
Computers as Components 1

Memory management units

Memory management unit (MMU)
translates addresses:

CPU
main

memory

memory

management

unit

logical

address
physical

address

Computers as Components 2

Access time comparison

 Price

HDD<<NAND<DRAM<NOR

Media Read Write Erase

DRAM 60ns (2B)
2.56us (512B)

60ns (2B)
2.56us (512B)

N/A

NOR flash 150ns (2B)
14.4us (512B)

211us (2B)
3.53ms (512B)

1.2s (128KB)

NAND flash 10.2us (2B)
35.9us (512B)

201us (2B)
226us (512B)

2ms (16KB,
128K)

Disk 12.5ms (512B)
(Average seek)

14.5ms (512B)
(Average seek)

N/A

Computers as Components 3

MMU

 Responsible for
 VIRTUAL  PHYSICAL
address mapping

 Sits between CPU and cache

 Cache operates on Physical Addresses
(mostly - some research on VA cache)

CPU

MMU

Cache
Main

Mem D or I

VA PA
PA

D

 or

 I

Computers as Components 4

Address translation

Requires some sort of register/table to
allow arbitrary mappings of logical to
physical addresses.

Two basic schemes:

segmented;

paged.

Segmentation and paging can be
combined (x86).

Computers as Components 5

Segmented vs paged

Two types of address translation

Segmenting

A large, arbitrarily sized region of memory

A segment: a start address, (nonuniform) size

Paging

Support small, equal sized region of memory

A page: a start address

Paged segment: fragmentation

Computers as Components 6

Segments and pages

memory

segment 1

segment 2

page 1

page 2

Computers as Components 7

Segment address translation

segment base address logical address

range

check

physical address

+

range

error
segment lower bound

segment upper bound

Computers as Components 8

Memory management tasks

Allows programs to move in physical
memory during execution (on-demand).

Allows virtual memory:

memory images kept in secondary storage;

images returned to main memory on demand
during execution.

Page fault: request for location not
resident in memory.

Computers as Components 9

Page table

Operating System allocates pages of
physical memory to users

OS constructs page tables

one for each user

Obtain page address from memory
address to select a page table entry

Computers as Components 10

Page table

Page table entry contains physical page
address if not a page fault

If a page fault, ?

Page fault is an exception

Page fault handler

Read the requested data from disc to main
memory

Update the MMU’s page table

Computers as Components 11

Paging – address translation

q-k

Computers as Components 12

Virtual memory space

Page Table Entries can also point to disc blocks
If Valid bit is set, page in memory (address is physical

page address);

If cleared, page “swapped out” (address is disc block
address)

MMU hardware generates page fault when swapped out
page is requested

Allows virtual memory space to be larger than
physical memory
Only “working set” is in physical memory

Remainder on paging disc

Computers as Components 13

Page fault handler

Page Fault Handler: part of OS kernel

Read page table (assumed to be in memory)

Finds usable physical page (limited resource)

LRU algorithm

Writes it back to disc if modified

Reads requested page from paging disc

Adjusts page table entries

Memory access re-tried

Computers as Components 14

Page Fault

q-k

7

2

1, 5

4

3

6

Computers as Components 15

Page table - practicalities

 Page size

8 kbyte pages  k = 13

 q = 32, q - k = 19

So page table size

219 ≈ 0.5 x 106 entries

Each entry 4 bytes

 0.5 x 106 × 4 ≈ 2 Mbytes!

 Page tables can take a lot of memory!

Larger page sizes reduce page table size
but can waste space (fragmentation)

Computers as Components 16

Page table - practicalities

Page tables are stored in main memory

They’re too large to be in smaller memories!

MMU needs to read page table for address
translation

 Address translation can require additional
memory accesses!

Computers as Components 17

Page Fault

can be a never ending story

Can be an expensive process!

Usual to allow page tables to be
swapped out too!

Page fault can be generated on the page
tables!

Computers as Components 18

MMU - Protection

Page table entries
Extra bits are added to specify access rights

Set by OS (software)

but

Checked by MMU hardware!

Access control bits

Read

Write

Read/Write

Execute only

Computers as Components 19

Alternative Page Table Styles

Inverted Page tables

One page table entry (PTE) / page of physical memory

MMU has to search for correct VA entry

PowerPC hashes VA  PTE address

• PTE address = h(VA)

• h – hash function

Hashing  collisions

Hash functions in hardware

 “hash” of n bits to produce m bits (Usually m << n)

Fewer bits reduces information content

Computers as Components 20

Inverted page table

Hash functions in hardware

“Fewer bits reduces information content

There are only 2m distinct values now!

 Some n-bit patterns will reduce to the same m-bit

patterns

Trivial example

2-bits  1-bit with xor

h(x1 x0) = x1 xor x0

y h(y)

00 0

01 1

10 1

11 0

Collisions

Computers as Components 21

Inverted page table

One page table entry per physical page

MMU has to search for correct VA entry
PowerPC hashes VA  PTE address

Hashing  collisions

PTEs are linked together
PTE contains tags (like cache) and link bits

MMU searches linked list to find correct entry

Smaller Page Tables / Longer searches

Computers as Components 22

Inverted page table

Computers as Components 23

Fast Address Translation

two+ memory accesses for each datum?

Page table 1 - 3 (single - 3 level tables)

Actual data 1

 system can be slowed down

 Translation Look-Aside Buffer

• Acronym: TLB or TLAB

• Small cache of recently-used page table entries

• Usually fully-associative

• Can be quite small!

