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Sign-bit Conversion from SD to 2’s complement
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Objectives

After completing this chapter, you will be able to:

 Describe the importance and essential of verification

 Understand the essential of timing and functional 

verification

 Describe the essential issues of simulators

 Understand the essential principles of test bench designs

 Understand the principle of dynamic timing analysis

 Understand the principle of static timing analysis

 Understand issues of coverage analysis

 Describe the ISE design flow and related issues
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Verification

 The goal of verification is to ensure a module 100% correct 
in its functionality and timing.

 On average, design teams usually spend 50 ~ 70% of their 
time to verify their designs.

 Functional verification only considers if the logic function of 
the design meets the specifications.

 simulation

 formal proof

 Timing verification considers whether the design meets the 
timing constraints.

 dynamic timing simulation

 static timing analysis
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Functional Verification

 Simulated-based functional verification

 The design is placed under a test bench. 

 Input stimuli are applied to the design. 

 The outputs from the design are compared with the 

reference outputs. 

 Formal verification

 A protocol, an assertion, a property, or a design rule are 

proved to hold for all possible cases in the design. 
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Design Models

 Black box model

 Only the external interfaces (namely, the input and output behavior 

of the design) are known. 

 The internal signals and constructs are unknown (namely, black). 

 Most simulation-based verifications begin with this model.

 White box model

 Both the external interfaces and internal structures are known. 

 Most formal verification environments use this model.

 Gray box model

 This model is a combination of both black box and white box.

 Some of the internal signals in addition to the external interfaces are 

known. 

 Most simulation-based verification environments use this model.
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Assertion-Based Verification

 Types of assertions:

 Static assertion: A static assertion is an atomic and simple 

check for the absence of an event. 

 Temporal assertion: Several events occur in sequence and 

many events have to occur before the final asserted event 

can be checked. 
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Simulation-Based Verification

 Simulation-based verification

 Test signals are applied to the DUT. 

 The results are stored and analyzed. 

 If the result checking and code coverage analysis meet 

the expected

results, then we 

have done it. 

Functional test planDesign specification

Device under test

(DUT)

Result checking

Meet the

expected results

No Yes
Done
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Hierarchy of Functional Verification

 Designer level (or block-level)

 Verilog HDL or VHDL is used for both design and 
verification.

 Unit level

 Randomized stimuli and autonomous checking are 
applied.

 Core level

 A well-defined process coupled with well-documented 
specification are applied.

 Chip level

 Ensuring that all units are properly connected and the 
design adheres to the interface protocols of all units.
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A Verification Test Set  

 Verification test set includes at least:

 Compliance tests  

 Corner case tests  

 Random tests  

 Real code tests  

 Regression tests  

 Property check  
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Formal Verification

 Formal verification 

 It uses mathematical techniques to prove an assertion or a 

property of the design.

 It proves a design property by exploring all possible ways 

to manipulate the design. 

 It can prove the correctness

of a design without doing 

simulation.

Verilog RTL design

Logic synthesis

Gate-level netlist

Physical synthesis

Physical description

Compare

Compare
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Simulations

 Types of simulations

 Behavioral simulation

 Functional simulation

 Gate-level (logic) simulation

 Switch-level simulation  

 Circuit-level (transistor-level) simulation
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Variations of Simulations

 Software simulation

 It is typically used to run Verilog HDL-based designs.

 Software simulations consume large amount of time.

 Hardware acceleration

 It is used to speed up existing simulation.

 It can accelerate simulations by two to three orders of 

magnitude.

 Hardware emulation

 It is used to verify the design in a real-world environment.

 It is used to assert the design is stable enough.
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An Architecture of HDL Simulators
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Types of Software Simulators

 Interpreted simulators

 They run the simulation interpretively.

 For example, Cadence Verilog-XL simulator.

 Compiled code simulators

 They convert the source code to an equivalent C code, 

then compile and run the C code.

 For example, Synopsys VCS simulator.

 Native code simulators

 They convert the source code directly to binary code for a 

specific machine platform.

 For example, Cadence Verilog-NC simulator.
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Software Simulators

 Event-driven simulators process elements in the design only 

when signals at the inputs of these elements change.

 They process all elements in the design, irrespective of 

changes in signals.

 Cycle-based simulators work on a cycle-by-cycle basis.

 They collapse combinational logic into equations.

 They are useful for synchronous designs where 

operations happen only at active clock edges.

 Timing information between two clock edges is lost.

 Most cycle-based simulators are integrated with an event-

driven simulator.
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An Event-Driven Simulation
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Test Bench Design Principles

 The test bench should 

 generate stimuli.

 check responses in terms of test cases, 

 employ reusable verification components. 

