Engineering Mathematics I- Chapter 4. Systems of ODEs

민기복

Ki-Bok Min, PhD

서울대학교 에너지자원공학과 조교수 Assistant Professor, Energy Resources Engineering

SEOUL NATIONAL UNIVERSITY

Ch.4 Systems of ODEs. Phase Plane. Qualitative Methods

- Basics of Matrices and Vectors
- Systems of ODEs as Models
- Basic Theory of Systems of ODEs
- Constant-Coefficient Systems. Phase Plane Method
- Criteria for Critical Points. Stability
- Qualitative Methods for Nonlinear Systems
- Nonhomogeneous Linear Systems of ODEs

Systems of Differential Equations

more than one dependent variable and more than one equation

$$y_1' = a_{11}y_1 + a_{12}y_2,$$

 $y_2' = a_{21}y_1 + a_{22}y_2,$
 $y_2' = a_{21}y_1 + a_{22}y_2,$
 \vdots
 $y_n' = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n,$
 \vdots

Differentiation

 The derivative of a matrix with variable entries is obtained by differentiating each entry.

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} \qquad \Rightarrow \qquad \mathbf{y}'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix}$$

Eivenvalues (고유치) and Eivenvectors (고유벡터)

- Let $\mathbf{A} = [a_{jk}]$ be an $n \times n$ matrix. Consider the equation $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$ where λ is a scalar and \mathbf{x} is a vector to be determined.
 - A scalar λ such that the equation $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ holds for some vector $\mathbf{x} \neq \mathbf{0}$ is called an eigenvalue of \mathbf{A} ,
 - And this vector is called an eigenvector of **A** corresponding to this eigenvalue λ .

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Eivenvalues (고유치) and Eivenvectors (고유벡터)

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \longrightarrow \mathbf{A}\mathbf{x} - \lambda\mathbf{I}\mathbf{x} = 0 \longrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = 0$$

- n linear algebraic equations in the n unknowns x_1, \dots, x_n (the components of \mathbf{x}).
- The determinant of the coefficient matrix $\mathbf{A} \lambda \mathbf{I}$ must be zero in order to have a solution $x \neq 0$.
- Characteristic Equation

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = 0$$

- Determine λ_1 and λ_2
- Determination of eigenvector corresponding to λ_1 and λ_2

Example 1. Find the eigenvalues and eigenvectors

$$\mathbf{A} = \begin{bmatrix} -4.0 & 4.0 \\ -1.6 & 1.2 \end{bmatrix}$$

If x is an eigenvector, so is kx

VS.

Single ODE

Systems of ODEs

Systems of ODEs as Models Example 3. Mixing problem (Sec 1.3)

- Initial Condition: 1000 gal of water, 100 lb salt, initially brine runs in 10 gal/min, 5 lb/gal, stirring all the time, brine runs out at 10 gal/min
- Amount of salt at t?

7

2 gal/min

2 gal/min

 T_2

 T_1

- Tank T₁ and T₂ contain initially 100 gal of water each.
- In T₁ the water is pure, whereas 150 lb of fertilizer are dissolved in T₂.
- By circulating liquid at a rate of 2 gal/min and stirring the amounts of fertilizer $y_1(t)$ in T_1 and $y_2(t)$ in T_2 change with time t.
- Model Set Up

$$y_1' = \text{Inflow/min} - \text{Outflow/min} = \frac{2}{100}y_2 - \frac{2}{100}y_1 \text{ (Tank } T_1\text{)} \implies y_1' = -0.02y_1 + 0.02y_2$$

 $y_2' = \text{Inflow/min} - \text{Outflow/min} = \frac{2}{100}y_1 - \frac{2}{100}y_2 \text{ (Tank } T_2\text{)} \implies y_2' = 0.02y_1 - 0.02y_2$

$$\therefore \mathbf{y'} = \mathbf{A}\mathbf{y}, \quad \mathbf{A} = \begin{bmatrix} -0.02 & 0.02 \\ 0.02 & -0.02 \end{bmatrix}$$

y₁-y₂ plane - phase plane (상평면) Trajectory (궤적):

- 상평면에서의 곡선
- 전체 해집합의 일반적인 양상을 잘 표현함.

