
 

Computers as Components 1 

4.6 Debugging embedded systems 

Challenges: 

target system may be hard to observe; 

target may be hard to control; 

may be hard to generate realistic inputs; 

setup sequence may be complex. 



 

Computers as Components 2 

Host/target design 

Use a host system to prepare software for 
target system: 

target 

system 

host system 
serial line 

(USB, Ethernet) 

cpu 



 

Computers as Components 3 

Host-based tools 

Cross compiler: 

compiles code on host for target system. 

Cross debugger: 

displays target state, allows target system to be 
controlled. 

by establishing a debug message protocol and using 
an interface like TCP/IP for communication between 
host development system and the target system, 
where the application to be debugged actually runs.  



 

Computers as Components 4 

Software for debuggers 

A monitor, which is a small debug handler 
application, should run in user space on the 
target. It usually idles in user space memory 
and gets triggered by a dedicated debug 
interrupt.  

This is when it starts sending status information 
via a dedicated TCP/IP port to the host system 
where the debugger itself is waiting to pick up 
the data it receives.  



 

Computers as Components 5 

Software for debuggers 

The debug interrupt could be caused by a 
breakpoint or data watchpoint being hit. It could 
also be triggered by an explicit action on the 
debug host.  

The developer telling the debugger to attach to 
a specific running process or telling the 
debugger to stop a specific thread.  



 

Computers as Components 6 

Breakpoints 

A breakpoint allows the user to stop 
execution, examine system state, and 
change state. 

Replace the breakpointed instruction with 
a subroutine call to the monitor program. 

Can you set breakpoints in programs 
running out of ROM?   

   No, but ROM emulator can be used 

 



 

Computers as Components 7 

ARM breakpoints 

0x400  MUL r4,r6,r6 

0x404  ADD r2,r2,r4 

0x408  ADD r0,r0,#1 

0x40c  B loop 

 

uninstrumented code 

 

0x400  MUL r4,r6,r6 

0x404  ADD r2,r2,r4 

0x408  ADD r0,r0,#1 

0x40c  BL bkpoint 

 

code with breakpoint 



 

Computers as Components 8 

Breakpoint handler actions 

Save registers. 

Allow user to examine machine. 

Before returning, restore system state. 

(when the breakpoint is erased) Safest way to 
continue execution is to replace back the original 
instruction while fixing the return address. 

(when the breakpoint is to remain) Put another temp 
breakpoint after replacing back the original 
instruction. When reached to the temp breakpoint 
after executing the original instruction, replace back 
the original breakpoint, remove the temp breakpoint, 
and resume execution.  



 

Computers as Components 9 

In-circuit emulators (ICE) 

A microprocessor in-circuit emulator is a 
specialized hardware tool to help debug in 
aspecially-instrumented microprocessor. 

Allows you to stop execution, examine CPU 
state, modify registers. 

the emulator is a bridge between your target 
and your PC, giving you both an interactive 
terminal peering deeply into the target, while 
providing a rich set of debugging resources.  



 

Computers as Components 10 

Embedded ICE in ARM 



 

Computers as Components 11 

Hardware or ISS target 



 

Computers as Components 12 

History  

In the beginning, there was the ROM debug 
monitor.  

After that the in-circuit emulator (ICE) came. By 
using special bond-out versions of processors, an 
ICE provides capabilities far beyond those of a 
simple ROM monitor.  

Now, dedicated debug circuitry is integrated into 
their chips. Or, simply software debug capabilities 
are added to their existing JTAG ports. Collectively, 
we'll call these technologies on-chip debug. Such 
hardware-based capabilities take the place of a 
software debug monitor, yet offer some additional 
features previously associated only with emulators.  



 

Computers as Components 13 

What does the debugger 

need to know? 

 Programmers’ model: 

System components 

System busses 

Base addresses 

Device registers 

 Debug access 
description: 

Debug access to 
processors 

Other debug devices 

Debug interconnections 

 

C
ro

s
s
 T

rig
g
e
r 

 In
te

rfa
c
e

 

C
ro

s
s
 T

rig
g
e
r 

 In
te

rfa
c
e

 

ARM 

core 
DSP 

AMBA AXI/AHB 

AHB trace DAP 
ETM 

 
ETM 

 

Trace 

buffer 

Trace bus (ATB) 

Trace 

port 

F
u
n
n
e
l 

JTAG 

Debug bus (APBv3) 

RAM 

 

ROM 

 

I/O 

device 

Cross trigger matrix 

0x10000000 0x0 0x30000000 

Reg 1 



 

Computers as Components 14 

Logic analyzer 

A logic analyzer records the values of 
multiple channels into an internal memory 
and then display them on the display 

State mode 

Timing mode 

 



 

Computers as Components 15 

Logic analyzer architecture 

UUT 
sample 

memory 
microprocessor 

controller 

system clock 

clock 

gen 

state or 

timing mode 

vector address 

display 
keypad 



 

Computers as Components 16 

Bus analyzer 

Monitors bus transaction for a specific bus 
(AHB/APB or PLB/OPB) 



 

Computers as Components 17 

State and timing modes 

Timing mode: several samples per period 

For glitch oriented debugging 

more memory 

State mode: one sample per period 

For sequential oriented problem 



 

Computers as Components 18 

Boundary scan 

Simplifies testing of 
multiple chips on a 
board. 

