
Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-1

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

-a4x0 a3x0 a2x0 a1x0 a0x0

-a4x1 a3x1 a2x1 a1x1 a0x1

-a4x2 a3x2 a2x2 a1x2 a0x2

-a4x3 a3x3 a2x3 a1x3 a0x3

-a0x4

p0p1-p9 p2p3p4p5p6p7p8

+

-a1x4-a2x4-a3x4a4x4

2023 22 2129
2425262728

Two's Complement Multiplication

0

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2

p0p1-p9 p2p3p4p5p6p7p8

2023 22 2129 2425262728

p0p1p9 p2p3p4p5p6p7p8

2023 22 21-29 2425262728

Two's complement number in result

SD number in accumulating partial products

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

-a4x0 a3x0 a2x0 a1x0 a0x0

-a4x1 a3x1 a2x1 a1x1 a0x1

-a4x2 a3x2 a2x2 a1x2 a0x2

-a4x3 a3x3 a2x3 a1x3 a0x3

-a0x4

p0p1-p9 p2p3p4p5p6p7p8

+

-a1x4-a2x4-a3x4a4x4

Baugh-Wooley Two’s Complement Multiplier

p0p1p9 p2p3p4p5p6p7p8

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

a0x4

p0p1-p9 p2p3p4p5p6p7p8

+

a1x4a2x4a3x4a4x4

x4

a4

x4

a4

-1

Baugh-Wooley Two’s Complement Multiplier

-a4a4
-x4x4

-a4a4
-x4x4

-a4a4
-x4x4

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

a0x4

p0p1p9 p2p3p4p5p6p7p8

+

a1x4a2x4a3x4a4x4

x4

a4

x4

a4

1

Baugh-Wooley Multiplier

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-6

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

a0x4

p0p1-p9 p2p3p4p5p6p7p8

+

a1x4a2x4a3x4a4x4

-1

Modified Baugh-Wooley Multiplier

-1

-1

-1

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-7

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

a0x4

p0p1
-p9 p2p3p4p5p6p7p8

+

a1x4a2x4a3x4a4x4

+1

Modified Baugh-Wooley Multiplier

-1

-1

-1

-1

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-8

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

a0x4

p0p1-p9 p2p3p4p5p6p7p8

+

a1x4a2x4a3x4a4x4

+1

Modified Baugh-Wooley Multiplier

-1

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-9

p0p1-p9 p2p3p4p5p6p7p8

2023 22 2129 2425262728

p0p1p9 p2p3p4p5p6p7p8

2023 22 21-29 2425262728

Two's complement number in result

SD number in accumulating partial products

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-10

Sign-bit Conversion from SD to 2’s complement

-(1-C) p8

+

a4x4-1

(1-C) p8

+

a4x4

-cc

1

-p9 p8

+

a4x4-1

p9 p8

+

a4x4

-cc

1

p9 p8

+

a4x4

c

1

(1+C) p8

+

a4x4

c

1

p9 =(1-C) p9 =(1+C)

