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Control input cases 

Use a soft panel to show current panel 
settings for each train. 

Changing train number: 

must change soft panel settings to reflect 
current train’s speed, etc. 

Controlling throttle/inertia/estop: 

read panel, check for changes, perform 
command. 
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Control input sequence 

diagram 
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Formatter operate behavior 

idle 

update-panel() 

send-command() 

panel-active() new train number 

other 
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Panel-active behavior 

panel*:read-train() 
current-train = train-knob 

update-screen 

changed = true 

T 

panel*:read-speed() 
current-speed = throttle 

changed = true 

T 

F 

... 

F 

... 
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Controller class 

controller 

current-train: integer 

current-speed[ntrains]: integer 

current-direction[ntrains]: boolean 

current-inertia[ntrains]: 

   unsigned-integer 

operate() 

issue-command() 
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Setting the speed 

Don’t want to change speed 
instantaneously. 

Controller should change speed gradually 
by sending several commands. 
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Sequence diagram  

for a set-speed command 

:receiver :controller :motor-interface :pulser* 

new-cmd 

cmd-type 

rcv-speed set-speed set-pulse 

set-pulse 

set-pulse 

set-pulse 

set-pulse 

operate read_cmd 
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Controller operate behavior 

issue-command() 

receive-command() 

wait for a 

command 

from receiver 
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Refined command classes 

command 

type: 3-bits 

address: 3-bits 

parity: 1-bit 

set-inertia 

type=001 

value: 3-bits 

set-speed 

type=010 

value: 7-bits 

estop 

type=000 
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Summary 

Separate specification and programming. 

Small mistakes are easier to fix in the spec. 

Big mistakes in programming cost a lot of 
time. 

You can’t completely separate 
specification and architecture. 

Make a few tasteful assumptions. 
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Chapter 2. Instruction sets 

Computer architecture taxonomy. 

Assembly language. 
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von Neumann architecture 

Memory holds data, instructions. 

Central processing unit (CPU) fetches 
instructions from memory. 

Separate CPU and memory distinguishes 
programmable computer. 

CPU registers help out: program counter 
(PC), instruction register (IR), general-
purpose registers, etc. 
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CPU + memory 

memory 
CPU 

PC 

address 

data 

IR ADD r5,r1,r3 200 

200 

ADD r5,r1,r3 
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Harvard architecture 

CPU 

PC 
data memory 

program memory 

address 

data 

address 

data 
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von Neumann vs. Harvard 

Harvard can’t use self-modifying code. 

Harvard allows two simultaneous memory 
fetches. 

Most DSPs use Harvard architecture for 
streaming data: 

greater memory bandwidth; 

more predictable bandwidth. 
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RISC vs. CISC 

Complex instruction set computer (CISC): 

many addressing modes; 

many operations. 

Reduced instruction set computer (RISC): 

load/store; 

caches 

pipelined instructions. 
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Instruction set 

characteristics 

Fixed vs. variable length. 

Addressing modes. 

Number of operands. 

Types of operands. 
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Programming model 

Or Programmer model:  the set of 
registers visible to the programmer. 

Some registers are not visible (IR). 
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Multiple implementations 

 Each successful architecture has several 
implementations: 

varying clock speeds; 

different bus widths; 

different cache sizes; 

Differenc technologies. 
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Assembly language 

One-to-one with instructions (more or 
less). 

Basic features: 

One instruction per line. 

Labels provide names for addresses (usually 
in first column). 

Instructions often start in later columns. 

Columns run to end of line. 
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Assembler 

Parse the assembly program into a 
machine language 

Has the structured form to make it easy 
to parse the program and to consider 
most aspects of the program line by line 

ADDGT r0, r3, #5 
Condition, opcode, operands 

R_destination, R_source1, R_source2 
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ARM assembly language 

example 

label1 ADR r4,c 

   LDR r0,[r4] ; a comment 

   ADR r4,d 

   LDR r1,[r4] 

   SUB r0,r0,r1 ; comment 
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Pseudo-ops 

Some assembler directives don’t 
correspond directly to instructions: 

Define current address. 