Phase portrait (상투영): trajectories in phase plane

Example 2. Electrical Network

y₁-y₂ plane - phase plane (상평면) Trajectory (궤적):

- 상평면에서의 곡선
- 전체 해집합의 일반적인 양상을 잘 표현함.

Phase portrait (상투영): trajectories in phase plane

Systems of ODEs as ModelsConversion of an nth-order ODE to a system

2nd order to a system of ODE – Example 3. Mass on a Spring

$$my'' + cy' + ky = 0$$

$$y_1 = y, y_2 = y'$$

$$y_2' = -\frac{k}{m}y_1 - \frac{c}{m}y_2$$

$$y_2 = -\frac{k}{m}y_1 - \frac{c}{m}y_2$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_1 = y_2$$

$$y_2 = 0$$

$$y_1 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_2 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_2 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_2 = 0$$

$$y_3 = 0$$

$$y_4 = 0$$

$$y_1 = 0$$

$$y_2 = 0$$

$$y_3 = 0$$

$$y_4 = 0$$

$$y_5 = 0$$

$$y_5$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & 1 \\ -\frac{k}{m} & -\frac{c}{m} - \lambda \end{vmatrix} = \lambda^2 + \frac{c}{m}\lambda + \frac{k}{m} = 0 \implies \text{Calculation same as before!}$$

$$Ex$$
) $y'' + 2y' + 0.75y = 0$

Systems of ODEs as ModelsConversion of an nth-order ODE to a system

Conversion of an ODE

An nth-order ODE

(8)
$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be converted to a system of n first-order ODEs by setting

(9)
$$y_1 = y, y_2 = y', y_3 = y'', \dots, y_n = y^{(n-1)}.$$

This system is of the form

(10)
$$y'_{1} = y_{2}$$

$$y'_{2} = y_{3}$$

$$\vdots$$

$$y'_{n-1} = y_{n}$$

$$y'_{n} = F(t, y_{1}, y_{2}, \dots, y_{n}).$$

- solve single ODE by methods for systems
- includes higher order ODEs into ...first order ODE

Basic Theory of Systems of ODEs Concepts (analogy to single ODE)

$$y_1' = f_1(t, y_1, \dots, y_n)$$

$$y_2' = f_2(t, y_1, \dots, y_n)$$

$$\vdots$$

$$y_n' = f_n(t, y_1, \dots, y_n)$$

• First-Order Systems
$$y_{1}' = f_{1}(t, y_{1}, \dots, y_{n})$$

$$y_{2}' = f_{2}(t, y_{1}, \dots, y_{n})$$

$$\vdots$$

$$\mathbf{y} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} f_{1} \\ \vdots \\ f_{n} \end{bmatrix}$$

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y})$$

- Solution on some interval a<t<b/li>
 - $y_1 = h_1(t), \quad \cdots, \quad y_n = h_n(t)$ A set of n differentiable functions
- Initial Condition: $y_1(t_0) = K_1$, $y_2(t_0) = K_2$, ..., $y_n(t_0) = K_n$

Basic Theory of Systems of ODEs Existence and Uniqueness

- Theorem 1. Existence and Uniqueness Theorem
 - Let f_1, \dots, f_n be continuous functions having continuous partial derivatives $\sqrt[3f_1]{\partial y_1}, \dots, \sqrt[3f_n]{\partial y_n}, \dots, \sqrt[3f_n]{\partial y_n}$ in some domain R of $ty_1y_2 \dots y_n$ space containing the point (t_0, K_1, \dots, K_n) . Then the first-order system has a solution on some interval $t_0 \alpha < t < t_0 + \alpha$ satisfying the initial condition, and this solution is unique.