Registers on pins can 
be configured as a 
scan chain. 

Used for debuggers, 
in-circuit emulators. 

JTAG 



 

Computers as Components 19 

How to exercise code 

Run on host system. 

Run on target system. 

Run in instruction-level simulator. 

Run on cycle-accurate simulator. 

Run in hardware/software co-simulation 
environment. 



 

Computers as Components 20 

Debugging real-time code 

Harder to diagnose 

Bugs in drivers can cause non-deterministic 
behavior in the foreground problem. 

Bugs may be timing-dependent. 



 

Computers as Components 21 

4.7 System-level 

performance analysis 

Performance depends on all the elements 
of the system: 

CPU. 

Cache. 

Bus. 

Main memory. 

I/O device. 



 

Computers as Components 22 

Instruction fetch 

Move data from memory to CPU to 
process it 

Read from memory. 

Transfer over the bus to the cache 

Transfer from the cache to CPU 

 
memory 

 

CPU 

cache 



 

Computers as Components 23 

Bandwidth as performance 

Bandwidth applies to several components: 

Memory 

Bus 

CPU 

Different parts of the system run at 
different clock rates. 

Different components may have different 
widths (bus, memory). 



 

Computers as Components 24 

Bandwidth and data transfers 

Per video frame: 320 x 240 x 3 = 230,400 
bytes. 

Transfer in 1/30 sec. 

Transfer 1 byte/msec, 0.23 sec per frame. 

Too slow. 

Increase bandwidth: 

Increase bus width. 

Increase bus clock rate. 



 

Computers as Components 25 

H.264/AVC 720p 

One movie video without compression 

720 x 480 pixels per frame 

30 frames per second 

Total 90 minutes 

Full color 

 

 

Video compression technique is important  

 

The total quantity of data = 167.96 G Bytes !! 



 

Computers as Components 26 

Bus bandwidth 

 T: # bus cycles. 

 P: time/bus cycle. 

 Total time for transfer: 

t = TP. 

 D: data payload length (cycles) 

 O1 + O2 = overhead O (cycles) 

Address, handshaking 

 N bytes to be transferred 

 Bus width: W bytes  

O1 D O2 

W 

Tbasic(N) = (D+O) x N/W 

Burst 횟수 



 

Computers as Components 27 

Bus burst transfer bandwidth 

 T: # bus cycles. 

 P: time/bus cycle. 

 Total time for transfer: 

t = TP. 

 D: data payload length. 

 O1 + O2 = overhead O. 

 N bytes to be transferred 

B O 

W 

Tburst(N) = (BD+O) x N/(BW) 

2 1 

… 

Burst 횟수 



 

Computers as Components 28 

Memory aspect ratios 

64 M 
16 M 

8 M 

1 4 8 



 

Computers as Components 29 

Memory access times 

 Memory component access times comes from chip data 
sheet. 

Page modes allow faster access for successive 
transfers on same page. 

What if data doesn’t fit naturally into physical words: 

 A pixel: RGB 24-bit 

 an access for 24-bit-wide memory 

 3 accesses for 8-bit wide memory 

 how about 32-bit wide memory 
 waste one byte for each access 

 packing 



 

Computers as Components 30 

Bus performance bottlenecks 

Transfer 320 x 240 
video frame @ 30 
frames/sec = 612,000 
bytes/sec. 

Is performance 
bottleneck bus or 
memory? 

memory 
 

CPU 



 

Computers as Components 31 

Bus performance 

bottlenecks, cont’d. 

Bus: assume 1 MHz bus, D=1, O=3: 

Tbasic = (1+3)612,000/2 = 1,224,000 cycles 
= 1.224 sec. 

Memory: try burst mode B=4, width 
w=0.5. (assume 10MHz) 

Tmem = (4*1+4)612,000/(4*0.5) = 2,448,000 
cycles = 0.2448 sec. 



 

Computers as Components 32 

Performance spreadsheet 

bus memory

clock period 1.00E-06 clock period 1.00E-08

W 2 W 0.5

D 1 D 1

O 3 O 4

B 4

N 612000 N 612000

T_basic 1224000 T_mem 2448000

t 1.22E+00 t 2.45E-02



 

Computers as Components 33 

4.7.2 Parallelism 

Speed things up by 
running several units 
at once. 

