
Computers as Components 1

Control input cases

Use a soft panel to show current panel
settings for each train.

Changing train number:

must change soft panel settings to reflect
current train’s speed, etc.

Controlling throttle/inertia/estop:

read panel, check for changes, perform
command.

Computers as Components 2

Control input sequence

diagram

:knobs :panel :formatter :transmitter

ch
an

g
e

in
 s

p
ee

d
/

in
er

ti
a/

es
to

p

ch
an

g
e

in

tr
ai

n
 n

u
m

b
er

change in

control

settings

read panel

panel settings

panel-active

send-command

send-speed,

send-inertia.

send-estop

read panel

panel settings

read panel

panel settings
change in

train

number

set-knobs

new-settings

operate

Computers as Components 3

Formatter operate behavior

idle

update-panel()

send-command()

panel-active() new train number

other

Computers as Components 4

Panel-active behavior

panel*:read-train()
current-train = train-knob

update-screen

changed = true

T

panel*:read-speed()
current-speed = throttle

changed = true

T

F

...

F

...

Computers as Components 5

Controller class

controller

current-train: integer

current-speed[ntrains]: integer

current-direction[ntrains]: boolean

current-inertia[ntrains]:

 unsigned-integer

operate()

issue-command()

Computers as Components 6

Setting the speed

Don’t want to change speed
instantaneously.

Controller should change speed gradually
by sending several commands.

Computers as Components 7

Sequence diagram

for a set-speed command

:receiver :controller :motor-interface :pulser*

new-cmd

cmd-type

rcv-speed set-speed set-pulse

set-pulse

set-pulse

set-pulse

set-pulse

operate read_cmd

Computers as Components 8

Controller operate behavior

issue-command()

receive-command()

wait for a

command

from receiver

Computers as Components 9

Refined command classes

command

type: 3-bits

address: 3-bits

parity: 1-bit

set-inertia

type=001

value: 3-bits

set-speed

type=010

value: 7-bits

estop

type=000

Computers as Components 10

Summary

Separate specification and programming.

Small mistakes are easier to fix in the spec.

Big mistakes in programming cost a lot of
time.

You can’t completely separate
specification and architecture.

Make a few tasteful assumptions.

Computers as Components 11 Computers as Components

Chapter 2. Instruction sets

Computer architecture taxonomy.

Assembly language.

Computers as Components 12 Computers as Components

von Neumann architecture

Memory holds data, instructions.

Central processing unit (CPU) fetches
instructions from memory.

Separate CPU and memory distinguishes
programmable computer.

CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

Computers as Components 13 Computers as Components

CPU + memory

memory
CPU

PC

address

data

IR ADD r5,r1,r3 200

200

ADD r5,r1,r3

Computers as Components 14 Computers as Components

Harvard architecture

CPU

PC
data memory

program memory

address

data

address

data

Computers as Components 15 Computers as Components

von Neumann vs. Harvard

Harvard can’t use self-modifying code.

Harvard allows two simultaneous memory
fetches.

Most DSPs use Harvard architecture for
streaming data:

greater memory bandwidth;

more predictable bandwidth.

Computers as Components 16 Computers as Components

RISC vs. CISC

Complex instruction set computer (CISC):

many addressing modes;

many operations.

Reduced instruction set computer (RISC):

load/store;

caches

pipelined instructions.

Computers as Components 17 Computers as Components

Instruction set

characteristics

Fixed vs. variable length.

Addressing modes.

Number of operands.

Types of operands.

Computers as Components 18 Computers as Components

Programming model

Or Programmer model: the set of
registers visible to the programmer.

Some registers are not visible (IR).

Computers as Components 19 Computers as Components

Multiple implementations

 Each successful architecture has several
implementations:

varying clock speeds;

different bus widths;

different cache sizes;

Differenc technologies.

Computers as Components 20 Computers as Components

Assembly language

One-to-one with instructions (more or
less).

Basic features:

One instruction per line.

Labels provide names for addresses (usually
in first column).

Instructions often start in later columns.

Columns run to end of line.