Basic Theory of Systems of ODEs Homogeneous vs. Nonhomogeneous

Linear Systems

$$y_1' = a_{11}(t)y_1 + \dots + a_{1n}(t)y_n + g_1(t)$$

 \vdots

$$y_n' = a_{n1}(t)y_1 + \cdots + a_{nn}(t)y_n + g_n(t)$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \ \mathbf{g} = \begin{bmatrix} g_1 \\ \vdots \\ g_2 \end{bmatrix}$$

$$y' = Ay + g$$

- Homogeneous:
- Nonhomogeneous:

$$y' = Ay + g, g \neq 0$$

Basic Theory of Systems of ODEsConcepts (analogy to single ODE)

Theorem 2 (special case of Theorem 1)

Existence and Uniqueness in the Linear Case

Let the a_{jk} 's and g_j 's in (3) be continuous functions of t on an open interval $\alpha < t < \beta$ containing the point $t = t_0$. Then (3) has a solution $\mathbf{y}(t)$ on this interval satisfying (2), and this solution is unique.

Theorem 3

Superposition Principle or Linearity Principle

If $\mathbf{y}^{(1)}$ and $\mathbf{y}^{(2)}$ are solutions of the **homogeneous linear** system (4) on some interval, so is any linear combination $\mathbf{y} = c_1 \mathbf{y}^{(1)} + c_2 \mathbf{y}^{(2)}$.

$$\mathbf{y'} = \left[c_1 \mathbf{y}^{(1)} + c_2 \mathbf{y}^{(2)} \right]' = c_1 \mathbf{y}^{(1)'} + c_2 \mathbf{y}^{(2)'} = c_1 \mathbf{A} \mathbf{y}^{(1)} + c_2 \mathbf{A} \mathbf{y}^{(2)}$$
$$= \mathbf{A} \left(c_1 \mathbf{y}^{(1)} + c_2 \mathbf{y}^{(2)} \right) = \mathbf{A} \mathbf{y}$$

Basic Theory of Systems of ODEs General solution

미분 아님!!

- Basis, General solution, Wronskian
 - Basis: A linearly independent set of n solutions $\mathbf{y}^{(1)}$, ..., $\mathbf{y}^{(n)}$ of the homogeneous system on that interval
 - General Solution: A corresponding linear combination

$$\mathbf{y} = c_1 \mathbf{y}^{(1)} + \cdots + c_n \mathbf{y}^{(n)} \quad (c_1, \cdots, c_n \text{ arbitrary})$$

- Fundamental Matrix : An $n \times n$ matrix whose columns are n solutions $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}$ $\mathbf{Y} = \begin{bmatrix} \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)} \end{bmatrix}$ \longrightarrow $\mathbf{y} = \mathbf{Y} \in \mathbf{y}^{(n)}$
- Wronskian of $\mathbf{y}^{(1)}$, ..., $\mathbf{y}^{(n)}$: The determinant of \mathbf{Y}

$$\mathbf{W}\left(\mathbf{y}^{(1)}, \ \cdots, \ \mathbf{y}^{(n)}\right) = \begin{vmatrix} y_1^{(1)} & y_1^{(2)} & \cdots & y_1^{(n)} \\ y_2^{(1)} & y_2^{(2)} & \cdots & y_2^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ y_n^{(1)} & y_n^{(2)} & \cdots & y_n^{(n)} \end{vmatrix} \qquad \mathbf{eX}$$

$$\mathbf{y} = Yc = \begin{pmatrix} y_1^{(1)} & y_1^{(2)} \\ y_2^{(1)} & y_2^{(2)} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 2e^{-0.5t} & e^{-1.5t} \\ e^{-0.5t} & -1.5e^{-1.5t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-0.5t} + c_2 \begin{pmatrix} 1 \\ -1.5 \end{pmatrix} e^{-1.5t}$$

$$y' = Ay$$

- Homogeneous linear system with constant coefficients
 - Where $n \times n$ matrix $\mathbf{A} = [a_{jk}]$ has entries not depending on t

- Try
$$\mathbf{y} = \mathbf{x}e^{\lambda t}$$

 $\Rightarrow \mathbf{y}' = \lambda \mathbf{x}e^{\lambda t} = \mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{x}e^{\lambda t} \Rightarrow \mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