 Two types of test benches: ?

 deterministic:  verify basic functions in an early stage

 self-checking: automate the tedious result checking 
process

 Options of choosing test vectors: 

 Exhaustive test

 Random test

 Verification vector files
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Test Bench Design Principles

 Two basic choices of stimulus generation are:

 Deterministic versus random stimulus generation

 Pregenerated test case versus on-the-fly test case 

generation

 Types of result checking:

 on-the-fly checking 

 end-of-test checking

 Result analysis:

 Waveform viewers 

 Log files
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Test Bench Design Principles

 Types of automated response checking:

 Golden vectors: known outputs

 Reference model

 Transaction-based model

(a) Golden vectors

Golden model

Device under test

Pass/fail

Stimuli

Compare

(b) Reference model

Reference model

Device under test

Pass/failStimuli Compare

(c) Transaction-based model

Scoreboard

Device under test

Pass/failStimuli Compare
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Test Bench Design Principles

 Guidelines

 The time unit set in timescale must be matched with the 

actual propagation delay of gate-level circuitry.

 Set reset signal properly, especially, the time interval of 

the reset signal must be large enough; otherwise, the 

initial operation of the gate-level simulation may not 

work properly.

 Coding style:

 All response checking should be done automatically.
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Test Bench Designs --- A Trivial Example

// test bench design example 1: exhaustive test.

`timescale 1 ns / 100 ps

module nbit_adder_for_tb;

parameter n = 4;

reg  [n-1:0] x, y;

reg              c_in;

wire [n-1:0] sum;

wire c_out;

// Unit Under Test port map

nbit_adder_for UUT ( .x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));

reg [2*n-1:0] i;

initial  for (i = 0; i <= 2**(2*n)-1; i = i + 1) begin

x[n-1:0] = i[2*n-1:n]; y[n-1:0] = i[n-1:0]; c_in =1'b0; #20;  end

initial     #1280 $finish;

initial    $monitor($realtime,“ns %h %h %h %h", x, y, c_in, {c_out, sum});

endmodule
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Test Bench Designs --- A Trivial Example
// test bench design example 2: Random test.
`timescale 1 ns / 100 ps
module nbit_adder_for_tb1;
parameter n = 4;
reg  [n-1:0] x, y;
reg          c_in;
wire [n-1:0] sum;
wire c_out;
// Unit Under Test port map

nbit_adder_for UUT ( .x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
integer i;
reg [n:0] test_sum;
initial  for (i = 0; i <= 2*n ; i = i + 1)  begin 

x = $random % 2**n;   y = $random % 2**n;
c_in =1'b0;                    test_sum = x + y;

#15; if (test_sum != {c_out, sum}) $display("Error iteration %h\n", i);
#5;       end
initial   #200 $finish;
initial   $monitor($realtime,“ns %h %h %h %h", x, y, c_in, {c_out, sum});
endmodule
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Test Bench Designs --- A Trivial Example

// test bench design example 3: Using Verification vector files.

`timescale 1 ns / 100 ps

module nbit_adder_for_tb2;

//Internal signals declarations:

parameter n = 4;

parameter m = 8;

reg   [n-1:0] x, y;

reg               c_in;

wire [n-1:0] sum;

wire c_out;

// Unit Under Test port map

nbit_adder_for UUT (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));

integer i;

reg [n-1:0] x_array [m-1:0];

reg [n-1:0] y_array [m-1:0];

reg [n:0] expected_sum_array [m-1:0];
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Test Bench Designs --- A Trivial Example

initial begin // reading verification vector files

$readmemh("inputx.txt", x_array);

$readmemh("inputy.txt", y_array);

$readmemh("sum.txt", expected_sum_array);

end

initial  

for  (i = 0; i <= m - 1 ; i = i + 1) begin 

x = x_array[i];   y = y_array[i];

c_in =1'b0;

#15; if  (expected_sum_array[i] !=  {c_out, sum}) 

$display("Error iteration %h\n", i);

#5;    end

initial

#200 $finish;

initial

$monitor($realtime,“ns %h %h %h %h", x, y, c_in, {c_out, sum});

endmodule
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Coverage Analysis

 Two major types verification coverage:

 Structural coverage denotes the representation of the 

design to be covered. 

 Functional coverage means the semantics of the design 

implementation to be covered.

What does 100% functional coverage mean?

 You have covered all the coverage points you included in 

the simulation.

 Functional coverage let you know if you are done.

 A high coverage number is by no means an indication 

that the job is done.
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Structural (or code) Coverage

 Structural coverage: 

 statement coverage

 branch or condition coverage: all branch sub-conditions

 toggle coverage: signals

 trigger coverage: signals in the sensitivity list of always 

block

 expression coverage: similar to condition coverage, but 

covers signal assignments instead of branch decision

 path coverage: paths

 finite-state machine coverage:  state coverage and 

transition coverage
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Functional Coverage

 Functional coverage

 Item coverage

 Cross coverage

 Transition coverage

 Comments:

 The quality of coverage analysis strongly depends on 

how well the test bench is.
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Why Static Timing Analysis?

 Timing analysis is to estimate when the output of a given 

circuit gets stable. 

 The purposes of timing analysis are as follows:

 Timing verification

• Verifies if a design meets a given timing constraint.

• Example: cycle-time constraint.

 Timing optimization

• Needs to identify critical portion of a design for further 

optimization.

• Identifies critical paths.
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Why Static Timing Analysis?

 The output needs to be stable by t = T for the correct 
functionality. But how to make sure of it?

 At least two approaches:

 Dynamic timing simulation

 Static timing analysis

Why static timing analysis?

