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4.6 Debugging embedded systems 

Challenges: 

target system may be hard to observe; 

target may be hard to control; 

may be hard to generate realistic inputs; 

setup sequence may be complex. 
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Host/target design 

Use a host system to prepare software for 
target system: 

target 

system 

host system 
serial line 

(USB, Ethernet) 

cpu 
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Host-based tools 

Cross compiler: 

compiles code on host for target system. 

Cross debugger: 

displays target state, allows target system to be 
controlled. 

by establishing a debug message protocol and using 
an interface like TCP/IP for communication between 
host development system and the target system, 
where the application to be debugged actually runs.  
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Software for debuggers 

A monitor, which is a small debug handler 
application, should run in user space on the 
target. It usually idles in user space memory 
and gets triggered by a dedicated debug 
interrupt.  

This is when it starts sending status information 
via a dedicated TCP/IP port to the host system 
where the debugger itself is waiting to pick up 
the data it receives.  
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Software for debuggers 

The debug interrupt could be caused by a 
breakpoint or data watchpoint being hit. It could 
also be triggered by an explicit action on the 
debug host.  

The developer telling the debugger to attach to 
a specific running process or telling the 
debugger to stop a specific thread.  
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Breakpoints 

A breakpoint allows the user to stop 
execution, examine system state, and 
change state. 

Replace the breakpointed instruction with 
a subroutine call to the monitor program. 

Can you set breakpoints in programs 
running out of ROM?   

   No, but ROM emulator can be used 
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ARM breakpoints 

0x400  MUL r4,r6,r6 

0x404  ADD r2,r2,r4 

0x408  ADD r0,r0,#1 

0x40c  B loop 

 

uninstrumented code 

 

0x400  MUL r4,r6,r6 

0x404  ADD r2,r2,r4 

0x408  ADD r0,r0,#1 

0x40c  BL bkpoint 

 

code with breakpoint 
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Breakpoint handler actions 

Save registers. 

Allow user to examine machine. 

Before returning, restore system state. 

(when the breakpoint is erased) Safest way to 
continue execution is to replace back the original 
instruction while fixing the return address. 

(when the breakpoint is to remain) Put another temp 
breakpoint after replacing back the original 
instruction. When reached to the temp breakpoint 
after executing the original instruction, replace back 
the original breakpoint, remove the temp breakpoint, 
and resume execution.  
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In-circuit emulators (ICE) 

A microprocessor in-circuit emulator is a 
specialized hardware tool to help debug in 
aspecially-instrumented microprocessor. 

Allows you to stop execution, examine CPU 
state, modify registers. 

the emulator is a bridge between your target 
and your PC, giving you both an interactive 
terminal peering deeply into the target, while 
providing a rich set of debugging resources.  
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Embedded ICE in ARM 
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Hardware or ISS target 
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History  

In the beginning, there was the ROM debug 
monitor.  

After that the in-circuit emulator (ICE) came. By 
using special bond-out versions of processors, an 
ICE provides capabilities far beyond those of a 
simple ROM monitor.  

Now, dedicated debug circuitry is integrated into 
their chips. Or, simply software debug capabilities 
are added to their existing JTAG ports. Collectively, 
we'll call these technologies on-chip debug. Such 
hardware-based capabilities take the place of a 
software debug monitor, yet offer some additional 
features previously associated only with emulators.  
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What does the debugger 

need to know? 

 Programmers’ model: 

System components 

System busses 

Base addresses 

Device registers 

 Debug access 
description: 

Debug access to 
processors 

Other debug devices 

Debug interconnections 

 

C
ro

s
s
 T

rig
g
e
r 

 In
te

rfa
c
e

 

C
ro

s
s
 T

rig
g
e
r 

 In
te

rfa
c
e

 

ARM 

core 
DSP 

AMBA AXI/AHB 

AHB trace DAP 
ETM 

 
ETM 

 

Trace 

buffer 

Trace bus (ATB) 

Trace 

port 
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JTAG 

Debug bus (APBv3) 

RAM 

 

ROM 

 

I/O 

device 

Cross trigger matrix 

0x10000000 0x0 0x30000000 

Reg 1 
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Logic analyzer 

A logic analyzer records the values of 
multiple channels into an internal memory 
and then display them on the display 

State mode 

Timing mode 
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Logic analyzer architecture 

UUT 
sample 

memory 
microprocessor 

controller 

system clock 

clock 

gen 

state or 

timing mode 

vector address 

display 
keypad 
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Bus analyzer 

Monitors bus transaction for a specific bus 
(AHB/APB or PLB/OPB) 
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State and timing modes 

Timing mode: several samples per period 

For glitch oriented debugging 

more memory 

State mode: one sample per period 

For sequential oriented problem 
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Boundary scan 

Simplifies testing of 
multiple chips on a 
board. 