Reserve storage. 

Constants. 
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ARM instruction set 

ARM versions. 

ARM assembly language. 

ARM programming model. 

ARM memory organization. 

ARM data operations. 

ARM flow of control. 
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ARM versions 

ARM architecture has been extended over 
several versions. 

We will concentrate on ARM7. 
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Main features of the 

ARM Instruction Set 

All instructions are 32 bits long. 

Most instructions execute in a single cycle. 

Every instruction can be conditionally executed. 

Instruction set extension via coprocessors 
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Main features of the 

ARM Instruction Set 

A load/store architecture  
Data processing instructions act only on registers 

Three operand format 

Combined ALU and shifter for high speed bit manipulation 

Specific memory access instructions with powerful 
auto-indexing addressing modes. 

32 bit and 8 bit data types and also 16 bit data types on 
ARM Architecture v4. 

Flexible multiple register load and store instructions 
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Processor Modes 

 The ARM has six operating modes: 

User (unprivileged mode under which most tasks 
run) 

FIQ (entered when a high priority (fast) interrupt is 
raised) 

IRQ (entered when a low priority (normal) interrupt 
is raised) 

Supervisor (entered on reset and when a Software 
Interrupt instruction is executed) 

Abort (used to handle memory access violations) 

Undef (used to handle undefined instructions) 
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ARM programming model 

r0 

r1 

r2 

r3 

r4 

r5 

r6 

r7 

r8 

r9 

r10 

r11 

r12 

r13 (sp) 

r14 (lr) 

r15 (PC) 

CPSR 

31 0 

N Z C V 
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ARM has 37 registers in total, all of 
which are 32-bits long. 

1 dedicated program counter 

1 dedicated current program status register 

5 dedicated saved program status registers 

30 general purpose registers 

The Registers 
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However these are arranged into several banks, with 
the accessible bank being governed by the processor 
mode. Each mode can access  

a particular set of r0-r12 registers 

a particular r13 (the stack pointer) and r14 (link 
register) 

r15 (the program counter) 

cpsr (the current program status register) 

 and privileged modes can also access 

a particular spsr (saved program status register) 

The Registers 
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Register Organisation 

General registers and Program Counter 

Program Status Registers 

r15 (pc) 

r14 (lr) 

r13 (sp) 

r14_svc 

r13_svc 

r14_irq 

r13_irq 

r14_abt 

r13_abt 

r14_undef 

r13_undef 

User32 / System FIQ32 Supervisor32 Abort32  IRQ32 Undefined32 

cpsr 

sprsr_fiq sprsr_fiq sprsr_fiq spsr_abt spsr_svc sprsr_fiq sprsr_fiq spsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq spsr_irq 
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Register Example: 

User to FIQ Mode 

spsr_fiq 

cpsr 

r7 

r4 

r5 

r2 

r1 

r0 

r3 

r6 

r15 (pc) 

r14_fiq 

r13_fiq 

r12_fiq 

r10_fiq 

r11_fiq 

r9_fiq 

r8_fiq 

r14 (lr) 

r13 (sp) 

r12 

r10 

r11 

r9 

r8 

User mode CPSR copied to FIQ mode SPSR 

cpsr 

r15 (pc) 

r14 (lr) 

r13 (sp) 

r12 

r10 

r11 

r9 

r8 

r7 

r4 

r5 

r2 

r1 

r0 

r3 

r6 

r14_fiq 

r13_fiq 

r12_fiq 

r10_fiq 

r11_fiq 

r9_fiq 

r8_fiq 

Return address calculated from User mode  
PC value and stored in FIQ mode LR 

Registers in use Registers in use 

EXCEPTION 

User Mode FIQ Mode 

spsr_fiq 
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The Program Status Registers 

(CPSR and SPSRs) 

Copies of the ALU status flags (latched if the 
instruction has the "S" bit set). 

N = Negative result from ALU flag. 
Z = Zero result from ALU flag. 
C = ALU operation Carried out 
V = ALU operation oVerflowed 

*     Interrupt Disable bits. 
       I  = 1, disables the IRQ. 
       F = 1, disables the FIQ. 
 
