
3. Vector Calculus

A. Gradient of Scalar Field

1) Definition of gradient

Physical definition:

Vector that has the maximum space change rate of physical quantity

Mathematical definition:

 ≡ ∇ ≜  lim
∆→
∆

∆ 







 



 


(2-48, 49)

maximum directional derivative

Note) ∇ is called the del or gradient operator

Directional derivative:




 





 


  

 ⋅  ∇⋅ (2-50)

(2-49)

2) Calculation of gradient in orthogonal curvilinear coordinates

Space change rate of  :

(2-50) ⇒   ∇⋅ ⋛ 0 (2-51)

In orthogonal curvilinear coordinates    ,

  



 



 






















 


 

  ⋅ (2-51)*
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By comparing RHS of (2-51) and (2-51)*, we can define ∇ operator:

∇≡ 

 


 

  (2-57)

Then, ,     (51)

(e.g)

In Cartesian coordinates     =   ,    (10) ;
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(2-57)Cart. =(2-56)

In cylindrical coordinates     ,      (22) ;

∇ 


  





 


(2-57)cyl.

In spherical coordinates      ,      (28);

∇ 

  





 





(2-57)sph.

In toroidal coordinates    ,    (47);

∇≡ 


  





 





(2-57)tor.

Notes) Properties of ∇ operator:

i) ∇  ∇ ∇

ii) ∇  ∇  ∇

iii) ∇  
 ∇



B. Divergence of Vector Field

radiating flux spherical surface

diverging flux

source

uniform flux

high flux low flux

 plane

Flux lines = Directed field lines

1) Definition of divergence

Physical definition:

Net outward flux of the vector quantity per unit volume

Mathematical definition:

 ≡ ∇⋅ ≜ lim
∆→



∆




⋅ 


(2-58)

2) Calculation of divergence in orthogonal curvilinear coordinates

A differential volume in Cartesian coord.
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⋅ (2-59)
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⋅  ⋅∆  ⋅∆∆

 ∆  ∆∆ (2-60)
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∆∆ (2-61)

Likewise, 


⋅   ∆  ∆∆ (2-62)
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∆∆ (2-63)

Then, (2-61) + (2-63) gives












⋅ ≈ 

 


∆∆∆  

 


∆ (2-64)

Similarly, 










⋅ ≈ 

 


∆ (2-65)












⋅ ≈ 

 


∆ (2-66)

Finally, (2-64)+(2-65)+(2-66) in (2-59) results in




⋅ ≈ 







 


∆ (2-67)

lim
∆→
∆

 
in (2-58) yields in Cartesian coordinates,

∇⋅  








(2-68)

Generalization in orthogonal curvilinear coordinates    :

∇⋅  

 










 




 (2-70)
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(52)

In cylindrical coordinates     ,      (22) ;

∇⋅  





 





 


(2-70)cyl.

In spherical coordinates      ,      (28);

∇⋅  
 




 





 





(2-70)sph.

In toroidal coordinates    ,    (47);

φ φ θ θ (2-70)tor.

 ∆≪

 ∆≪

 
    



Notes)

∇⋅  

⇒  : Solenoidal field = Divergenceless field = Divergence-free field

i) Azimuthal magnetic field produced by straight wire current

  

in (2-70)cyl. :

∇⋅  





 





 



 

ii) Divergence of air flow velocity 

expanding flow     ⇒ ∇⋅  


 

air flow sources ∇⋅ ≠ 

uniform flow     ⇒ ∇⋅  


 

iii) ∇⋅ is a measure of the strength of the flow source or sink.

