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Memory management units 

Memory management unit (MMU) 
translates addresses: 
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Access time comparison 

 

 

 

 

 

 

 

 Price 

HDD<<NAND<DRAM<NOR 

Media Read Write Erase 

DRAM 60ns (2B) 
2.56us (512B) 

60ns (2B) 
2.56us (512B) 

N/A 

NOR flash 150ns (2B) 
14.4us (512B) 

211us (2B) 
3.53ms (512B) 

1.2s (128KB) 

NAND flash 10.2us (2B) 
35.9us (512B) 

201us (2B) 
226us (512B) 

2ms (16KB, 
128K) 

 

Disk 12.5ms (512B) 
(Average seek) 

14.5ms (512B) 
(Average seek) 

N/A 
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MMU 

 Responsible for 
 VIRTUAL  PHYSICAL  
address mapping 

 Sits between CPU and cache 

 

 

 

 

 

 Cache operates on Physical Addresses 
(mostly - some research on VA cache) 
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Address translation 

Requires some sort of register/table to 
allow arbitrary mappings of logical to 
physical addresses. 

Two basic schemes: 

segmented; 

paged. 

Segmentation and paging can be 
combined (x86). 
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Segmented vs paged 

Two types of address translation 

Segmenting 

A large, arbitrarily sized region of memory 

A segment: a start address, (nonuniform) size 

Paging 

Support small, equal sized region of memory 

A page: a start address 

Paged segment: fragmentation 
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Segments and pages 

memory 

segment 1 

segment 2 

page 1 

page 2 
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Segment address translation 

segment base address logical address 

range 

check 

physical address 

+ 

range 

error 
segment lower bound 

segment upper bound 
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Memory management tasks 

Allows programs to move in physical 
memory during execution (on-demand). 

Allows virtual memory: 

memory images kept in secondary storage; 

images returned to main memory on demand 
during execution. 

Page fault: request for location not 
resident in memory. 
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Page table 

Operating System allocates pages of 
physical memory to users  

OS constructs page tables  

one for each user 

Obtain page address from memory 
address to select a page table entry 
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Page table 

Page table entry contains physical page 
address if not a page fault 

If a page fault, ?  

Page fault is an exception 

Page fault handler 

Read the requested data from disc to main 
memory 

Update the MMU’s page table 
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Paging – address translation 

q-k 
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Virtual memory space 

Page Table Entries can also point to disc blocks 
If Valid bit is set, page in memory (address is physical 

page address);  

If cleared, page “swapped out” (address is disc block 
address) 

MMU hardware generates page fault when swapped out 
page is requested 

Allows virtual memory space to be larger than 
physical memory 
Only “working set” is in physical memory 

Remainder on paging disc 
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Page fault handler 

Page Fault Handler: part of OS kernel 

Read page table (assumed to be in memory) 

Finds usable physical page (limited resource) 

LRU algorithm 

Writes it back to disc if modified 

Reads requested page from paging disc 

Adjusts page table entries 

Memory access re-tried 
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Page Fault 
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Page table - practicalities 

 Page size 

8 kbyte pages  k = 13 

 q = 32,  q - k = 19 

So page table size 

219 ≈ 0.5 x 106 entries 

Each entry 4 bytes 

 0.5 x 106 × 4 ≈ 2 Mbytes! 

 Page tables can take a lot of memory! 

Larger page sizes reduce page table size 
but can waste space (fragmentation) 
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Page table - practicalities 

Page tables are stored in main memory 

They’re too large to be in smaller memories! 

MMU needs to read page table for address 
translation 

 Address translation can require additional 
memory accesses!  
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Page Fault  

can be a never ending story 

Can be an expensive process! 

Usual to allow page tables to be 
swapped out too! 

Page fault can be generated on the page 
tables! 
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MMU - Protection  

Page table entries 
Extra bits are added to specify access rights 

Set by OS (software) 

but 

Checked by MMU hardware! 

Access control bits 

Read 

Write 

Read/Write 

Execute only 
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Alternative Page Table Styles  

Inverted Page tables 

One page table entry (PTE) / page of physical memory 

MMU has to search for correct VA entry 

PowerPC hashes VA  PTE address 

• PTE address = h( VA ) 

• h – hash function 

Hashing  collisions 

Hash functions in hardware 

 “hash” of n bits to produce m bits (Usually m << n) 

Fewer bits reduces information content  
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Inverted page table  

Hash functions in hardware 

“Fewer bits reduces information content 

There are only 2m distinct values now! 

 Some n-bit patterns will reduce to the same m-bit 

patterns 

Trivial example 

2-bits  1-bit with xor 

h(x1 x0) = x1 xor x0 

 

 

 

y     h(y) 

00     0 

01     1 

10     1 

11     0 

Collisions 
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Inverted page table 

One page table entry per physical page  

MMU has to search for correct VA entry 
PowerPC hashes VA  PTE address 

Hashing  collisions 

PTEs are linked together 
PTE contains tags (like cache) and link bits 

MMU searches linked list to find correct entry 

Smaller Page Tables / Longer searches 
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Inverted page table  
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Fast Address Translation 

two+ memory accesses for each datum? 

Page table 1 - 3 (single - 3 level tables) 

Actual data 1 

 system can be slowed down 

 Translation Look-Aside Buffer  

• Acronym: TLB or TLAB 

• Small cache of recently-used page table entries 

• Usually fully-associative 

• Can be quite small! 
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TLB - Examples 

TLB sizes 

MIPS R10000         1996 64 entries 

Pentium 4 (Prescott) 2006 64 entries 

• One page table entry / page of data 

• Locality of reference 

• Programs spend a lot of time in same memory region 

TLB hit rates tend to be very high 

• 98% 

Compensate for cost of a miss 
(many memory accesses –  

but for only 2% of references to memory!) 
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TLB – Sequential access 

 Luckily, sequential access is fine! 