- Theorem 1. General Solution
 - The constant matrix **A** in the homogeneous linear system has a linearly independent set of n eigenvectors, then the corresponding solutions $\mathbf{y}^{(1)}$, ..., $\mathbf{y}^{(n)}$ form a basis of solutions, and the corresponding general solution is $\mathbf{y} = c_1 \mathbf{x}^{(1)} e^{\lambda_1 t} + \dots + c_n \mathbf{x}^{(n)} e^{\lambda_n t}$

• Example 1. Improper node (비고유마디점)

$$\mathbf{y'} = \mathbf{A}\mathbf{y} = \begin{pmatrix} -3 & 1\\ 1 & -3 \end{pmatrix} \mathbf{y} \qquad y_1' = -3y_1 + y_2$$
$$y_2' = y_1 - 3y_2$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = c_1 \mathbf{y}^{(1)} + c_2 \mathbf{y}^{(2)} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-4t}$$

Fig. 81. Trajectories of the system (8) (Improper node)

• Example 2. Proper node (고유마디점)

$$\mathbf{y'} = \mathbf{A}\mathbf{y} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{y} \qquad y_1' = y_1 \\ y_2' = y_2$$

$$\mathbf{y} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^t + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^t \quad \Rightarrow \quad \begin{aligned} y_1 &= c_1 e^t \\ y_2 &= c_2 e^t \end{aligned}$$

Fig. 82. Trajectories of the system (10) (Proper node)

• Example 3. Saddle point (안장점)

$$\mathbf{y'} = \mathbf{A}\mathbf{y} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \mathbf{y} \qquad \begin{aligned} y_1' &= y_1 \\ y_2' &= -y_2 \end{aligned}$$

$$\mathbf{y} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^t + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-t} \quad \Rightarrow \quad \begin{aligned} y_1 &= c_1 e^t \\ y_2 &= c_2 e^{-t} \end{aligned}$$

Fig. 83. Trajectories of the system (11) (Saddle point)

• Example 4. Center (중심)

$$\mathbf{y'} = \mathbf{A}\mathbf{y} = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \mathbf{y} \qquad \begin{aligned} y_1' &= y_2 \\ y_2' &= -4y_1 \end{aligned}$$

$$\mathbf{y} = c_1 \begin{bmatrix} 1 \\ 2i \end{bmatrix} e^{2it} + c_2 \begin{bmatrix} 1 \\ -2i \end{bmatrix} e^{-2it} \quad \Rightarrow \quad \begin{aligned} y_1 &= c_1 e^{2it} + c_2 e^{-2it} \\ y_2 &= 2ic_1 e^{2it} - 2ic_2 e^{-2it} \end{aligned}$$

Fig. 84. Trajectories of the system (12) (Center)

• Example 5. Spiral Point (나선점)

$$\mathbf{y'} = \mathbf{A}\mathbf{y} = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} \mathbf{y}$$

$$y_1' = -y_1 + y_2$$

$$y_2' = -y_1 - y_2$$

$$\mathbf{y} = c_1 \begin{bmatrix} 1 \\ i \end{bmatrix} e^{(-1+i)t} + c_2 \begin{bmatrix} 1 \\ -i \end{bmatrix} e^{(-1-i)t}$$

Fig. 85. Trajectories of the system (13) (Spiral point)

- Example 6. Degenerate Node (퇴화마디점):
 - 고유벡터가 기저를 형성하지 않는 경우: 행렬이 대칭이거나 반대칭(skew-symmetric)인 경우 퇴화마디점은 생길 수가 없음.

$$\mathbf{y'} = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \mathbf{y}$$

$$\mathbf{y}^{(1)} = \mathbf{x}e^{\lambda t}$$

$$\mathbf{y}^{(2)} = \mathbf{x}te^{\lambda t} + \mathbf{u}e^{\lambda t}$$

$$\mathbf{y} = c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{3t} + c_2 \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) e^{3t}$$