A: SD B: 2’s complement C: 2’s complement

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-11

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

a0x4

p0p1-p9 p2p3p4p5p6p7p8

+

a1x4a2x4a3x4a4x4

+1

Modified Baugh-Wooley Multiplier: A

-1

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-12

-1 0 0 0 0

-1 0 0 0 0x

1 0 0 0 0

p0p1-p9 p2p3p4p5p6p7p8

+

1

Example

-1

(-16) x (–16) = 256

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

1 carry

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-13

-a4 a3 a2 a1 a0

-x4 x3 x2 x1 x0x

a4x0 a3x0 a2x0 a1x0 a0x0

a4x1 a3x1 a2x1 a1x1 a0x1

a4x2 a3x2 a2x2 a1x2 a0x2

a4x3 a3x3 a2x3 a1x3 a0x3

a0x4

p0p1p9 p2p3p4p5p6p7p8

+

a1x4a2x4a3x4a4x4

1

Modified Baugh-Wooley Multiplier: B,C

1

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-14

-1 0 0 0 0

-1 0 0 0 0x

1 0 0 0 0

p0p1p9 p2p3p4p5p6p7p8

+

1

Example: B

1

(-16) x (–16) = 256

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

-1 carry

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-15

-1 0 0 0 0

-1 0 0 0 0x

1 0 0 0 0

p0p1p9 p2p3p4p5p6p7p8

+

1

Example: C

1

(-16) x (–16) = 256

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 0 1 0 0 0 0 0 0 0 0

1 carry

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-1613-16

Chapter 13: Verification

Prof. Soo-Ik Chae

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-1713-17

Objectives

After completing this chapter, you will be able to:

 Describe the importance and essential of verification

 Understand the essential of timing and functional

verification

 Describe the essential issues of simulators

 Understand the essential principles of test bench designs

 Understand the principle of dynamic timing analysis

 Understand the principle of static timing analysis

 Understand issues of coverage analysis

 Describe the ISE design flow and related issues

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-1813-18

Verification

 The goal of verification is to ensure a module 100% correct
in its functionality and timing.

 On average, design teams usually spend 50 ~ 70% of their
time to verify their designs.

 Functional verification only considers if the logic function of
the design meets the specifications.

 simulation

 formal proof

 Timing verification considers whether the design meets the
timing constraints.

 dynamic timing simulation

 static timing analysis

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-1913-19

Functional Verification

 Simulated-based functional verification

 The design is placed under a test bench.

 Input stimuli are applied to the design.

 The outputs from the design are compared with the

reference outputs.

 Formal verification

 A protocol, an assertion, a property, or a design rule are

proved to hold for all possible cases in the design.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2013-20

Design Models

 Black box model

 Only the external interfaces (namely, the input and output behavior

of the design) are known.

 The internal signals and constructs are unknown (namely, black).

 Most simulation-based verifications begin with this model.

 White box model

 Both the external interfaces and internal structures are known.

 Most formal verification environments use this model.

 Gray box model

 This model is a combination of both black box and white box.

 Some of the internal signals in addition to the external interfaces are

known.

 Most simulation-based verification environments use this model.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2113-21

Assertion-Based Verification

 Types of assertions:

 Static assertion: A static assertion is an atomic and simple

check for the absence of an event.

 Temporal assertion: Several events occur in sequence and

many events have to occur before the final asserted event

can be checked.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2213-22

Simulation-Based Verification

 Simulation-based verification

 Test signals are applied to the DUT.

 The results are stored and analyzed.

 If the result checking and code coverage analysis meet

the expected

results, then we

have done it.

Functional test planDesign specification

Device under test

(DUT)

Result checking

Meet the

expected results

No Yes
Done

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2313-23

Hierarchy of Functional Verification

 Designer level (or block-level)

 Verilog HDL or VHDL is used for both design and
verification.

 Unit level

 Randomized stimuli and autonomous checking are
applied.

 Core level

 A well-defined process coupled with well-documented
specification are applied.

 Chip level

 Ensuring that all units are properly connected and the
design adheres to the interface protocols of all units.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2413-24

A Verification Test Set

 Verification test set includes at least:

 Compliance tests

 Corner case tests

 Random tests

 Real code tests

 Regression tests

 Property check

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2513-25

Formal Verification

 Formal verification

 It uses mathematical techniques to prove an assertion or a

property of the design.

 It proves a design property by exploring all possible ways

to manipulate the design.

 It can prove the correctness

of a design without doing

simulation.

Verilog RTL design

Logic synthesis

Gate-level netlist

Physical synthesis

Physical description

Compare

Compare

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2613-26

Simulations

 Types of simulations

 Behavioral simulation

 Functional simulation

 Gate-level (logic) simulation

 Switch-level simulation

 Circuit-level (transistor-level) simulation

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2713-27

Variations of Simulations

 Software simulation

 It is typically used to run Verilog HDL-based designs.