(outflux influx) (outflux = influx)≷

∇⋅ ≷ 

 










 

 
  

∇⋅  



3) Divergence ( or Gauss's ) theorem




∇⋅   


⋅ (2-75)

volume integral of the divergence

= total outflux thru surface  bounding volume 

(Proof) From (2-58),

lim
∆→

 

≫

∇⋅∆  lim
∆→

 

≫




⋅

by definition by canceling contributions
of volume integral from internal surfaces 




∇⋅  


⋅ ⇒ (2-75)

(e.g. 2-13)

Spherical shell volume enclosed by a multiply connected surface

∇⋅  












  



∇⋅  



 

 

  



 



 
 

 (2-82)
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 (2-83)
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lim
∆→



∆



⋅ 



C. Curl of Vector Field

whose direction is determined
by the right-hand rule

1) Definition of curl

Physical definition:

Vector that has the maximum circulation of  per unit area

Mathematical definition:

  ≡ ∇× ≜ (2-85)

Notes)

Circulation of  around contour  ≙ 

⋅ (2-84)

i) If    = force, then 


⋅ = work done by the force

ii) If    = electric field, 


⋅ = e.m.f.(electromotive force)

iii) If    = flow velocity, 


⋅ = circulation of fluid

(e.g.) water trough

∴ ∇× is a measure of the strength of the vortex source or sink.

∇×    ∇×   








≡ 

 





 

       


   
 

 



 

≡



 lim
∆

→∆
 



⋅

 lim
∆∆→∆∆

 


  
⋅

2) Calculation of curl in orthogonal curvilinear coordinates

 component of ∇× in orthogonal curvilinear coordinates   :

(2-85)

∇×
 ⋅∇× (2-86)

In Cartesian coordinates     =   ,

∇× ⋅∇× (2-87)




  
⋅  

















⋅ (2-87)*




⋅  ⋅∆  ⋅∆

  ∆ ∆
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∆ (2-89)

Likewise, 


⋅  ⋅∆  ⋅∆
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∆ (2-91)

Then, (2-89) + (2-91) gives












⋅ ≈ 

 


∆∆ (2-92)

Similarly, 










⋅ ≈ 

 


∆∆ (2-93)

Finally, (2-92)+(2-93) in (2-87) results in

∇×  





(2-94)

∆ ∆ 
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Also, y- and z-components can be found by a cyclic order in x, y,

and z as follows:

∇×  



   



   



  (2-95)

  
  











  

(2-96)

Generalization in orthogonal curvilinear coordinates    :













ˆ ˆ ˆ

(2-97)

ε (53)

or ε by summation convention (53)*

In cylindrical coordinates     ,      (22) ;

∇×  

  
  











  

(2-97)cyl. , (2-98)

In spherical coordinates      ,      (28);

∇× 
  

  
  











  

(2-70)sph. , (2-99)

In toroidal coordinates    ,    (47);

∇×













ˆ φ̂ θ̂

φ θ

φ θ

(2-70)tor.

Note)

∇×  

⇒  : Curl-free field = Irrotational (or lamellar) field due to no rotation

= Conservative field due to 

⋅ = 0



3) Stokes's theorem




∇×⋅   

⋅ (2-103)

open surface integral of the curl

= closed line integral along contour  bounding surface 

(Proof) From (2-85),

lim
∆→

 

≫

∇×⋅∆  lim
∆→

 

≫




⋅

by definition by canceling contributions
of surface integral from internal contours 




∇×⋅  

⋅ ⇒ (2-103)

Note) For any closed surface  with no open surface with a rim ,




∇×⋅   (2-103)*

D. Laplacian Operator

1) Definition of Laplacian

Laplacian = divergence of gradient (of a scalar or a vector)

∇  ≜∇⋅∇ (54)

2) Calculation of Laplacian in orthogonal curvilinear coordinates

(52) ⇒ ∇⋅ 



  





 
 

(51) ⇒ ∇

(52), (51) in (54):

∇  ≜∇⋅∇  



  





 






  (55)




 

 

 







⇓ ⇓



In Cartesian coordinates     =   ,    (10) ;

∇   

















 

 


 


 

(55)Car.

In cylindrical coordinates     ,      (22) ;

∇   




 
  




 
 

 

(55)cyl.

In spherical coordinates      ,      (28);

∇  
  

 





   
  

   
  







 




 
 



  
   




   
   




 

(55)sph.

In toroidal coordinates    ,    (47);

φ φ θ θ

 




 
  




 

 



 
 



 (55)tor.

E. Vector Identities

1) Two null identities

a) Identity I

The curl of gradient always results in a null vector.

