyz)
'=f . th
y'=t(y), thus V"= ()

linearization y'= Ay +h (y) thus v =ag v ta,y, +h (J’1, )’2)
— = ’

YV, =any, tayy, +h (Jﬁ’ J/2)
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Qualitative Methods for Nonlinear £,
Systems "
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« Theorem 1. Linearization

— If f, and f, are continuous and have continuous partial derivatives
in a neighborhood of the critical point (0,0), and if det A =0, then

the kind and stability of the critical point of nonlinear systems are
the same as those of the linearized system

y'=Ay, thus J’1: =apy, +a5,),
Vo =AYy tayY,.

— Exceptions occur if A has equal or pure imaginary eigenvalues;

then the nonlinear system may have the same kind of critical
points as linearized system or a spiral point.
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« Example 1. Free undamped pendulum
— Determine the locations and types of critical points

— Step 1: setting up the mathematical model

{0 : the angular displacement, measured counterclockwise
from the equilibrium position

] The weight of the bob : mg

] A restoring force tangent to the curve of motion of the bob :
mg sin 6

’By Newton’s second law, at each instant this force is
balanced by the force of acceleration mLO™

somLO" +mgsind=0 — 0"+ksind=0 (k:%)
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Qualitative Methods for Nonlinear zg
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— Step 2: Critical Points (0,0), (+27,0), (+47,0), --- Linearization

6’”+k3in(9=086t n==60, y,=6" n'=Y,
>y, =—ksiny,

y,=0, siny, =0 — infinitely many critical points : (nz , 0), n=0, *1, 2, -

1 > 0 1 W=D,
&)1 N y'=Ay {_k ol b =k,

— Step 3: Critical Points (+7,0), (%3z,0), (#5z,0), . Linearization.

Sinyl = —

Consider the critical point (7, 0)
set y,=0-7x, y,=(0- 7z)'=¢9' , {O 1}
y'=Ay = y

0"+ ksin@=0 —_ 1 , ” kE 0

sin@ =sin(y,+7z)=-siny, = Th g sy

critical points are all saddle points.



Qualitative Methods for Nonlinear
Systems




Nonhomogeneous Linear Systems of
ODEs
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 Nonhomogeneous of Linear Systems:  y'=Ay+g, g=0
— Assume g(t) and the entries of the n x n matrix A(t) to be
continuous on some interval J of the t-axis.

— General solution:  y = y™ 4y

] y(h) : A general solution of the homogeneous system Y '=Ay+g onJ

& y(p)

. A particular solution(containing no arbitrary constants) of y ' = Ay
onJ

 Methods for obtaining particular solutions
— Method of Undetermined Coefficients

— Method of the Variation of Parameter
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Nonhomogeneous Linear Systems of i}
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Method of undetermined coefficients:
— Components of g :
— (1) constants

2) positive integer powers of t

(
=
(

)
3) exponential functions
)

_ 4 COSineS and SineS Method of Undetermined Coefficients
Term in r(x) Choice for y,(x)
ke Ce™™
kx™(n=0,1,- ) K x"+ K,_px" 1+ + Kx+ K,
k cos wx

. }K cos wx + M sin wx
k sin wx

ke“" cos wx ' ‘
ke g }wa([{ cos wx + M sin wx)
€’ sin wx



Nonhomogeneous Linear Systems of fid
ODEs o

SEOUL NATIONAL UNIVERSITY

« Example 1. Method of undetermined coefficients. Modification

rule e[ 1] 6] L
y'=Ay+g=| o rH e

- (h) _ 1 -2t L
— A general solution of the homogeneous system: Y~ = ¢ +% e

— Apply the Modification Rule by setting y ' 4 ye

Ure
-terms on both sides: 2y =AU = { } (with any a # 0)
— Equating the other terms:

—6 k
u-—2v=AvV+ = a=-2, V=
2 k+4

— Equating the ¢e

} (choose k = O)
— General solution :

1 21 1 —4¢ 1 21 —2 —21
yzc{l}e : +C{_Je4 —Z{Jte : J{ 2}8 ;



Nonhomogeneous Linear Systems of A
ODEs
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Example 1. solution by the method of variation of parameters

y'=Ay+g {_3 1 }y{ﬂez’
1 -3 2
— General solution of the homogeneous system :
yW =y ey =Y()e (-
jution : Y =Y (£)u(¢)

(y(p)) '=Y'u+Yu' =  Y'u+Yu'=AYu+g

= Yu'=g = u'=YTg
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» Example 1. solution by the method of variation of parameters
(cont.)

(») e e —2t —2te ¥ —2e7% 427 —2t-2| ,, | 2|
y"=Yu= 20 a || o2 = o, -2 2t o 4t - e+ _ €
e e 27 +2 2te ' +2e 2¢ 2t+2 2