 Software simulations consume large amount of time.

 Hardware acceleration

 It is used to speed up existing simulation.

 It can accelerate simulations by two to three orders of

magnitude.

 Hardware emulation

 It is used to verify the design in a real-world environment.

 It is used to assert the design is stable enough.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2813-28

An Architecture of HDL Simulators

Parsing

Elaboration

Analysis

Optimization

Simulation engineCode generation

Simulation control

User

Front

end

Back

end

RTL code (source)

Results

Compiler

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-2913-29

Types of Software Simulators

 Interpreted simulators

 They run the simulation interpretively.

 For example, Cadence Verilog-XL simulator.

 Compiled code simulators

 They convert the source code to an equivalent C code,

then compile and run the C code.

 For example, Synopsys VCS simulator.

 Native code simulators

 They convert the source code directly to binary code for a

specific machine platform.

 For example, Cadence Verilog-NC simulator.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3013-30

Software Simulators

 Event-driven simulators process elements in the design only

when signals at the inputs of these elements change.

 They process all elements in the design, irrespective of

changes in signals.

 Cycle-based simulators work on a cycle-by-cycle basis.

 They collapse combinational logic into equations.

 They are useful for synchronous designs where

operations happen only at active clock edges.

 Timing information between two clock edges is lost.

 Most cycle-based simulators are integrated with an event-

driven simulator.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3113-31

An Event-Driven Simulation

x

y

z

f

a

b

2

4

2

1

1

1

1

0

c

1

0

1

t+max
t + 0
t + 1
t + 2
t + 3
t + 4
t + 5
t + 6

t + 7
t + 8

(a) A circuit example

(b) Timing wheel(c) Scheduled events and the activity list

t = 0

1

2

3

4

5

6

7

Scheduled

events

Activity

list

x = 0 a, c

c = 1 b

a = 0 f

f = 0

b = 1 f

f = 1

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3213-32

Test Bench Design Principles

 The test bench should

 generate stimuli.

 check responses in terms of test cases,

 employ reusable verification components.

 Two types of test benches: ?

 deterministic: verify basic functions in an early stage

 self-checking: automate the tedious result checking
process

 Options of choosing test vectors:

 Exhaustive test

 Random test

 Verification vector files

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3313-33

Test Bench Design Principles

 Two basic choices of stimulus generation are:

 Deterministic versus random stimulus generation

 Pregenerated test case versus on-the-fly test case

generation

 Types of result checking:

 on-the-fly checking

 end-of-test checking

 Result analysis:

 Waveform viewers

 Log files

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3413-34

Test Bench Design Principles

 Types of automated response checking:

 Golden vectors: known outputs

 Reference model

 Transaction-based model

(a) Golden vectors

Golden model

Device under test

Pass/fail

Stimuli

Compare

(b) Reference model

Reference model

Device under test

Pass/failStimuli Compare

(c) Transaction-based model

Scoreboard

Device under test

Pass/failStimuli Compare

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3513-35

Test Bench Design Principles

 Guidelines

 The time unit set in timescale must be matched with the

actual propagation delay of gate-level circuitry.

 Set reset signal properly, especially, the time interval of

the reset signal must be large enough; otherwise, the

initial operation of the gate-level simulation may not

work properly.

 Coding style:

 All response checking should be done automatically.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3613-36

Test Bench Designs --- A Trivial Example

// test bench design example 1: exhaustive test.