*     T Bit      (Architecture v4T only) 
       T = 0, Processor in ARM state 
       T = 1, Processor in Thumb state  
 

*      Condition Code Flags 

Mode N Z C V 

28 31 8 4 0 

I   F  T 

*     Mode Bits 
       M[4:0] define the processor mode. 
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  Logical Instruction  Arithmetic Instruction 
 
Flag 
 
Negative  No meaning  Bit 31 of the result has been set 
(N=‘1’)     Indicates a negative number in 
     signed operations 
 
Zero  Result is all zeroes  Result of operation was zero 
(Z=‘1’) 
 
Carry  After Shift operation  Result was greater than 32 bits 
(C=‘1’)  ‘1’ was left in carry flag   
 
oVerflow  No meaning  Result was greater than 31 bits 
(V=‘1’)     Indicates a possible corruption of 
     the sign bit in signed  
     numbers 

Condition Flags 



Computers as Components 

When the processor is executing in ARM state: 

All instructions are 32 bits in length 

All instructions must be word aligned 

Therefore the PC value is stored in bits 
[31:2] with bits [1:0] equal to zero (as 
instruction cannot be halfword or byte 
aligned). 

The Program Counter (R15) 
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R14 is used as the subroutine link register (LR) 
and stores the return address when Branch with 
Link operations are performed,  
calculated from the PC. 

Thus to return from a linked branch 

MOV r15,r14 

 or 

MOV pc,lr 

The Link Register (R14) 
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The Instruction Pipeline 

The ARM uses a pipeline in order to increase the speed 
of the flow of instructions to the processor. 

Allows several operations to be undertaken 
simultaneously, rather than serially. 

FETCH 

DECODE 

EXECUTE 

Instruction fetched from memory 

Decoding of registers used in instruction 

Register(s) read from Register Bank 
Shift and ALU operation 
Write register(s) back to Register Bank 

 PC  

 
 
 PC - 4  

 PC - 8  
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ARM data types 

Word is 32 bits long. 

Word can be divided into four 8-bit bytes. 

ARM addresses cam be 32 bits long. 

Byte addressing: address refers to a byte. 
A new word starts at an address of 4 

multiple. 

Can be configured at power-up as either 
little- or bit-endian mode. 
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Endianness of 32-bit processors  

Relationship between bit and byte/word 
ordering defines endianness: 

byte 3 byte 2 byte 1 byte 0 

byte 0 byte 1 byte 2 byte 3 

bit 31 bit 0 

bit 0 bit 31 

little-endian 

big-endian 

@ address 0 

@ address 4 

@ address 0 

@ address 4 byte 2 byte 1 

byte 2 byte 1 

@ address 3 

@ address 7 

@ address 0 

@ address 4 
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ARM status bits 

Every arithmetic, logical, or shifting 
operation automatically sets current 
program status register (CPSR) bits: 

N (negative), Z (zero), C (carry), V 
(overflow). 

Examples:  

-1 + 1 = 0: NZCV = 0110. 

231-1+1 = -231: NZCV = 0101. 
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ARM assembly language 

Fairly standard assembly language: 
 

   LDR r0,[r8] ; a comment 

label ADD r4,r0,r1 
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ARM data instructions 

Basic format: 
ADD r0,r1,r2 

Computes r1+r2, stores in r0. 

Immediate operand: 
ADD r0,r1,#2 

Computes r1+2, stores in r0. 
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ARM data instructions 

ADD, ADC : add     
(w. carrry) 

SUB, SBC : subtract 
(w. carry) 

RSB, RSC : reverse 
subtract (w. carry) 

MUL, MLA : multiply 
(and accumulate) 

AND, ORR, EOR 

BIC : bit clear 

LSL, LSR : logical shift 
left/right 

ASL, ASR : arithmetic 
shift left/right 

ROR : rotate right 

RRX : rotate right 
extended with C 
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Subtract instructions 