Registers on pins can 
be configured as a 
scan chain. 

Used for debuggers, 
in-circuit emulators. 

JTAG 
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How to exercise code 

Run on host system. 

Run on target system. 

Run in instruction-level simulator. 

Run on cycle-accurate simulator. 

Run in hardware/software co-simulation 
environment. 
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Debugging real-time code 

Harder to diagnose 

Bugs in drivers can cause non-deterministic 
behavior in the foreground problem. 

Bugs may be timing-dependent. 
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4.7 System-level 

performance analysis 

Performance depends on all the elements 
of the system: 

CPU. 

Cache. 

Bus. 

Main memory. 

I/O device. 
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Instruction fetch 

Move data from memory to CPU to 
process it 

Read from memory. 

Transfer over the bus to the cache 

Transfer from the cache to CPU 

 
memory 

 

CPU 

cache 
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Bandwidth as performance 

Bandwidth applies to several components: 

Memory 

Bus 

CPU 

Different parts of the system run at 
different clock rates. 

Different components may have different 
widths (bus, memory). 
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Bandwidth and data transfers 

Per video frame: 320 x 240 x 3 = 230,400 
bytes. 

Transfer in 1/30 sec. 

Transfer 1 byte/msec, 0.23 sec per frame. 

Too slow. 

Increase bandwidth: 

Increase bus width. 

Increase bus clock rate. 
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H.264/AVC 720p 

One movie video without compression 

720 x 480 pixels per frame 

30 frames per second 

Total 90 minutes 

Full color 

 

 

Video compression technique is important  

 

The total quantity of data = 167.96 G Bytes !! 
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Bus bandwidth 

 T: # bus cycles. 

 P: time/bus cycle. 

 Total time for transfer: 

t = TP. 

 D: data payload length (cycles) 

 O1 + O2 = overhead O (cycles) 

Address, handshaking 

 N bytes to be transferred 

 Bus width: W bytes  

O1 D O2 

W 

Tbasic(N) = (D+O) x N/W 

Burst 횟수 
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Bus burst transfer bandwidth 

 T: # bus cycles. 

 P: time/bus cycle. 

 Total time for transfer: 

t = TP. 

 D: data payload length. 

 O1 + O2 = overhead O. 

 N bytes to be transferred 

B O 

W 

Tburst(N) = (BD+O) x N/(BW) 

2 1 

… 

Burst 횟수 
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Memory aspect ratios 

64 M 
16 M 

8 M 

1 4 8 
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Memory access times 

 Memory component access times comes from chip data 
sheet. 

Page modes allow faster access for successive 
transfers on same page. 

What if data doesn’t fit naturally into physical words: 

 A pixel: RGB 24-bit 

 an access for 24-bit-wide memory 

 3 accesses for 8-bit wide memory 

 how about 32-bit wide memory 
 waste one byte for each access 

 packing 
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Bus performance bottlenecks 

Transfer 320 x 240 
video frame @ 30 
frames/sec = 612,000 
bytes/sec. 

Is performance 
bottleneck bus or 
memory? 

memory 
 

CPU 
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Bus performance 

bottlenecks, cont’d. 

Bus: assume 1 MHz bus, D=1, O=3: 

Tbasic = (1+3)612,000/2 = 1,224,000 cycles 
= 1.224 sec. 

Memory: try burst mode B=4, width 
w=0.5. (assume 10MHz) 

Tmem = (4*1+4)612,000/(4*0.5) = 2,448,000 
cycles = 0.2448 sec. 
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Performance spreadsheet 

bus memory

clock period 1.00E-06 clock period 1.00E-08

W 2 W 0.5

D 1 D 1

O 3 O 4

B 4

N 612000 N 612000

T_basic 1224000 T_mem 2448000

t 1.22E+00 t 2.45E-02
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4.7.2 Parallelism 

Speed things up by 
running several units 
at once. 