Computers as Components 21 Computers as Components

Assembler

Parse the assembly program into a
machine language

Has the structured form to make it easy
to parse the program and to consider
most aspects of the program line by line

ADDGT r0, r3, #5
Condition, opcode, operands

R_destination, R_source1, R_source2

Computers as Components 22 Computers as Components

ARM assembly language

example

label1 ADR r4,c

 LDR r0,[r4] ; a comment

 ADR r4,d

 LDR r1,[r4]

 SUB r0,r0,r1 ; comment

Computers as Components 23 Computers as Components

Pseudo-ops

Some assembler directives don’t
correspond directly to instructions:

Define current address.

Reserve storage.

Constants.

Computers as Components 24 © 2008 Wayne Wolf

ARM instruction set

ARM versions.

ARM assembly language.

ARM programming model.

ARM memory organization.

ARM data operations.

ARM flow of control.

Computers as Components 25 © 2008 Wayne Wolf

ARM versions

ARM architecture has been extended over
several versions.

We will concentrate on ARM7.

Computers as Components

Main features of the

ARM Instruction Set

All instructions are 32 bits long.

Most instructions execute in a single cycle.

Every instruction can be conditionally executed.

Instruction set extension via coprocessors

Computers as Components

Main features of the

ARM Instruction Set

A load/store architecture
Data processing instructions act only on registers

Three operand format

Combined ALU and shifter for high speed bit manipulation

Specific memory access instructions with powerful
auto-indexing addressing modes.

32 bit and 8 bit data types and also 16 bit data types on
ARM Architecture v4.

Flexible multiple register load and store instructions

Computers as Components

Processor Modes

 The ARM has six operating modes:

User (unprivileged mode under which most tasks
run)

FIQ (entered when a high priority (fast) interrupt is
raised)

IRQ (entered when a low priority (normal) interrupt
is raised)

Supervisor (entered on reset and when a Software
Interrupt instruction is executed)

Abort (used to handle memory access violations)

Undef (used to handle undefined instructions)

Computers as Components 29 © 2008 Wayne Wolf

ARM programming model

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (PC)

CPSR

31 0

N Z C V

Computers as Components

ARM has 37 registers in total, all of
which are 32-bits long.

1 dedicated program counter

1 dedicated current program status register

5 dedicated saved program status registers

30 general purpose registers

The Registers

Computers as Components

However these are arranged into several banks, with
the accessible bank being governed by the processor
mode. Each mode can access

a particular set of r0-r12 registers

a particular r13 (the stack pointer) and r14 (link
register)

r15 (the program counter)

cpsr (the current program status register)

 and privileged modes can also access

a particular spsr (saved program status register)

The Registers

Computers as Components

Register Organisation

General registers and Program Counter

Program Status Registers

r15 (pc)

r14 (lr)

r13 (sp)

r14_svc

r13_svc

r14_irq

r13_irq

r14_abt

r13_abt

r14_undef

r13_undef

User32 / System FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

cpsr

sprsr_fiq sprsr_fiq sprsr_fiq spsr_abt spsr_svc sprsr_fiq sprsr_fiq spsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq spsr_irq

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc)

cpsr cpsr cpsr cpsr cpsr

r14_fiq

r13_fiq

r12_fiq

r10_fiq

r11_fiq

r9_fiq

r8_fiq

sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq spsr_undef

Computers as Components

Register Example:

User to FIQ Mode

spsr_fiq

cpsr

r7

r4

r5

r2

r1

r0

r3

r6

r15 (pc)

r14_fiq

r13_fiq

r12_fiq

r10_fiq

r11_fiq

r9_fiq

r8_fiq

r14 (lr)

r13 (sp)

r12

r10

r11

r9

r8

User mode CPSR copied to FIQ mode SPSR

cpsr

r15 (pc)

r14 (lr)

r13 (sp)

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r14_fiq

r13_fiq

r12_fiq

r10_fiq

r11_fiq

r9_fiq

r8_fiq

Return address calculated from User mode
PC value and stored in FIQ mode LR

Registers in use Registers in use

EXCEPTION

User Mode FIQ Mode

spsr_fiq

Computers as Components

The Program Status Registers

(CPSR and SPSRs)

Copies of the ALU status flags (latched if the
instruction has the "S" bit set).