Constant Coefficient Systems. Summary A is discrimina

IATIONAL UNIVERSITY

- Δ is discriminant (판별식) of determinant of (A-λI)
- Improper node (비고유마디점):

$$\Delta > 0$$
, $\lambda_1 \lambda_2 > 0$

- Real and distinct eigenvalues of the same sign
- Proper node (고유마디점):

$$\Delta = 0, \ \lambda_1 = \lambda_2$$

- Real and equal eigenvalues
- Saddle point (안장점):

$$\Delta > 0$$
, $\lambda_1 \lambda_2 < 0$

- Real eigenvalues of opposite sign
- Center (중심):

$$\Delta$$
 < 0, pure imaginary

- Pure imaginary eigenvalues
- Spiral point (나선점):

$$\Delta$$
 < 0, *complex*

Complex conjugates eigenvalues with nonzero real part

^{*:} when two linearly independent eigenvectors exist. Otherwise, degenerate node

Name	Δ	Eigenvalue	Trajectories
Improper node (비고유마디점)	$\Delta > 0$	$\lambda_1 \lambda_2 > 0$	y ⁿ in y ⁿ in
Proper node (고유마디점)	$\Delta = 0$	$\lambda_{_{1}}=\lambda_{_{2}}$	Y ₂
Saddle Point (안장점)	$\Delta > 0$	$\lambda_1 \lambda_2 < 0$	y ₂
Center (중심)	Δ < 0	Pure imaginary e.g., $\pm i$	** ** ** ** ** ** ** ** ** ** ** ** **
Spiral Point (나선점)		Complex number e.g., $1 \pm i$	<i>y</i> ₂

Critical Points of the system

$$\mathbf{y'} = \mathbf{A}\mathbf{y} \implies \frac{dy_2}{dy_1} = \frac{dy_2}{dy_1} = \frac{y_2'}{dt} = \frac{y_2'}{y_1'} = \frac{a_{21}y_1 + a_{22}y_2}{a_{11}y_1 + a_{12}y_2}$$

- dy_2/dy_1 A unique tangent direction of the trajectory passing through $P:(y_1,y_2)$, except for the point $P=P_0:(0,0)$
- Critical Points: The point at which $\frac{dy_2}{dy_1}$ becomes undetermined, 0/0

- Five Types of Critical Points
 - Depending on the geometric shape of the trajectories near them

ম্ব Improper Node

ন্ম Proper Node

ম Saddle Point

ষ্ণ Center

ম Spiral Point

- Stable Critical point (안정적 임계점):
 - 어떤 순간 $t = t_0$ 에서 임계점에 아주 가깝게 접근한 모든 궤적이 이후의 시간에서도 임계점에 아주 가까이 접근한 상태로 남아 있는 경우.

- Unstable Critical point (불안정적 임계점):
 - 안정적이 아닌 임계점
- Stable and Attractive Critical point (안정적 흡인 임계점):
 - 안정적 임계점이고, 임계점 근처 원판 내부의 한 점을 지나는 모든 궤적이 t→∞ 를 취할 때 임계점에 가까이 접근하는 경우

Qualitative Method

- Method of obtaining qualitative information on solutions without actually solving a system.
- particularly valuable for systems whose solution by analytic methods is difficult or impossible.

Nonlinear systems

$$\mathbf{y'} = \mathbf{f}(\mathbf{y})$$
, thus $y_1' = f_1(y_1, y_2)$
 $y_2' = f_2(y_1, y_2)$

linearization
$$\mathbf{y'} = \mathbf{A}\mathbf{y} + \mathbf{h}(\mathbf{y})$$
, thus $\begin{aligned} y_1' &= a_{11}y_1 + a_{12}y_2 + h_1(y_1, y_2) \\ y_2' &= a_{21}y_1 + a_{22}y_2 + h_2(y_1, y_2) \end{aligned}$

Theorem 1. Linearization

- If f_1 and f_2 are continuous and have continuous partial derivatives in a neighborhood of the critical point (0,0), and if $\det \mathbf{A} \neq 0$, then the kind and stability of the critical point of nonlinear systems are the same as those of the linearized system

$$\mathbf{y'} = \mathbf{A}\mathbf{y}$$
, thus $\begin{aligned} y_1' &= a_{11}y_1 + a_{12}y_2 \\ y_2' &= a_{21}y_1 + a_{22}y_2. \end{aligned}$

Exceptions occur if A has equal or pure imaginary eigenvalues;
 then the nonlinear system may have the same kind of critical points as linearized system or a spiral point.