SUB : subtract 

 x – y = x + ~y + 1 

 subs r0, r0 #1  ; r0=-1, setting flags 

    sub r0, r1, r1, LSL #2 ; r0 = -3*r1 

SBC : subtract with carry 

 x – y - ~C = x + ~y + C 

 a 64-bit subtract: (r1,r0) – (r3,r2) 

    subs r0, r0, r2    ; subtract low word, C=NOT(borrow) 

    sbc   r1, r1, r3    ; subtract high words and borrow 
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Subtract  instructions 

RSB : reverse subtract 

 rsb r0, r0, #0  ; r0 = - r0 

    rsb r0, r1, r1, LSL#3 ; r0 = -7*r1 

RSC : reverse subtract with carry 

 negate a 64-bit integer (r1, r0) 

    rsbs r0, r0, #0 ; r0 = - r0, C=NOT(borrow) 

    rsc   r1, r1, #0         ; r1 = - r1 - borrow 
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Multiply instructions 

MUL : multiply 
 mul rd, rm, rs  ; rd = rm*rs 

MLA : multiply and accumulate 
 mul rd, rm, rs, rn ; rd = (rm*rs) +rn 

SMUL : signed multiply long 
 smul rdh, rdl, rm, rs ; {rdh, rdl} = rm*rs 

UMUL : signed multiply long 
 umul rdh, rdl, rm, rs ; {rdh, rdl} = rm*rs 

UMAL, SMAL 
 {rdh, rdl} = {rdh, rdl} + rm*rs 
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Logical  instructions 

AND : logical bitwise AND of two 32-bit values 

 Rd = Rn & Rs 

ORR : logical bitwise OR of two 32-bit values 

 Rd = Rn | Rs 

EOR : logical exclusive OR of two 32-bit values 

 Rd = Rn ^ Rs 

BIC  : logical bit clear (AND NOT) 

 Rd = Rn & ~Rs 
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Move instructions 

MOV : move a 32-bit value into a register 

 mov r7, r5  ; r7 = r5 

MVN : move the NOT of a 32-bit value 
into a register 

mov r7, r5  ; r7 = ~r5 
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Using the Barrel Shifter 

* Immediate value 

• 8 bit number 

• Can be rotated right through 
an even number of 
positions. 

• Assembler will calculate 
rotate for you from 
constant. 

 Register, optionally with shift 
operation applied. 

 Shift value can be either be: 

 5 bit unsigned integer 

 Specified in bottom byte of 
another register. 

Operand 
1 

Result 

ALU 

Barrel 
Shifter 

Operand 
2 
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Barrel shift operations 

LSL, LSR : logical shift left/right 

 movs r0, r1, LSL #1 

ASR : arithmetic shift right 

ROR : rotate right 

RRX : rotate right extended with C 
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Data operation varieties 

Logical shift: 

fills with zeroes. 

Arithmetic shift: 

fills with the sign bit. 

RRX performs 33-bit rotate, including C 
bit from CPSR above sign bit. 
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Comparison/test instructions 

CMP : compare 

CMN : negated compare 

TST : bit-wise test with a value 

TEQ : bit-wise test for two values 

These instructions set only the NZCV bits 
of CPSR. 
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Conditional Execution 

Most instruction sets only allow branches to be 
executed conditionally. 

However by reusing the condition evaluation 
hardware,  ARM effectively increases number of 
instructions. 

All instructions contain a condition field which 
determines whether the CPU will execute them.  

Non-executed instructions soak up 1 cycle. 

Still have to complete cycle so as to allow 
fetching and decoding of  following instructions. 
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Conditional Execution 

 This removes the need for many branches, which stall 
the pipeline (3 cycles to refill). 

Allows very dense in-line code, without branches. 