DMA provides 
parallelism if CPU 
doesn’t need the bus: 

DMA + bus. 

CPU. 



 

Computers as Components 34 

4.7.2 Parallelism 

Speed things up by 
running several units 
at once. 

DMA provides 
parallelism if CPU 
doesn’t need the bus: 

DMA + bus. 

CPU. 



 

Computers as Components 35 

5. Program design and 

analysis 

Software components. 

Representations of programs 

Data flow 

Control flow 

Compilation 

Assembly and linking. 



 

Computers as Components 36 

State machine 

Suitable to reactive systems 

Interactive 

At their own speed 

Making it wait 

Reactive 

Intended to be deterministic 

Cannot wait 

Real-time 

 value: logical correctness 

 when: timing constraints 



 

Computers as Components 37 

State machine example 

idle 

buzzer seated 

belted 

no seat/- 

seat/timer on 

no belt 

and no 

timer/- 

no belt/timer on 

belt/- 
belt/ 

buzzer off 

Belt/buzzer on 

no seat/- 

no seat/ 

buzzer off 



 

Computers as Components 38 

C implementation 

#define IDLE 0 

#define SEATED 1 

#define BELTED 2 

#define BUZZER 3 

switch (state) { 

 case IDLE: if (seat) { state = SEATED; timer_on = TRUE; } 

  break; 

 case SEATED: if (belt) state = BELTED; 

   else if (timer) state = BUZZER; 

  break; 

 … 

} 



 

Computers as Components 39 

Signal processing and 

circular buffer 

Commonly used in signal processing: 

new data constantly arrives; 

each datum has a limited lifetime. 

 

 

 

Use a circular buffer to hold the data 
stream. 

d1 d2 d3 d4 d5 d6 d7 

time t time t+1 



 

Computers as Components 40 

Circular buffer 

x1 x2 x3 x4 x5 x6 

t1 t2 t3 

Data stream 

x1 x2 x3 x4 

Circular buffer 

x5 x6 x7 



 

Computers as Components 41 

Circular buffers 

Indexes locate currently used data, 
current input data: 

d1 

d2 

d3 

d4 

time t1 

use 

input d5 

d2 

d3 

d4 

time t1+1 

use 

input 



 

Computers as Components 42 

Circular buffer 

implementation: FIR filter 

int circ_buffer[N], circ_buffer_head = 0; 

int c[N]; /* coefficients */ 

… 

int ibuf, ic; 

for (f=0, ibuff=circ_buff_head, ic=0; 

 ic<N; ibuff=(ibuff==N-1?0:ibuff++), ic++) 

f = f + c[ic]*circ_buffer[ibuf]; 



 

Computers as Components 43 

Queues 

Elastic buffer: holds data that arrives 
irregularly. 



 

Computers as Components 44 

Buffer-based queues 

#define Q_SIZE 32 

#define Q_MAX (Q_SIZE-1) 

int q[Q_MAX], head, tail; 

void initialize_queue() { head = 
tail = 0; } 

void enqueue(int val) { 

 if (((tail+1)%Q_SIZE) == 
head) error(); 

 q[tail]=val; 

 if (tail == Q_MAX) tail = 0; 
else tail++; 

} 

int dequeue() { 

 int returnval; 

 if (head == tail) error(); 

 returnval = q[head]; 

 if (head == Q_MAX)  head = 
0; 

  else head++; 

 return returnval; 

} 



 

Computers as Components 45 

5.2 Models of programs 

Source code is not a good representation 
for programs: 

clumsy; 

leaves much information implicit. 

Compilers derive intermediate 
representations to manipulate and 
optimize the program. 



 

Computers as Components 46 

Data flow graph 

DFG: data flow graph. 

Does not represent control. 

No conditional 

Models basic block:  

code with an entry and an exit. 

Describes the minimal ordering 
requirements on operations. 



 

Computers as Components 47 

Single assignment form 

w = a + b; 

x =  a - c; 

y = x + d; 

x = a + c; 

z = y + e; 

 

original basic block 

w = a + b; 

x1 = a - c; 

y = x1+ d; 

x2 = a + c; 

z = y + e; 

 

single assignment form 

 



 

Computers as Components 48 

Data flow graph 

x = a + b; 

y = c - d; 

z = x * y; 

y1 = b + d; 

 

First, convert it to single 
assignment form 

+ - 

+ * 

DFG 

a b c d 

z 

x 
y 

y1 



 

Computers as Components 49 

DFGs and partial orders 

Partial order: 

a+b, c-d; b+d, x*y 

 

Can do pairs of operations 
in any order. 

+ - 

+ * 

a b c d 

z 

x 
y 

y1 



 

Computers as Components 50 

Control-data flow graph 

CDFG: represents control and data. 