`timescale 1 ns / 100 ps

module nbit_adder_for_tb;

parameter n = 4;

reg [n-1:0] x, y;

reg c_in;

wire [n-1:0] sum;

wire c_out;

// Unit Under Test port map

nbit_adder_for UUT (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));

reg [2*n-1:0] i;

initial for (i = 0; i <= 2**(2*n)-1; i = i + 1) begin

x[n-1:0] = i[2*n-1:n]; y[n-1:0] = i[n-1:0]; c_in =1'b0; #20; end

initial #1280 $finish;

initial $monitor($realtime,“ns %h %h %h %h", x, y, c_in, {c_out, sum});

endmodule

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3713-37

Test Bench Designs --- A Trivial Example
// test bench design example 2: Random test.
`timescale 1 ns / 100 ps
module nbit_adder_for_tb1;
parameter n = 4;
reg [n-1:0] x, y;
reg c_in;
wire [n-1:0] sum;
wire c_out;
// Unit Under Test port map

nbit_adder_for UUT (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));
integer i;
reg [n:0] test_sum;
initial for (i = 0; i <= 2*n ; i = i + 1) begin

x = $random % 2**n; y = $random % 2**n;
c_in =1'b0; test_sum = x + y;

#15; if (test_sum != {c_out, sum}) $display("Error iteration %h\n", i);
#5; end
initial #200 $finish;
initial $monitor($realtime,“ns %h %h %h %h", x, y, c_in, {c_out, sum});
endmodule

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3813-38

Test Bench Designs --- A Trivial Example

// test bench design example 3: Using Verification vector files.

`timescale 1 ns / 100 ps

module nbit_adder_for_tb2;

//Internal signals declarations:

parameter n = 4;

parameter m = 8;

reg [n-1:0] x, y;

reg c_in;

wire [n-1:0] sum;

wire c_out;

// Unit Under Test port map

nbit_adder_for UUT (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));

integer i;

reg [n-1:0] x_array [m-1:0];

reg [n-1:0] y_array [m-1:0];

reg [n:0] expected_sum_array [m-1:0];

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-3913-39

Test Bench Designs --- A Trivial Example

initial begin // reading verification vector files

$readmemh("inputx.txt", x_array);

$readmemh("inputy.txt", y_array);

$readmemh("sum.txt", expected_sum_array);

end

initial

for (i = 0; i <= m - 1 ; i = i + 1) begin

x = x_array[i]; y = y_array[i];

c_in =1'b0;

#15; if (expected_sum_array[i] != {c_out, sum})

$display("Error iteration %h\n", i);

#5; end

initial

#200 $finish;

initial

$monitor($realtime,“ns %h %h %h %h", x, y, c_in, {c_out, sum});

endmodule

4

9

d

5

1

6

d

9

inputx.txt

1

3

d

2

d

d

c

6

inputy.txt

05

0c

1a

07

0e

13

19

0f

sum.txt

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4013-40

Coverage Analysis

 Two major types verification coverage:

 Structural coverage denotes the representation of the

design to be covered.

 Functional coverage means the semantics of the design

implementation to be covered.

What does 100% functional coverage mean?

 You have covered all the coverage points you included in

the simulation.

 Functional coverage let you know if you are done.

 A high coverage number is by no means an indication

that the job is done.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4113-41

Structural (or code) Coverage

 Structural coverage:

 statement coverage

 branch or condition coverage: all branch sub-conditions

 toggle coverage: signals

 trigger coverage: signals in the sensitivity list of always

block

 expression coverage: similar to condition coverage, but

covers signal assignments instead of branch decision

 path coverage: paths

 finite-state machine coverage: state coverage and

transition coverage

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4213-42

Functional Coverage

 Functional coverage

 Item coverage

 Cross coverage

 Transition coverage

 Comments:

 The quality of coverage analysis strongly depends on

how well the test bench is.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4313-43

Why Static Timing Analysis?

 Timing analysis is to estimate when the output of a given

circuit gets stable.

 The purposes of timing analysis are as follows:

 Timing verification

• Verifies if a design meets a given timing constraint.

• Example: cycle-time constraint.

 Timing optimization

• Needs to identify critical portion of a design for further

optimization.

• Identifies critical paths.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4413-44

Why Static Timing Analysis?

 The output needs to be stable by t = T for the correct
functionality. But how to make sure of it?