The Time penalty of not executing several 
conditional instructions is frequently less than 
overhead of the branch  
or subroutine call that would otherwise be needed. 
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The Condition Field 

28 31 24 20 16 12 8 4 0 

Cond 

0000 = EQ - Z set (equal) 

0001 = NE - Z clear (not equal) 

0010 = HS / CS  - C set (unsigned 
higher or same) 

0011 = LO / CC - C clear (unsigned 
lower) 

0100 = MI -N set (negative) 

0101 = PL - N clear (positive or 
zero) 

0110 = VS - V  set (overflow) 

0111 = VC - V clear (no overflow) 

1000 = HI - C set and Z clear 
(unsigned higher) 

1001 = LS - C clear or Z (set unsigned 
lower or same)  

1010 = GE - N set and V set, or N clear 
and V clear (>or =) 

1011 = LT - N set and V clear, or N clear 
and V set (>) 

1100 = GT - Z clear, and either N set 
and V set, or N clear and V set 
(>) 

1101 = LE - Z set, or N set and V 
clear,or N clear and V set (<, or 
=) 

1110 = AL - always 

1111 = NV - reserved. 
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Comparison instructions 

CMP : compare two 32-bit integers 

 CMP r0, r1, LSR#2; compare r0 with (r1/4) 

     BHS label            ; if r0 >= (r1/4) goto label 

CMN : compare negative 

 CMN r0, #3;          ; compare r0 with (-3) 

     BLT label            ; if r0 < (-3) goto label 
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Test instructions 

TST : bit-wise test of a 32-bit value 

 TST r0,#0xFF ; test if the LSB 8 bits are 0 

TEQ : bit-wise test for two 32-bit values 

 TEQ r0, #1  ; test to see if r0==1 
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Load/store instructions 

LDR, LDRH, LDRB : load (half-word, byte) 

STR, STRH, STRB : store (half-word, 
byte) 

Addressing modes: 
register indirect : LDR r0,[r1] 

with second register : LDR r0,[r1,-r2] 

with constant : LDR r0,[r1,#4] 
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ADR pseudo-op 

Cannot refer to an address directly in an 
instruction. 

Generate value by performing arithmetic 
on PC. 

ADR pseudo-op generates instruction 
required to calculate address: 
ADR r1,FOO 
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Example: C assignments 

C:  
x = (a + b) - c; 

Assembler: 
 ADR r4,a  ; get address for a 

 LDR r0,[r4] ; get value of a 

 ADR r4,b  ; get address for b, reusing r4 

 LDR r1,[r4] ; get value of b 

 ADD r3,r0,r1 ; compute a+b 

 ADR r4,c  ; get address for c 

 LDR r2[r4] ; get value of c 
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C assignment, cont’d. 

 SUB r3,r3,r2 ; complete computation of x 

 ADR r4,x  ; get address for x 

 STR r3[r4] ; store value of x 
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Example: C assignment 

C: 
y = a*(b+c); 

Assembler: 
 ADR r4,b ; get address for b 

 LDR r0,[r4] ; get value of b 

 ADR r4,c ; get address for c 

 LDR r1,[r4] ; get value of c 

 ADD r2,r0,r1 ; compute partial result 

 ADR r4,a ; get address for a 

 LDR r0,[r4] ; get value of a 
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C assignment, cont’d. 

 MUL r2,r2,r0 ; compute final value for y 

 ADR r4,y ; get address for y 

 STR r2,[r4] ; store y 
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Example: C assignment 

C: 
z = (a << 2) |  (b & 15); 

Assembler: 
 ADR r4,a ; get address for a 

 LDR r0,[r4] ; get value of a 

 MOV r0,r0,LSL 2 ; perform shift 

 ADR r4,b ; get address for b 

 LDR r1,[r4] ; get value of b 

 AND r1,r1,#15 ; perform AND 

 ORR r1,r0,r1 ; perform OR 
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C assignment, cont’d. 

 ADR r4,z ; get address for z 

 STR r1,[r4] ; store value for z 
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Additional addressing 

modes 

Base-plus-offset addressing: 
LDR r0,[r1,#16] 

Loads from location r1+16 

Auto-indexing increments base register: 
LDR r0,[r1,#16]! 