Uses data flow graphs as components. 

Two types of nodes: 

decision; 

data flow. 



 

Computers as Components 51 

Data flow node 

Encapsulates a data flow graph: 

 

 

 

Write operations in basic block form for 
simplicity. 

x = a + b; 

y = c + d 



 

Computers as Components 52 

Control 

cond 
T 

F 

Equivalent forms 

value 
v1 

v2 v3 

v4 



 

Computers as Components 53 

CDFG example 

if (cond1) bb1(); 

 else bb2(); 

bb3(); 

switch (test1) { 

 case c1: bb4(); break; 

 case c2: bb5(); break; 

 case c3: bb6(); break; 

} 

cond1 bb1() 

bb2() 

bb3() 

bb4() 

test1 

bb5() bb6() 

T 

F 

c1 

c2 

c3 



 

Computers as Components 54 

for loop 

for (i=0; i<N; i++) 

 loop_body(); 

for loop 

 

i=0; 

while (i<N) { 

 loop_body(); i++; } 

equivalent 

i<N 

loop_body() 

 T 

F 

i=0 



 

Computers as Components 55 

Assembly and linking 

Last steps in compilation: 

HLL compile assembly 
assemble HLL HLL assembly assembly 

link executable link 



 

Computers as Components 56 

ARM Development tools  

as sembler C compiler 

C source asm source 

.aof 

C libraries 

linker 

.axf 

ARMsd 

debug 

ARMulator 
development 

system model 

board 

object 

libraries 

aof - ARM Object Format 

axf - ARM Executive Format 



 

Computers as Components 57 

Multiple-module programs 

Programs may be composed from several 
files. 

Addresses become more specific during 
processing: 

relative addresses are measured relative to 
the start of a module; 

absolute addresses are measured relative to 
the start of the CPU address space. 



 

Computers as Components 58 

Assemblers 

Major tasks: 

generate binary for symbolic instructions; 

translate labels into addresses; 

handle pseudo-ops (data, etc.). 

Generally one-to-one translation. 

Assembly labels: 

            ORG 100 

label1 ADR r4,c 



 

Computers as Components 59 

Symbol table 

  ADD r0,r1,r2 

xx ADD r3,r4,r5 

  CMP r0,r3 

yy SUB r5,r6,r7 

 

assembly code 

xx 0x8 

yy 0x10 

 

 

 

symbol table 



 

Computers as Components 60 

Symbol table generation 

Use program location counter (PLC) to 
determine address of each location. 

Scan program, keeping count of PLC. 

Addresses are generated at assembly 
time, not execution time. 



 

Computers as Components 61 

Symbol table example 

  ADD r0,r1,r2 

xx ADD r3,r4,r5 

  CMP r0,r3 

yy SUB r5,r6,r7 

 

xx 0x8 

 yy 0x16 

 

PLC=0x4 

PLC=0x8 

PLC=0x12 

PLC=0x16 



 

Computers as Components 62 

Two-pass assembly 

Pass 1: 

generate symbol table 

Pass 2: 

generate binary instructions 



 

Computers as Components 63 

Relative address generation 

Some label values may not be known at 
assembly time. 

Labels within the module may be kept in 
relative form. 

Must keep track of external labels---can’t 
generate full binary for instructions that 
use external labels. 



 

Computers as Components 64 

Pseudo-operations 

Pseudo-ops do not generate instructions: 

ORG sets program location. 

EQU generates symbol table entry without 
advancing PLC. 

Data statements define data blocks. 



 

Computers as Components 65 

Linking 

Combines several object modules into a 
single executable module. 

Jobs: 

put modules in order; 

resolve labels across modules. 



 

Computers as Components 66 

Externals and entry points 

Externals: 

Entry points 

Combines several object modules into a 
single executable module. 

Jobs: 

put modules in order; 

resolve labels across modules. 



 

Computers as Components 67 

Externals and entry points 

// file 1 

label1   LDR r0,[r1] 

           … 

           ADR a 

           …   

           B label2 

           … 

var1 %1 

 

----------------- 

External ref entry points 

a   label1 

label2  var1 

//file2 

label2   ADR var1 

           … 

           B label3 

           … 

x  %1 

y  %1 

a  %10 

 

----------------- 

External ref entry points 

var1  label2 

label3  x 

   y 

   a 



 

Computers as Components 68 

Module ordering 

Code modules must be placed in absolute 
positions in the memory space. 

Load map or linker flags control the order 
of modules. 

module1 

module2 

module3 



 

Computers as Components 69 

Dynamic linking 

Some operating systems link modules 
dynamically at run time: 

shares one copy of library among all 
executing programs; 

allows programs to be updated with new 
versions of libraries. 