∇×∇  ≡  (2-105)

(Proof 1) Using Stokes's theorem (2-103), (2-51)






∇×∇⋅   

∇⋅  




  (2-106, 107)

For any surface , ∇×∇   ⇒ (2-105)

(Proof 2) Using the notation (summation convention) & the symbol ,


∇×∇  

 
 

 

 
  by exchanging indices j & k

  

 
  by the property of symbol 

  

 
  since

 


 


  because a = - a only for a = 0.



Notes)

∇×∇  ∇×  

⇒ : a curl-free (conservative) vector field that can always

be expressed as the gradient of a scalar field (∇ ).

(e.g.) In electrostatics, ∇×  . Therefore,  can be

found from scalar electric potential  such that

  ∇. (2-108)

b) Identity II

The divergence of curl always vanishes.

∇⋅∇×  ≡  (2-109)

(Proof 1) Using divergence theorem (2-75) & Stokes's theorem (2-103),






∇⋅∇×   


∇×⋅ (2-110)

 


∇×⋅ 


∇×⋅
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⋅
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⋅


 

(Proof 2) Using the notation (summation convention) & the symbol ,


∇⋅∇×  


∇×  

 
  = 

 
 

 

 
  by exchanging indices i & j

  

 
  by the property of symbol 

  

 
  since

 


 


  because a = - a only for a = 0.

Notes)

∇⋅∇×  ∇⋅  

⇒ : a divergence-free (solenoidal) vector field that can be

expressed as the curl of another vector field (∇× ).

(e.g.) For the magnetic flux density , ∇⋅  . Therefore,

 can be found from the vector magnetic potential 

such that   ∇×. (2-112)

  

≡

≡

  
  



2) Some other useful vector identities

See the inside of the front cover of the text

or 'NRL Plasma Formulary' on the lecture note website.

a) ∇  ∇   ∇

b) ∇⋅  ∇⋅  ⋅∇ (2-114)

c) ∇×  ∇×  ∇× (2-115)

d) ∇⋅ ×  ⋅∇× ⋅∇×

e) ∇× ×  ⋅∇ ⋅∇  ∇⋅   ∇⋅

f) ∇⋅  ⋅∇  ⋅∇   × ∇×   × ∇×

g) ∇× ∇×  ∇∇⋅  ∇

(Proof d) ∇⋅ ×  ∇  ×  ∇ 

  ∇∇

 ∇ ∇

 ∇× ∇×

 ⋅∇× ⋅∇×

(Proof g) ∇×∇×  ∇∇×

 ∇∇

  ∇∇

 ∇∇ ∇∇

 ∇∇⋅∇


⇒ ∇×∇×  ∇∇⋅  ∇

F. Field Classification

∇⋅  :  = Solenoidal (or Divergenceless or Divergence-free) field

∇×  :  = Irrotational (or Conservative or lamellar or Curl-free) field

i) ∇⋅  & ∇× 

(e.g.) In electrostatics in charge free regions, ∇⋅ , ∇×  

ii) ∇⋅  & ∇×≠ 

(e.g.) In magnetostatics in current carrying medium, ∇⋅ ,∇× 

iii) ∇⋅≠  & ∇× 

(e.g.) In electrostatics in charged regions, ∇⋅  , ∇×  

iv) ∇⋅≠  & ∇×≠ 

(e.g.) In electromagnetics in charged regions with time-varying magnetic fields,

∇⋅ , ∇×  





Helmholtz's Theorem :

Both ∇⋅ and ∇× are specified everywhere.

⇒ The field vector  is determined.

(The strengths of both the flow and vortex sources are specified.

⇒ The field vector  is determined.)

In the electromagnetic model based on the deductive (axiomatic) approach,

∇⋅ and ∇× for electromagnetic fields are specified by the fundamental

postulates (axioms), which will then develop other theorems and

phenomena.

Homework Set 2

1) P.2-18

2) P.2-20

3) P.2-21

4) P.2-23

5) P.2-26

6) P.2-29. In addition, also prove (2-115) by using summation convention

and Levi-Civita symbol .

7) P.2-30