Post-indexing fetches, then does offset: 
LDR r0,[r1],#16 

Loads r0 from r1, then adds 16 to r1. 
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Flow of control 

All operations can be performed 
conditionally, testing CPSR: 

EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, 
LT, GT, LE 

Branch operation: 
B #100 

Can be performed conditionally. 
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Example: if statement 

C:  
if (a > b) { x = 5; y = c + d; } else x = c - d; 

Assembler: 
; compute and test condition 

 ADR r4,a ; get address for a 

 LDR r0,[r4] ; get value of a 

 ADR r4,b ; get address for b 

 LDR r1,[r4] ; get value for b 

 CMP r0,r1 ; compare a < b 

 BGE fblock ; if a >= b, branch to false block 
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If statement, cont’d. 

; true block 

 MOV r0,#5 ; generate value for x 

 ADR r4,x ; get address for x 

 STR r0,[r4] ; store x 

 ADR r4,c ; get address for c 

 LDR r0,[r4] ; get value of c 

 ADR r4,d ; get address for d 

 LDR r1,[r4] ; get value of d 

 ADD r0,r0,r1 ; compute y 

 ADR r4,y ; get address for y 

 STR r0,[r4] ; store y 

 B after ; branch around false block 
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If statement, cont’d. 

; false block 

fblock ADR r4,c ; get address for c 

 LDR r0,[r4] ; get value of c 

 ADR r4,d ; get address for d 

 LDR r1,[r4] ; get value for d 

 SUB r0,r0,r1 ; compute a-b 

 ADR r4,x ; get address for x 

 STR r0,[r4] ; store value of x 

after ... 

 

 



Computers as Components 72 ©  2008 Wayne Wolf 

Example: Conditional 

instruction implementation 

; true block 

 MOVLT r0,#5 ; generate value for x 

 ADRLT r4,x ; get address for x 

 STRLT r0,[r4] ; store x 

 ADRLT r4,c ; get address for c 

 LDRLT r0,[r4] ; get value of c 

 ADRLT r4,d ; get address for d 

 LDRLT r1,[r4] ; get value of d 

 ADDLT r0,r0,r1 ; compute y 

 ADRLT r4,y ; get address for y 

 STRLT r0,[r4] ; store y 
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Example: switch 

statement 

C:  
switch (test) { case 0: … break; case 1: … } 

Assembler: 
 ADR r2,test ; get address for test 

 LDR r0,[r2] ; load value for test 

 ADR r1,switchtab ; load address for switch table 

 LDR r1,[r1,r0,LSL #2] ; index switch table 

switchtab DCD case0 

 DCD case1 

... 
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Example: FIR filter 

C: 
for (i=0, f=0; i<N; i++) 

 f = f + c[i]*x[i]; 

Assembler 
; loop initiation code 

 MOV r0,#0 ; use r0 for I 

 MOV r8,#0 ; use separate index for arrays 

 ADR r2,N ; get address for N 

 LDR r1,[r2] ; get value of N 

 MOV r2,#0 ; use r2 for f 
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FIR filter, cont’.d 

 ADR r3,c ; load r3 with base of c 

 ADR r5,x ; load r5 with base of x 

; loop body 

loop LDR r4,[r3,r8] ; get c[i] 

 LDR r6,[r5,r8] ; get x[i] 

 MUL r4,r4,r6 ; compute c[i]*x[i] 

 ADD r2,r2,r4 ; add into running sum 

 ADD r8,r8,#4 ; add one word offset to array index 

 ADD r0,r0,#1 ; add 1 to i 

 CMP r0,r1 ; exit? 

 BLT loop ; if i < N, continue 
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ARM subroutine linkage 

Branch and link instruction: 
BL foo 

Copies current PC to r14. 

To return from subroutine: 

MOV r15,r14 
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Nested subroutine calls 

Nesting/recursion requires coding 
convention: 

f1  LDR r0,[r13] ; load arg into r0 from stack 

  ; call f2() 

  STR r13!,[r14] ; store f1’s return adrs 

  STR r13!,[r0] ; store arg to f2 on stack 

  BL f2 ; branch and link to f2 

  ; return from f1() 

  SUB r13,#4 ; pop f2’s arg off stack 

  LDR r13!,r15 ; restore register and return 
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Summary 

Load/store architecture 

Most instructions are RISCy, operate in 
single cycle. 

Some multi-register operations take longer. 

All instructions can be executed 
conditionally. 