N = Negative result from ALU flag.
Z = Zero result from ALU flag.
C = ALU operation Carried out
V = ALU operation oVerflowed

* Interrupt Disable bits.
 I = 1, disables the IRQ.
 F = 1, disables the FIQ.

* T Bit (Architecture v4T only)
 T = 0, Processor in ARM state
 T = 1, Processor in Thumb state

* Condition Code Flags

Mode N Z C V

28 31 8 4 0

I F T

* Mode Bits
 M[4:0] define the processor mode.

Computers as Components

 Logical Instruction Arithmetic Instruction

Flag

Negative No meaning Bit 31 of the result has been set
(N=‘1’) Indicates a negative number in
 signed operations

Zero Result is all zeroes Result of operation was zero
(Z=‘1’)

Carry After Shift operation Result was greater than 32 bits
(C=‘1’) ‘1’ was left in carry flag

oVerflow No meaning Result was greater than 31 bits
(V=‘1’) Indicates a possible corruption of
 the sign bit in signed
 numbers

Condition Flags

Computers as Components

When the processor is executing in ARM state:

All instructions are 32 bits in length

All instructions must be word aligned

Therefore the PC value is stored in bits
[31:2] with bits [1:0] equal to zero (as
instruction cannot be halfword or byte
aligned).

The Program Counter (R15)

Computers as Components

R14 is used as the subroutine link register (LR)
and stores the return address when Branch with
Link operations are performed,
calculated from the PC.

Thus to return from a linked branch

MOV r15,r14

 or

MOV pc,lr

The Link Register (R14)

Computers as Components

The Instruction Pipeline

The ARM uses a pipeline in order to increase the speed
of the flow of instructions to the processor.

Allows several operations to be undertaken
simultaneously, rather than serially.

FETCH

DECODE

EXECUTE

Instruction fetched from memory

Decoding of registers used in instruction

Register(s) read from Register Bank
Shift and ALU operation
Write register(s) back to Register Bank

 PC

 PC - 4

 PC - 8

Computers as Components 39 © 2008 Wayne Wolf

ARM data types

Word is 32 bits long.

Word can be divided into four 8-bit bytes.

ARM addresses cam be 32 bits long.

Byte addressing: address refers to a byte.
A new word starts at an address of 4

multiple.

Can be configured at power-up as either
little- or bit-endian mode.

Computers as Components 40 © 2008 Wayne Wolf

Endianness of 32-bit processors

Relationship between bit and byte/word
ordering defines endianness:

byte 3 byte 2 byte 1 byte 0

byte 0 byte 1 byte 2 byte 3

bit 31 bit 0

bit 0 bit 31

little-endian

big-endian

@ address 0

@ address 4

@ address 0

@ address 4 byte 2 byte 1

byte 2 byte 1

@ address 3

@ address 7

@ address 0

@ address 4

Computers as Components 41 © 2008 Wayne Wolf

ARM status bits

Every arithmetic, logical, or shifting
operation automatically sets current
program status register (CPSR) bits:

N (negative), Z (zero), C (carry), V
(overflow).

Examples:

-1 + 1 = 0: NZCV = 0110.

231-1+1 = -231: NZCV = 0101.

Computers as Components 42 © 2008 Wayne Wolf

ARM assembly language

Fairly standard assembly language:

 LDR r0,[r8] ; a comment

label ADD r4,r0,r1

Computers as Components 43 © 2008 Wayne Wolf

ARM data instructions

Basic format:
ADD r0,r1,r2

Computes r1+r2, stores in r0.

Immediate operand:
ADD r0,r1,#2

Computes r1+2, stores in r0.