 At least two approaches:

 Dynamic timing simulation

 Static timing analysis

Why static timing analysis?

 Using dynamic timing simulation has posed a bottleneck
for large complex designs.

 Dynamic simulation relies on the quality and coverage of
the test bench used for verification.

t = 0 t = T

D

CK

Q

Q'

D

CK

Q

Q'

Combinational
logic

clk

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4513-45

Static Timing Analysis

 Static timing analysis (STA): without having to simulate

clock cycles.

 No combinational feedback loops are allowed.

 All register feedback paths are broken by the clock

boundary.

 The delay of each path is calculated.

 All path delays are checked to see if timing constraints

have been met.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4613-46

Static Timing Analysis

 Note that:

 Comprehensive sets of test benches are still needed to

verify the functionality of the source RTL.

 STA is used to verify timing.

 Formal verification technique is usually used to verify the

functionality of the gate-level netlist against the source

RTL.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4713-47

Static Timing Analysis

 In STA, designs are broken into sets of signal paths, each

path has a start point and an endpoint.

 Start points:

• Input ports

• Clock pins of storage elements

 Endpoints:

• Output ports

• Data input pins of storage elements

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4813-48

What to Analyze in STA

 Four types of path analysis:

 entry path (input-to-D path)

 stage path (register-to-register path or clock-to-D path)

 exit path (clock-to-output path)

 pad-to-pad path (port-to-port path)

D

CK

Q

Q'

D

CK

Q

Q'1. Entry path 2. Stage path 3. Exit path

4. Pad-to pad path
Combinational

logic

Combinational
logic

Combinational
logic

Combinational
logic

clk

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-4913-49

Timing Specifications: port-related constraints

 Input delay (offset in) constraint applies to paths from input

pads to the input of a storage element.

 It specifies the arrival time of the input signal relative to

the active edge of the clock.

D

CK

Q

Q'

D

CK

Q

Q'

Combinational

logic

Combinational
logic

Combinational
logic

Combinational
logic

Offset inInput delay

Offset out

Output delay

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5013-50

Timing Specifications: port-related constraints

 Output delay (offset out) constraint applies to paths from the

clock input of a storage element to output pads.

 It specifies the latest time that a signal from the output of

a register may reach to output pads.

D

CK

Q

Q'

D

CK

Q

Q'

Combinational

logic

Combinational
logic

Combinational
logic

Combinational
logic

Offset inInput delay

Offset out

Output delay

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5113-51

Timing Specifications: port-related constraints

 Input-output (pad to pad) constraint applies to paths from

input pads to output pads without passing through any

register

D

CK

Q

Q'

D

CK

Q

Q'

Combinational

logic

Combinational
logic

Combinational
logic

Combinational
logic

Offset inInput delay

Offset out

Output delay

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5213-52

Timing Specifications: clock-related constraints

 Cycle time (period) constraint applies to the paths between

registers and specifies the maximum period of the clock of a

synchronous circuit.

 clock jitter, clock-to-Q delay, slew rate, clock skew

 Set-up time, hold time

D

CK

Q

Q'

D

CK

Q

Q'

Combinational

logic

Combinational
logic

Combinational
logic

Combinational
logic

Clock period

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5313-53

Timing Specifications --- Path Groups

 The paths are grouped according to the clocks controlling

their endpoints.

 Each clock will be associated with a set of paths called a

path group.

 The default path group comprises all paths not associated

with a clock.

D

CK

Q

Q'

D

CK

Q

Q'

Combinational

logic

Combinational
logic

Combinational
logic

Combinational
logic

clk 2

Default group

clk 1

Group for clk 1 Group for clk 2

Default group

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5413-54

Factors Affecting Timing

Factors that affect timing are:

• Clock jitter

• Clock-to-Q delay:

• Input pin capacitance

• Slew rate

• Interconnect loading

• Fan-out loading

• Clock skew

• Temperature

D

CK

Q

Q'

D

CK

Q

Q'

clock jitter Clock skew

t
q

Input capacitances

Interconnect capacitance

Self-loading capacitance

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5513-55

Setup Time and Hold Time Checks

 Setup time: The minimum time that data must stabilize

before the active clock transition.