 Using dynamic timing simulation has posed a bottleneck 
for large complex designs.

 Dynamic simulation relies on the quality and coverage of 
the test bench used for verification.

t = 0 t = T
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CK
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Static Timing Analysis

 Static timing analysis (STA): without having to simulate 

clock cycles.

 No combinational feedback loops are allowed.

 All register feedback paths are broken by the clock 

boundary.

 The delay of each path is calculated.

 All path delays are checked to see if timing constraints 

have been met.
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Static Timing Analysis

 Note that: 

 Comprehensive sets of test benches are still needed to 

verify the functionality of the source RTL.

 STA is used to verify timing.

 Formal verification technique is usually used to verify the 

functionality of the gate-level netlist against the source 

RTL.
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Static Timing Analysis

 In STA, designs are broken into sets of signal paths, each 

path has a start point and an endpoint.

 Start points:

• Input ports

• Clock pins of storage elements

 Endpoints:

• Output ports

• Data input pins of storage elements
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What to Analyze in STA

 Four types of path analysis:

 entry path (input-to-D path)

 stage path (register-to-register path or clock-to-D path)

 exit path (clock-to-output path)

 pad-to-pad path (port-to-port path)
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Timing Specifications: port-related constraints

 Input delay (offset in) constraint applies to paths from input 

pads to the input of a storage element.

 It specifies the arrival time of the input signal relative to 

the active edge of the clock. 
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Timing Specifications: port-related constraints

 Output delay (offset out) constraint applies to paths from the 

clock input of a storage element to output pads.

 It specifies the latest time that a signal from the output of 

a register may reach to output pads.
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Timing Specifications: port-related constraints

 Input-output (pad to pad) constraint applies to paths from 

input pads to output pads without passing through any 

register
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Timing Specifications: clock-related constraints

 Cycle time (period) constraint applies to the paths between 

registers and specifies the maximum period of the clock of a 

synchronous circuit.

 clock jitter, clock-to-Q delay, slew rate, clock skew

 Set-up time, hold time
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Timing Specifications --- Path Groups

 The paths are grouped according to the clocks controlling 

their endpoints.

 Each clock will be associated with a set of paths called a 

path group.

 The default path group comprises all paths not associated 

with a clock.
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Factors Affecting Timing

Factors that affect timing are:

• Clock jitter

• Clock-to-Q delay:

• Input pin capacitance

• Slew rate

• Interconnect loading

• Fan-out loading

• Clock skew

• Temperature
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Setup Time and Hold Time Checks

 Setup time: The minimum time that data must stabilize 

before the active clock transition.

 The maximum data path is used to determine whether 

setup constraint is met or not.

 Hold time: The minimum time that data must remain stable 

after the active clock transition.

 The minimum data path is used to determine if hold time 

is met.
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Critical Paths

 A critical path is the path of longest propagation delay. 

 A critical path is a combinational logic path that has 

negative or smallest  slack time, where slack time is 

defined as:

slack = required time – arrival time

= requirement – datapath (in ISE)

 Critical paths limit the system performance.

 Critical paths not only tell us the system cycle time, it 

also points out which part of the combinational logic 

must be changed to improve system performance.
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Timing Exceptions

 Timing analysis tools usually treat all paths in the design as 

single-cycle by default and perform STA accordingly. 

 Two common timing exceptions:

 False paths: A false path is identified as a timing path that 

does not propagate a signal.

 Multi-cycle paths: In the model, data may take more than 

one clock cycle to reach its destination.
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False Paths

 False paths are paths that static timing analysis identifies as 

failing timing, but that the designer knows are not actually 

failing.

 A false path is a timing path that does not propagate a 

signal.
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Multi-Cycle Paths --- A Trivial Example

// a multiple cycle example

module multiple_cycle_example(clk, data_a, data_b, data_c, qout_a, qout_b, qout_c);

parameter N = 8;

input   clk;

input   [N-1:0] data_a, data_b, data_c;

output  reg [N-1:0] qout_a, qout_b, qout_c;

// tTrivial multiple-cycle operations.

always @(posedge clk) begin

qout_a <= data_a * 5;

@(posedge clk)  qout_b <= data_b + 3;

@(posedge clk)  qout_c <= data_c - 7;

end

endmodule 

Q: Explain the operation of above code.
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Multi-Cycle Paths --- A Trivial Example
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Multi-Cycle Paths --- Timing Relationship

quot_a

Setup time
Hold time

quot_b

Setup time Hold time

(a) Single-cycle

timing relationship

(b) Two-cycle timing

relationship

quot_c

Setup time
Hold time(c) Three-cycle timing

relationship

Notice that:

STA tools treat all paths in the design as a single-cycle by default and perform 

the STA accordingly. So you need to tell them which paths are multi-cycle 

paths.
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An Example of Practical Verification Process

 Simulation

 Functional (behavioral) simulation

 Code coverage analysis

 Assertion (property) checking

 Gate-level simulation

 Dynamic timing simulation (gate-level simulation + SDF back 

annotation)

 Static timing analysis

 Critical paths

 Timing violations

 Prototyping

 FPGA prototyping

 Cell-based prototyping