DMA provides 
parallelism if CPU 
doesn’t need the bus: 

DMA + bus. 

CPU. 
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4.7.2 Parallelism 

Speed things up by 
running several units 
at once. 

DMA provides 
parallelism if CPU 
doesn’t need the bus: 

DMA + bus. 

CPU. 
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5. Program design and 

analysis 

Software components. 

Representations of programs 

Data flow 

Control flow 

Compilation 

Assembly and linking. 
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State machine 

Suitable to reactive systems 

Interactive 

At their own speed 

Making it wait 

Reactive 

Intended to be deterministic 

Cannot wait 

Real-time 

 value: logical correctness 

 when: timing constraints 
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State machine example 

idle 

buzzer seated 

belted 

no seat/- 

seat/timer on 

no belt 

and no 

timer/- 

no belt/timer on 

belt/- 
belt/ 

buzzer off 

Belt/buzzer on 

no seat/- 

no seat/ 

buzzer off 
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C implementation 

#define IDLE 0 

#define SEATED 1 

#define BELTED 2 

#define BUZZER 3 

switch (state) { 

 case IDLE: if (seat) { state = SEATED; timer_on = TRUE; } 

  break; 

 case SEATED: if (belt) state = BELTED; 

   else if (timer) state = BUZZER; 

  break; 

 … 

} 
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Signal processing and 

circular buffer 

Commonly used in signal processing: 

new data constantly arrives; 

each datum has a limited lifetime. 

 

 

 

Use a circular buffer to hold the data 
stream. 

d1 d2 d3 d4 d5 d6 d7 

time t time t+1 
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Circular buffer 

x1 x2 x3 x4 x5 x6 

t1 t2 t3 

Data stream 

x1 x2 x3 x4 

Circular buffer 

x5 x6 x7 
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Circular buffers 

Indexes locate currently used data, 
current input data: 

d1 

d2 

d3 

d4 

time t1 

use 

input d5 

d2 

d3 

d4 

time t1+1 

use 

input 
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Circular buffer 

implementation: FIR filter 

int circ_buffer[N], circ_buffer_head = 0; 

int c[N]; /* coefficients */ 

… 

int ibuf, ic; 

for (f=0, ibuff=circ_buff_head, ic=0; 

 ic<N; ibuff=(ibuff==N-1?0:ibuff++), ic++) 

f = f + c[ic]*circ_buffer[ibuf]; 
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Queues 

Elastic buffer: holds data that arrives 
irregularly. 
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Buffer-based queues 

#define Q_SIZE 32 

#define Q_MAX (Q_SIZE-1) 

int q[Q_MAX], head, tail; 

void initialize_queue() { head = 
tail = 0; } 

void enqueue(int val) { 

 if (((tail+1)%Q_SIZE) == 
head) error(); 

 q[tail]=val; 

 if (tail == Q_MAX) tail = 0; 
else tail++; 

} 

int dequeue() { 

 int returnval; 

 if (head == tail) error(); 

 returnval = q[head]; 

 if (head == Q_MAX)  head = 
0; 

  else head++; 

 return returnval; 

} 
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5.2 Models of programs 

Source code is not a good representation 
for programs: 

clumsy; 

leaves much information implicit. 

Compilers derive intermediate 
representations to manipulate and 
optimize the program. 
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Data flow graph 

DFG: data flow graph. 

Does not represent control. 

No conditional 

Models basic block:  

code with an entry and an exit. 

Describes the minimal ordering 
requirements on operations. 
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Single assignment form 

w = a + b; 

x =  a - c; 

y = x + d; 

x = a + c; 

z = y + e; 

 

original basic block 

w = a + b; 

x1 = a - c; 

y = x1+ d; 

x2 = a + c; 

z = y + e; 

 

single assignment form 
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Data flow graph 

x = a + b; 

y = c - d; 

z = x * y; 

y1 = b + d; 

 

First, convert it to single 
assignment form 

+ - 

+ * 

DFG 

a b c d 

z 

x 
y 

y1 
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DFGs and partial orders 

Partial order: 

a+b, c-d; b+d, x*y 

 

Can do pairs of operations 
in any order. 