Computers as Components 44 © 2008 Wayne Wolf

ARM data instructions

ADD, ADC : add
(w. carrry)

SUB, SBC : subtract
(w. carry)

RSB, RSC : reverse
subtract (w. carry)

MUL, MLA : multiply
(and accumulate)

AND, ORR, EOR

BIC : bit clear

LSL, LSR : logical shift
left/right

ASL, ASR : arithmetic
shift left/right

ROR : rotate right

RRX : rotate right
extended with C

Computers as Components 45 © 2008 Wayne Wolf

Subtract instructions

SUB : subtract

 x – y = x + ~y + 1

 subs r0, r0 #1 ; r0=-1, setting flags

 sub r0, r1, r1, LSL #2 ; r0 = -3*r1

SBC : subtract with carry

 x – y - ~C = x + ~y + C

 a 64-bit subtract: (r1,r0) – (r3,r2)

 subs r0, r0, r2 ; subtract low word, C=NOT(borrow)

 sbc r1, r1, r3 ; subtract high words and borrow

Computers as Components 46 © 2008 Wayne Wolf

Subtract instructions

RSB : reverse subtract

 rsb r0, r0, #0 ; r0 = - r0

 rsb r0, r1, r1, LSL#3 ; r0 = -7*r1

RSC : reverse subtract with carry

 negate a 64-bit integer (r1, r0)

 rsbs r0, r0, #0 ; r0 = - r0, C=NOT(borrow)

 rsc r1, r1, #0 ; r1 = - r1 - borrow

Computers as Components 47 © 2008 Wayne Wolf

Multiply instructions

MUL : multiply
 mul rd, rm, rs ; rd = rm*rs

MLA : multiply and accumulate
 mul rd, rm, rs, rn ; rd = (rm*rs) +rn

SMUL : signed multiply long
 smul rdh, rdl, rm, rs ; {rdh, rdl} = rm*rs

UMUL : signed multiply long
 umul rdh, rdl, rm, rs ; {rdh, rdl} = rm*rs

UMAL, SMAL
 {rdh, rdl} = {rdh, rdl} + rm*rs

Computers as Components 48 © 2008 Wayne Wolf

Logical instructions

AND : logical bitwise AND of two 32-bit values

 Rd = Rn & Rs

ORR : logical bitwise OR of two 32-bit values

 Rd = Rn | Rs

EOR : logical exclusive OR of two 32-bit values

 Rd = Rn ^ Rs

BIC : logical bit clear (AND NOT)

 Rd = Rn & ~Rs

Computers as Components 49 © 2008 Wayne Wolf

Move instructions

MOV : move a 32-bit value into a register

 mov r7, r5 ; r7 = r5

MVN : move the NOT of a 32-bit value
into a register

mov r7, r5 ; r7 = ~r5

Computers as Components

Using the Barrel Shifter

* Immediate value

• 8 bit number

• Can be rotated right through
an even number of
positions.

• Assembler will calculate
rotate for you from
constant.

 Register, optionally with shift
operation applied.

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of
another register.

Operand
1

Result

ALU

Barrel
Shifter

Operand
2

Computers as Components 51 © 2008 Wayne Wolf

Barrel shift operations

LSL, LSR : logical shift left/right

 movs r0, r1, LSL #1

ASR : arithmetic shift right

ROR : rotate right

RRX : rotate right extended with C

Computers as Components 52 © 2008 Wayne Wolf

Data operation varieties

Logical shift:

fills with zeroes.

Arithmetic shift:

fills with the sign bit.

RRX performs 33-bit rotate, including C
bit from CPSR above sign bit.

Computers as Components 53 © 2008 Wayne Wolf

Comparison/test instructions

CMP : compare

CMN : negated compare

TST : bit-wise test with a value

TEQ : bit-wise test for two values

These instructions set only the NZCV bits
of CPSR.

Computers as Components

Conditional Execution

Most instruction sets only allow branches to be
executed conditionally.

However by reusing the condition evaluation
hardware, ARM effectively increases number of
instructions.

All instructions contain a condition field which
determines whether the CPU will execute them.

Non-executed instructions soak up 1 cycle.

Still have to complete cycle so as to allow
fetching and decoding of following instructions.

Computers as Components

Conditional Execution

 This removes the need for many branches, which stall
the pipeline (3 cycles to refill).

Allows very dense in-line code, without branches.

The Time penalty of not executing several
conditional instructions is frequently less than
overhead of the branch
or subroutine call that would otherwise be needed.