- Example 1. Free undamped pendulum
 - Determine the locations and types of critical points
 - Step 1: setting up the mathematical model
 - $\mathbf{R}\theta$: the angular displacement, measured counterclockwise from the equilibrium position
 - ⇔ The weight of the bob: mg
 - \bowtie A restoring force tangent to the curve of motion of the bob : $mg \sin \theta$
 - \bowtie By Newton's second law, at each instant this force is balanced by the force of acceleration $mL\theta$ ``

$$\therefore mL\theta'' + mg\sin\theta = 0 \quad \to \quad \theta'' + k\sin\theta = 0 \quad \left(k = \frac{g}{L}\right)$$

- Step 2: Critical Points (0,0), $(\pm 2\pi,0)$, $(\pm 4\pi,0)$, ... Linearization

$$\theta'' + k \sin \theta = 0 \xrightarrow{\text{set } y_1 = \theta, \ y_2 = \theta'} \qquad y_1' = y_2$$
$$y_2' = -k \sin y_1$$

 $y_2 = 0$, $\sin y_1 = 0 \rightarrow \text{infinitely many critical points} : <math>(n\pi, 0)$, $n = 0, \pm 1, \pm 2, \cdots$

$$\sin y_1 = y_1 - \frac{1}{6}y_1^3 + \cdots \approx y_1$$

$$\mathbf{y}' = \mathbf{A}\mathbf{y} = \begin{bmatrix} 0 & 1 \\ -k & 0 \end{bmatrix} \mathbf{y}, \text{ thus } \begin{aligned} y_1' &= y_2 \\ y_2' &= -ky_1 \end{aligned}$$

$$- \text{ Step 3: Critical Points } (\pm \pi, 0), (\pm 3\pi, 0), (\pm 5\pi, 0), \cdots \text{ Linearization.}$$

Consider the critical point $(\pi, 0)$

$$\theta'' + k \sin \theta = 0 \quad \xrightarrow{\det y_1 = \theta - \pi, \quad y_2 = (\theta - \pi)' = \theta'} \quad \mathbf{y}' = \mathbf{A}\mathbf{y} = \begin{bmatrix} 0 & 1 \\ k & 0 \end{bmatrix} \mathbf{y}$$

critical points are all saddle points.

Nonhomogeneous Linear Systems of ODEs

- Nonhomogeneous of Linear Systems: y' = Ay + g, $g \neq 0$
 - Assume g(t) and the entries of the n x n matrix A(t) to be continuous on some interval J of the t-axis.
 - General solution : $\mathbf{y} = \mathbf{y}^{(h)} + \mathbf{y}^{(p)}$
 - $\mathbf{y}^{(h)}$: A general solution of the homogeneous system $\mathbf{y}' = \mathbf{A}\mathbf{y} + \mathbf{g}$ on \mathcal{J}
 - $\mathbf{y}^{(p)}$: A particular solution(containing no arbitrary constants) of $\mathbf{y}' = \mathbf{A}\mathbf{y}$ on \mathcal{J}
- Methods for obtaining particular solutions
 - Method of Undetermined Coefficients
 - Method of the Variation of Parameter

Nonhomogeneous Linear Systems of ODEs

- Method of undetermined coefficients:
 - Components of g :
 - (1) constants
 - (2) positive integer powers of *t*
 - (3) exponential functions
 - (4) cosines and sines.