 The maximum data path is used to determine whether

setup constraint is met or not.

 Hold time: The minimum time that data must remain stable

after the active clock transition.

 The minimum data path is used to determine if hold time

is met.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5613-56

Critical Paths

 A critical path is the path of longest propagation delay.

 A critical path is a combinational logic path that has

negative or smallest slack time, where slack time is

defined as:

slack = required time – arrival time

= requirement – datapath (in ISE)

 Critical paths limit the system performance.

 Critical paths not only tell us the system cycle time, it

also points out which part of the combinational logic

must be changed to improve system performance.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5713-57

Timing Exceptions

 Timing analysis tools usually treat all paths in the design as

single-cycle by default and perform STA accordingly.

 Two common timing exceptions:

 False paths: A false path is identified as a timing path that

does not propagate a signal.

 Multi-cycle paths: In the model, data may take more than

one clock cycle to reach its destination.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5813-58

False Paths

 False paths are paths that static timing analysis identifies as

failing timing, but that the designer knows are not actually

failing.

 A false path is a timing path that does not propagate a

signal.

1

0

1

0

50 ns

100 ns

50 ns

100 ns

M
u

x

M
u

x

False path
a

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-5913-59

Multi-Cycle Paths --- A Trivial Example

// a multiple cycle example

module multiple_cycle_example(clk, data_a, data_b, data_c, qout_a, qout_b, qout_c);

parameter N = 8;

input clk;

input [N-1:0] data_a, data_b, data_c;

output reg [N-1:0] qout_a, qout_b, qout_c;

// tTrivial multiple-cycle operations.

always @(posedge clk) begin

qout_a <= data_a * 5;

@(posedge clk) qout_b <= data_b + 3;

@(posedge clk) qout_c <= data_c - 7;

end

endmodule

Q: Explain the operation of above code.

[1:0]

[2]

 un1[2:0]

 qout_a_2[7:0]

*

 qout_a[7:0]

 qout_b_1[7:0]

+

 qout_c_1[7:0]

+

 qout_b[7:0]

 qout_c[7:0]

[2:0]
Q[2:0]D[2:0]

[7:0]

[7:0]

101

[7:0]
Q[7:0]

[7:0]
D[7:0]

[0]
E

[7:0]

[7:0]

11

[7:0]

[7:0]

11111001

[7:0]
Q[7:0]

[7:0]
D[7:0]

[1]
E

[7:0]
Q[7:0]

[7:0]
D[7:0]

[2]
E

qout_c[7:0]
[7:0]

qout_b[7:0]
[7:0]

qout_a[7:0]
[7:0]

data_c[7:0]
[7:0]

data_b[7:0]
[7:0]

data_a[7:0]
[7:0]

clk

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-6013-60

Multi-Cycle Paths --- A Trivial Example

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-6113-61

Multi-Cycle Paths --- Timing Relationship

quot_a

Setup time
Hold time

quot_b

Setup time Hold time

(a) Single-cycle

timing relationship

(b) Two-cycle timing

relationship

quot_c

Setup time
Hold time(c) Three-cycle timing

relationship

Notice that:

STA tools treat all paths in the design as a single-cycle by default and perform

the STA accordingly. So you need to tell them which paths are multi-cycle

paths.

Chapter 13: Verification

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 13-6213-62

An Example of Practical Verification Process

 Simulation

 Functional (behavioral) simulation

 Code coverage analysis

 Assertion (property) checking

 Gate-level simulation

 Dynamic timing simulation (gate-level simulation + SDF back

annotation)

 Static timing analysis

 Critical paths

 Timing violations

 Prototyping

 FPGA prototyping

 Cell-based prototyping