Computers as Components

The Condition Field

28 31 24 20 16 12 8 4 0

Cond

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = HS / CS - C set (unsigned
higher or same)

0011 = LO / CC - C clear (unsigned
lower)

0100 = MI -N set (negative)

0101 = PL - N clear (positive or
zero)

0110 = VS - V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear
(unsigned higher)

1001 = LS - C clear or Z (set unsigned
lower or same)

1010 = GE - N set and V set, or N clear
and V clear (>or =)

1011 = LT - N set and V clear, or N clear
and V set (>)

1100 = GT - Z clear, and either N set
and V set, or N clear and V set
(>)

1101 = LE - Z set, or N set and V
clear,or N clear and V set (<, or
=)

1110 = AL - always

1111 = NV - reserved.

Computers as Components 57 © 2008 Wayne Wolf

Comparison instructions

CMP : compare two 32-bit integers

 CMP r0, r1, LSR#2; compare r0 with (r1/4)

 BHS label ; if r0 >= (r1/4) goto label

CMN : compare negative

 CMN r0, #3; ; compare r0 with (-3)

 BLT label ; if r0 < (-3) goto label

Computers as Components 58 © 2008 Wayne Wolf

Test instructions

TST : bit-wise test of a 32-bit value

 TST r0,#0xFF ; test if the LSB 8 bits are 0

TEQ : bit-wise test for two 32-bit values

 TEQ r0, #1 ; test to see if r0==1

Computers as Components 59 © 2008 Wayne Wolf

Load/store instructions

LDR, LDRH, LDRB : load (half-word, byte)

STR, STRH, STRB : store (half-word,
byte)

Addressing modes:
register indirect : LDR r0,[r1]

with second register : LDR r0,[r1,-r2]

with constant : LDR r0,[r1,#4]

Computers as Components 60 © 2008 Wayne Wolf

ADR pseudo-op

Cannot refer to an address directly in an
instruction.

Generate value by performing arithmetic
on PC.

ADR pseudo-op generates instruction
required to calculate address:
ADR r1,FOO

Computers as Components 61 v

Example: C assignments

C:
x = (a + b) - c;

Assembler:
 ADR r4,a ; get address for a

 LDR r0,[r4] ; get value of a

 ADR r4,b ; get address for b, reusing r4

 LDR r1,[r4] ; get value of b

 ADD r3,r0,r1 ; compute a+b

 ADR r4,c ; get address for c

 LDR r2[r4] ; get value of c

Computers as Components 62 © 2008 Wayne Wolf

C assignment, cont’d.

 SUB r3,r3,r2 ; complete computation of x

 ADR r4,x ; get address for x

 STR r3[r4] ; store value of x

Computers as Components 63 © 2008 Wayne Wolf

Example: C assignment

C:
y = a*(b+c);

Assembler:
 ADR r4,b ; get address for b

 LDR r0,[r4] ; get value of b

 ADR r4,c ; get address for c

 LDR r1,[r4] ; get value of c

 ADD r2,r0,r1 ; compute partial result

 ADR r4,a ; get address for a

 LDR r0,[r4] ; get value of a

Computers as Components 64 © 2008 Wayne Wolf

C assignment, cont’d.

 MUL r2,r2,r0 ; compute final value for y

 ADR r4,y ; get address for y

 STR r2,[r4] ; store y

Computers as Components 65 © 2008 Wayne Wolf

Example: C assignment

C:
z = (a << 2) | (b & 15);

Assembler:
 ADR r4,a ; get address for a

 LDR r0,[r4] ; get value of a

 MOV r0,r0,LSL 2 ; perform shift

 ADR r4,b ; get address for b

 LDR r1,[r4] ; get value of b

 AND r1,r1,#15 ; perform AND

 ORR r1,r0,r1 ; perform OR

Computers as Components 66 © 2008 Wayne Wolf

C assignment, cont’d.

 ADR r4,z ; get address for z

 STR r1,[r4] ; store value for z

Computers as Components 67 © 2008 Wayne Wolf

Additional addressing

modes

Base-plus-offset addressing:
LDR r0,[r1,#16]

Loads from location r1+16

Auto-indexing increments base register:
LDR r0,[r1,#16]!

Post-indexing fetches, then does offset:
LDR r0,[r1],#16

Loads r0 from r1, then adds 16 to r1.

Computers as Components 68 © 2008 Wayne Wolf

Flow of control

All operations can be performed
conditionally, testing CPSR:

EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE,
LT, GT, LE

Branch operation:
B #100

Can be performed conditionally.