Computers as Components 24

TLB - Examples

TLB sizes

MIPS R10000 1996 64 entries

Pentium 4 (Prescott) 2006 64 entries

• One page table entry / page of data

• Locality of reference

• Programs spend a lot of time in same memory region

TLB hit rates tend to be very high

• 98%

Compensate for cost of a miss
(many memory accesses –

but for only 2% of references to memory!)

Computers as Components 25

TLB – Sequential access

 Luckily, sequential access is fine!

 Example: large (several MByte) matrix of
doubles (8 bytes floating point values)
 8kbyte pages => 1024 doubles/page

 Sequential access, eg sum all values:
 for(j=0;j<n;j++)

 sum = sum + x[j]

Computers as Components 26

Memory Hierarchy - Operation

Computers as Components 27

ARM memory management

Memory region types:

section: 1 Mbyte block;

large page: 64 kbytes;

small page: 4 kbytes.

An address is marked as section-mapped
or page-mapped.

Two-level translation scheme.

Computers as Components 28

ARM address translation

offset 1st index 2nd index

physical address

Translation table

base register

1st level table
descriptor

2nd level table
descriptor

concatenate

concatenate

Computers as Components 29

Elements of CPU performance

Cycle time.

CPU pipeline.

Memory system.

Computers as Components 30

Pipelining

Several instructions are executed
simultaneously at different stages of
completion.

Various conditions can cause pipeline
bubbles that reduce utilization:

branches;

memory system delays;

etc.

Computers as Components 31

Performance measures

Latency: time it takes for an instruction to
get through the pipeline.
CPI (cycle per instruction)

Clock cycle

Throughput: number of instructions
executed per time period.
IPC (instruction per cycle)

Frequency

Pipelining increases throughput without
reducing latency.

Computers as Components 32

ARM7 pipeline

ARM 7 has 3-stage pipe:

fetch instruction from memory;

decode opcode and operands;

execute.

Computers as Components 33

ARM pipeline execution

add r0,r1,#5

sub r2,r3,r6

cmp r2,#3

fetch

time

decode

fetch

execute

decode

fetch

execute

decode execute

1 2 3

Computers as Components 34

Pipeline stalls

If every step cannot be completed in the
same amount of time, pipeline stalls.

Bubbles introduced by stall increase
latency, reduce throughput.

Computers as Components 35

ARM multi-cycle LDMIA

instruction

fetch decode ex ld r2 ldmia r0,{r2,r3}

sub r2,r3,r6

cmp r2,#3

ex ld r3

fetch

time

decode ex sub

fetch decode ex cmp

Computers as Components 36

Control stalls

Branches often introduce stalls (branch
penalty).

Stall time may depend on whether branch is
taken.

May have to squash instructions that
already started executing.

Don’t know what to fetch until condition is
evaluated.

Computers as Components 37

ARM pipelined branch

time

fetch decode ex bne bne foo

sub

 r2,r3,r6
fetch decode

foo add

 r0,r1,r2

ex bne

fetch decode ex add

ex bne

For housekeeping tasks related

to the execution of the branch

Computers as Components 38

Delayed branch

A solution to reduce branch penalty

To increase pipeline efficiency, delayed
branch mechanism requires n (1~2)
instructions after branch always executed
whether branch is executed or not.

Computers as Components 39

Example: ARM execution time

Determine execution time of FIR filter:

 for (i=0; i<N; i++)

 f = f + c[i]*x[i];

Only branch in loop test may take more
than one cycle.

BLT loop takes 1 cycle best case, 3 worst

case.

Computers as Components 40

FIR filter ARM code

 ; loop initiation code

 MOV r0,#0 ; use r0 for i, set to 0

 MOV r8,#0 ; use an index for arrays

 ADR r2,N ; get address for N

 LDR r1,[r2] ; get value of N

 MOV r2,#0 ; use r2 for f, set to 0

 ADR r3,c ; load r3 with C base

 ADR r5,x ; load r5 with x base

 ; loop body

Loop LDR r4,[r3,r8] ; get value of c[i]

 LDR r6,[r5,r8] ; get value of x[i]

 MUL r4,r4,r6 ; compute c[i]*x[i]

 ADD r2,r2,r4 ; add into running sum

 ; update loop counter and array index

 ADD r8,r8,#4 ; add one to array index

 ADD r0,r0,#1 ; add 1 to i

 ; test for exit

 CMP r0,r1

 BLT loop ; if i < N, continue loop

loopend ...

7

4

2

2 or 4

Computers as Components 41

FIR filter performance by block

Block Variable # instructions # cycles

Initialization tinit 7 7

Body tbody 4 4

Update tupdate 2 2

Test ttest 2 [2,4]

tloop = tinit+ N(tbody + tupdate) + (N-1) ttest,worst + ttest,best

Loop test succeeds is worst case

Loop test fails is best case

Computers as Components 42

Memory system

performance

Caches introduce indeterminacy in
execution time.

Depends on order of execution.

Cache miss penalty: added time due to a
cache miss.

Computers as Components 43

CPU power consumption

Most modern CPUs are designed with
power consumption in mind to some
degree.

Power vs. energy:

heat depends on power consumption;

battery life depends on energy consumption.

Computers as Components 44

CMOS power consumption

Voltage drops: power consumption
proportional to V2.

Toggling: more activity means more
power.

Leakage: basic circuit characteristics; can
be eliminated by disconnecting power.

Computers as Components 45

CPU power-saving strategies

Reduce power supply voltage.

Run at lower clock frequency.

Disable function units with control signals
when not in use.

Disconnect parts from power supply when
not in use.

Computers as Components 46

Power management styles

Static power management: does not
depend on CPU activity.

Example: user-activated power-down mode.

Dynamic power management: based on
CPU activity.

Example: disabling off function units.