Table 2.1 Method of Undetermined Coefficients

Term in $r(x)$	Choice for $y_p(x)$
$ke^{\gamma x}$ $kx^{n} (n = 0, 1, \cdots)$ $k \cos \omega x$ $k \sin \omega x$ $ke^{\alpha x} \cos \omega x$ $ke^{\alpha x} \sin \omega x$	$Ce^{\gamma x}$ $K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$ $\left\{ K \cos \omega x + M \sin \omega x \right\}$ $\left\{ e^{\alpha x} (K \cos \omega x + M \sin \omega x) \right\}$

Nonhomogeneous Linear Systems of **ODEs**

 Example 1. Method of undetermined coefficients. Modification rule

$$\mathbf{y'} = \mathbf{A}\mathbf{y} + \mathbf{g} = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} y + \begin{bmatrix} -6 \\ 2 \end{bmatrix} e^{-2t}$$

– A general solution of the homogeneous system :

$$\mathbf{y}^{(h)} = c_1 \begin{vmatrix} 1 \\ 1 \end{vmatrix} e^{-2t} + c_2 \begin{vmatrix} 1 \\ -1 \end{vmatrix} e^{-4t}$$

Apply the Modification Rule by setting

$$\mathbf{y}^{(p)} = \mathbf{u}te^{-2t} + \mathbf{v}e^{-2t}$$

- Equating the te^{-2t} -terms on both sides: $-2\mathbf{u} = \mathbf{A}\mathbf{u}$ \Rightarrow $\mathbf{u} = a \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (with any $a \neq 0$)

– Equating the other terms:

$$\mathbf{u} - 2\mathbf{v} = \mathbf{A}\mathbf{v} + \begin{bmatrix} -6\\2 \end{bmatrix} \implies a = -2, \quad \mathbf{v} = \begin{bmatrix} k\\k+4 \end{bmatrix} \text{ (choose } k = 0\text{)}$$

General solution:

$$\mathbf{y} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-4t} - 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-2t} + \begin{bmatrix} -2 \\ 2 \end{bmatrix} e^{-2t}$$

Nonhomogeneous Linear Systems of ODEs

Example 1. solution by the method of variation of parameters

$$\mathbf{y'} = \mathbf{A}\mathbf{y} + \mathbf{g} = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} y + \begin{bmatrix} -6 \\ 2 \end{bmatrix} e^{-2t}$$

– General solution of the homogeneous system :

$$\mathbf{y}^{(h)} = c_1 \mathbf{y}^{(1)} + \dots + c_n \mathbf{y}^{(n)} = \mathbf{Y}(t)\mathbf{c} \qquad (: \mathbf{Y'} = \mathbf{AY})$$

- Particular solution : $\mathbf{y}^{(p)} = \mathbf{Y}(t)\mathbf{u}(t)$

Nonhomogeneous Linear Systems of ODEs

 Example 1. solution by the method of variation of parameters (cont.)

$$\mathbf{Y}^{-1} = \frac{1}{-2e^{-6t}} \begin{bmatrix} -e^{-4t} & -e^{-4t} \\ -e^{-2t} & e^{-2t} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{2t} & e^{2t} \\ e^{4t} & -e^{4t} \end{bmatrix}$$

$$\mathbf{u}' = \mathbf{Y}^{-1}\mathbf{g} = \frac{1}{2} \begin{bmatrix} e^{2t} & e^{2t} \\ e^{4t} & -e^{4t} \end{bmatrix} \begin{bmatrix} -6e^{-2t} \\ 2e^{-2t} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -4 \\ -8e^{2t} \end{bmatrix} = \begin{bmatrix} -2 \\ -4e^{2t} \end{bmatrix}$$

$$\mathbf{u} = \int_{0}^{t} \begin{bmatrix} -2 \\ -4e^{2t} \end{bmatrix} d\tilde{t} = \begin{bmatrix} -2t \\ -2e^{2t} + 2 \end{bmatrix}$$

$$\mathbf{y}^{(p)} = \mathbf{Y}\mathbf{u} = \begin{bmatrix} e^{-2t} & e^{-4t} \\ e^{-2t} & -e^{-4t} \end{bmatrix} \begin{bmatrix} -2t \\ -2e^{2t} + 2 \end{bmatrix} = \begin{bmatrix} -2te^{-2t} - 2e^{-2t} + 2e^{-4t} \\ -2te^{-2t} + 2e^{-2t} - 2e^{-4t} \end{bmatrix} = \begin{bmatrix} -2t - 2 \\ -2t + 2 \end{bmatrix} e^{-2t} + \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-4t}$$