Computers as Components 69 © 2008 Wayne Wolf

Example: if statement

C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

Assembler:
; compute and test condition

 ADR r4,a ; get address for a

 LDR r0,[r4] ; get value of a

 ADR r4,b ; get address for b

 LDR r1,[r4] ; get value for b

 CMP r0,r1 ; compare a < b

 BGE fblock ; if a >= b, branch to false block

Computers as Components 70 © 2008 Wayne Wolf

If statement, cont’d.

; true block

 MOV r0,#5 ; generate value for x

 ADR r4,x ; get address for x

 STR r0,[r4] ; store x

 ADR r4,c ; get address for c

 LDR r0,[r4] ; get value of c

 ADR r4,d ; get address for d

 LDR r1,[r4] ; get value of d

 ADD r0,r0,r1 ; compute y

 ADR r4,y ; get address for y

 STR r0,[r4] ; store y

 B after ; branch around false block

Computers as Components 71 © 2008 Wayne Wolf

If statement, cont’d.

; false block

fblock ADR r4,c ; get address for c

 LDR r0,[r4] ; get value of c

 ADR r4,d ; get address for d

 LDR r1,[r4] ; get value for d

 SUB r0,r0,r1 ; compute a-b

 ADR r4,x ; get address for x

 STR r0,[r4] ; store value of x

after ...

Computers as Components 72 © 2008 Wayne Wolf

Example: Conditional

instruction implementation

; true block

 MOVLT r0,#5 ; generate value for x

 ADRLT r4,x ; get address for x

 STRLT r0,[r4] ; store x

 ADRLT r4,c ; get address for c

 LDRLT r0,[r4] ; get value of c

 ADRLT r4,d ; get address for d

 LDRLT r1,[r4] ; get value of d

 ADDLT r0,r0,r1 ; compute y

 ADRLT r4,y ; get address for y

 STRLT r0,[r4] ; store y

Computers as Components 73 © 2008 Wayne Wolf

Example: switch

statement

C:
switch (test) { case 0: … break; case 1: … }

Assembler:
 ADR r2,test ; get address for test

 LDR r0,[r2] ; load value for test

 ADR r1,switchtab ; load address for switch table

 LDR r1,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0

 DCD case1

...

Computers as Components 74 © 2008 Wayne Wolf

Example: FIR filter

C:
for (i=0, f=0; i<N; i++)

 f = f + c[i]*x[i];

Assembler
; loop initiation code

 MOV r0,#0 ; use r0 for I

 MOV r8,#0 ; use separate index for arrays

 ADR r2,N ; get address for N

 LDR r1,[r2] ; get value of N

 MOV r2,#0 ; use r2 for f

Computers as Components 75 © 2008 Wayne Wolf

FIR filter, cont’.d

 ADR r3,c ; load r3 with base of c

 ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

 LDR r6,[r5,r8] ; get x[i]

 MUL r4,r4,r6 ; compute c[i]*x[i]

 ADD r2,r2,r4 ; add into running sum

 ADD r8,r8,#4 ; add one word offset to array index

 ADD r0,r0,#1 ; add 1 to i

 CMP r0,r1 ; exit?

 BLT loop ; if i < N, continue

Computers as Components 76 © 2008 Wayne Wolf

ARM subroutine linkage

Branch and link instruction:
BL foo

Copies current PC to r14.

To return from subroutine:

MOV r15,r14

Computers as Components 77 © 2008 Wayne Wolf

Nested subroutine calls

Nesting/recursion requires coding
convention:

f1 LDR r0,[r13] ; load arg into r0 from stack

 ; call f2()

 STR r13!,[r14] ; store f1’s return adrs

 STR r13!,[r0] ; store arg to f2 on stack

 BL f2 ; branch and link to f2

 ; return from f1()

 SUB r13,#4 ; pop f2’s arg off stack

 LDR r13!,r15 ; restore register and return

Computers as Components 78 © 2008 Wayne Wolf

Summary

Load/store architecture

Most instructions are RISCy, operate in
single cycle.

Some multi-register operations take longer.

All instructions can be executed
conditionally.