+ - 

+ * 

a b c d 

z 

x 
y 

y1 
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Control-data flow graph 

CDFG: represents control and data. 

Uses data flow graphs as components. 

Two types of nodes: 

decision; 

data flow. 
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Data flow node 

Encapsulates a data flow graph: 

 

 

 

Write operations in basic block form for 
simplicity. 

x = a + b; 

y = c + d 
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Control 

cond 
T 

F 

Equivalent forms 

value 
v1 

v2 v3 

v4 
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CDFG example 

if (cond1) bb1(); 

 else bb2(); 

bb3(); 

switch (test1) { 

 case c1: bb4(); break; 

 case c2: bb5(); break; 

 case c3: bb6(); break; 

} 

cond1 bb1() 

bb2() 

bb3() 

bb4() 

test1 

bb5() bb6() 

T 

F 

c1 

c2 

c3 
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for loop 

for (i=0; i<N; i++) 

 loop_body(); 

for loop 

 

i=0; 

while (i<N) { 

 loop_body(); i++; } 

equivalent 

i<N 

loop_body() 

 T 

F 

i=0 
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Assembly and linking 

Last steps in compilation: 

HLL compile assembly 
assemble HLL HLL assembly assembly 

link executable link 
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ARM Development tools  

as sembler C compiler 

C source asm source 

.aof 

C libraries 

linker 

.axf 

ARMsd 

debug 

ARMulator 
development 

system model 

board 

object 

libraries 

aof - ARM Object Format 

axf - ARM Executive Format 
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Multiple-module programs 

Programs may be composed from several 
files. 

Addresses become more specific during 
processing: 

relative addresses are measured relative to 
the start of a module; 

absolute addresses are measured relative to 
the start of the CPU address space. 
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Assemblers 

Major tasks: 

generate binary for symbolic instructions; 

translate labels into addresses; 

handle pseudo-ops (data, etc.). 

Generally one-to-one translation. 

Assembly labels: 

            ORG 100 

label1 ADR r4,c 
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Symbol table 

  ADD r0,r1,r2 

xx ADD r3,r4,r5 

  CMP r0,r3 

yy SUB r5,r6,r7 

 

assembly code 

xx 0x8 

yy 0x10 

 

 

 

symbol table 
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Symbol table generation 

Use program location counter (PLC) to 
determine address of each location. 

Scan program, keeping count of PLC. 

Addresses are generated at assembly 
time, not execution time. 



 

Computers as Components 61 

Symbol table example 

  ADD r0,r1,r2 

xx ADD r3,r4,r5 

  CMP r0,r3 

yy SUB r5,r6,r7 

 

xx 0x8 

 yy 0x16 

 

PLC=0x4 

PLC=0x8 

PLC=0x12 

PLC=0x16 
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Two-pass assembly 

Pass 1: 

generate symbol table 

Pass 2: 

generate binary instructions 
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Relative address generation 

Some label values may not be known at 
assembly time. 

Labels within the module may be kept in 
relative form. 

Must keep track of external labels---can’t 
generate full binary for instructions that 
use external labels. 
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Pseudo-operations 

Pseudo-ops do not generate instructions: 

ORG sets program location. 

EQU generates symbol table entry without 
advancing PLC. 

Data statements define data blocks. 
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Linking 

Combines several object modules into a 
single executable module. 

Jobs: 

put modules in order; 

resolve labels across modules. 
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Externals and entry points 

Externals: 

Entry points 

Combines several object modules into a 
single executable module. 

Jobs: 

put modules in order; 

resolve labels across modules. 
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Externals and entry points 

// file 1 

label1   LDR r0,[r1] 

           … 

           ADR a 

           …   

           B label2 

           … 

var1 %1 

 

----------------- 

External ref entry points 

a   label1 

label2  var1 

//file2 

label2   ADR var1 

           … 

           B label3 

           … 

x  %1 

y  %1 

a  %10 

 

----------------- 

External ref entry points 

var1  label2 

label3  x 

   y 

   a 
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Module ordering 

Code modules must be placed in absolute 
positions in the memory space. 

Load map or linker flags control the order 
of modules. 

module1 

module2 

module3 



 

Computers as Components 69 

Dynamic linking 

Some operating systems link modules 
dynamically at run time: 

shares one copy of library among all 
executing programs; 

allows programs to be updated with new 
versions of libraries. 