 Example: large (several MByte) matrix of 
doubles (8 bytes floating point values) 
 8kbyte pages => 1024 doubles/page 

 Sequential access, eg sum all values: 
 for(j=0;j<n;j++) 

   sum = sum + x[j] 
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Memory Hierarchy - Operation 
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ARM memory management 

Memory region types: 

section: 1 Mbyte block; 

large page: 64 kbytes; 

small page: 4 kbytes. 

An address is marked as section-mapped 
or page-mapped. 

Two-level translation scheme. 
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ARM address translation 

offset 1st index 2nd index 

physical address 

Translation table 

base register 

1st level table 
descriptor 

2nd level table 
descriptor 

concatenate 

concatenate 
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Elements of CPU performance 

Cycle time. 

CPU pipeline. 

Memory system. 
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Pipelining 

Several instructions are executed 
simultaneously at different stages of 
completion. 

Various conditions can cause pipeline 
bubbles that reduce utilization: 

branches; 

memory system delays; 

etc. 
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Performance measures 

Latency: time it takes for an instruction to 
get through the pipeline. 
CPI (cycle per instruction) 

Clock cycle 

Throughput: number of instructions 
executed per time period. 
IPC (instruction per cycle) 

Frequency 

Pipelining increases throughput without 
reducing latency. 
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ARM7 pipeline 

ARM 7 has 3-stage pipe: 

fetch instruction from memory; 

decode opcode and operands; 

execute. 
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ARM pipeline execution 

add r0,r1,#5 

sub r2,r3,r6 

cmp r2,#3 

fetch 

time 

decode 

fetch 

execute 

decode 

fetch 

execute 

decode execute 

1 2 3 
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Pipeline stalls 

If every step cannot be completed in the 
same amount of time, pipeline stalls. 

Bubbles introduced by stall increase 
latency, reduce throughput. 
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ARM multi-cycle LDMIA 

instruction 

fetch decode ex ld r2 ldmia r0,{r2,r3} 

sub r2,r3,r6 

cmp r2,#3 

ex ld r3 

fetch 

time 

decode ex sub 

fetch decode ex cmp 
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Control stalls 

Branches often introduce stalls (branch 
penalty). 

Stall time may depend on whether branch is 
taken. 

May have to squash instructions that 
already started executing. 

Don’t know what to fetch until condition is 
evaluated. 
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ARM pipelined branch 

time 

fetch decode ex bne bne foo 

sub 

  r2,r3,r6 
fetch decode 

foo add 

 r0,r1,r2 

ex bne 

fetch decode ex add 

ex bne 

For housekeeping tasks related  

to the execution of the branch 
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Delayed branch 

A solution to reduce branch penalty 

To increase pipeline efficiency, delayed 
branch mechanism requires n (1~2) 
instructions after branch always executed 
whether branch is executed or not. 
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Example: ARM execution time 

Determine execution time of FIR filter: 

 for (i=0; i<N; i++) 

    f = f + c[i]*x[i]; 

Only branch in loop test may take more 
than one cycle. 

BLT loop  takes 1 cycle best case, 3 worst 

case. 
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FIR filter ARM code 

 ; loop initiation code 

 MOV r0,#0  ; use r0 for i, set to 0 

 MOV r8,#0  ; use an index for arrays 

 ADR r2,N    ; get address for N 

 LDR r1,[r2] ; get value of N 

 MOV r2,#0 ; use r2 for f, set to 0 

 ADR r3,c    ; load r3 with C base 

 ADR r5,x ; load r5 with x base 

     

  

 ; loop body 

Loop   LDR r4,[r3,r8] ; get value of c[i] 

      LDR r6,[r5,r8] ; get value of x[i] 

      MUL r4,r4,r6   ; compute c[i]*x[i] 

      ADD r2,r2,r4   ; add into running sum 

      ; update loop counter and array index 

      ADD r8,r8,#4 ; add one to array index 

      ADD r0,r0,#1 ; add 1 to i 

      ; test for exit 

      CMP r0,r1 

      BLT loop       ; if i < N, continue loop 

loopend ... 

 

7 

4 

2 

2 or 4 
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FIR filter performance by block 

Block Variable # instructions # cycles 

Initialization tinit 7 7 

Body tbody 4 4 

Update tupdate 2 2 

Test ttest 2 [2,4] 

tloop = tinit+ N(tbody + tupdate) + (N-1) ttest,worst + ttest,best 

Loop test succeeds is worst case 

Loop test fails is best case 
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Memory system 

performance 

Caches introduce indeterminacy in 
execution time. 

Depends on order of execution. 

Cache miss penalty: added time due to a 
cache miss. 



Computers as Components 43 

CPU power consumption 

Most modern CPUs are designed with 
power consumption in mind to some 
degree. 

Power vs. energy: 

heat depends on power consumption; 

battery life depends on energy consumption. 
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CMOS power consumption 

Voltage drops: power consumption 
proportional to V2. 

Toggling: more activity means more 
power. 

Leakage: basic circuit characteristics; can 
be eliminated by disconnecting power. 
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CPU power-saving strategies 

Reduce power supply voltage. 

Run at lower clock frequency. 

Disable function units with control signals 
when not in use. 

Disconnect parts from power supply when 
not in use. 
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Power management styles 

Static power management: does not 
depend on CPU activity. 

Example: user-activated power-down mode. 

Dynamic power management: based on 
CPU activity. 

Example: disabling off function units. 


