
2011-03-07 1

Chapter 6Chapter 6

ProfilingProfiling

2011-03-07 2

Simplified assembly instruction setSimplified assembly instruction set
design flow g

Design of
assembly Instruction set

Application assembly

instruction set
architecture

Instruction set
benchmarking

Application
profiling

2011-03-07 3

Contents
• What is profiling and why profiling
• Static profiling

– Coarse profiling and fine profiling
• Dynamic profilingDynamic profiling

– Instrumentation and dynamic profiling
• Evaluate profiling quality

2011-03-07 4

ASIP design: start from applications

• Divided ASIP design into two steps:
– 1: understand the functions of the application

and its requirements on performance. q p
– 2: find ways to minimize costs while meeting

requirements on flexibility and performance.requirements on flexibility and performance.
• Code profiling analyzes the application

d t t d it ticode structure and measures its execution
time and memory cost.

2011-03-07 5

Ways to understand applications

 ReadingImplementation Reading

Source code profiling

Reference assembly code profiling

Implementation
proposal

Design of the
Reference assembly code profiling

Benchmarking of designed assembly instruction set
instruction set

Release the
instruction set Level ofinstruction set Level of

understanding
Project progress

2011-03-07 6

Why profiling?

• Algorithm computing cost
• Memory access cost
• The cost of running program flow controlThe cost of running program flow control
• The execution cost for hardware and timing

resource managementresource management
• Cost to serve asynchronous tasks
• Synchronization and communication as well

other cost of parallelizationp

2011-03-07 7

What to profile

• Algorithm computing cost
• Memory access cost
• The cost of running program flow controlThe cost of running program flow control
• The execution cost for hardware and timing

resource managementresource management
• Cost to serve asynchronous tasks
• Synchronization and communication as well

other cost of parallelizationp

2011-03-07 8

To support instruction set design,
profiling should identify:

• The most MIPS consuming functions that should
be acceleratedbe accelerated

Th f l i f i h• The most frequently appearing functions that
should be accelerated

• Datapath architecture satisfying questions 1 and 2

• Memory and bus architecture supporting questions
1 and 2 with the minimum on-chip memory cost

2011-03-07 9

Static and dynamic profiling

• Static profiling is given by analyzing the
source code instead of running it
– WCET analysisWCET analysis

• Dynamic profiling is performed by executing
the source program and accumulating the p g g
execution time

2011-03-07 10

Profiling processProfiling process

1. Decide the scope of a profiler: not easy
2. Analyze source code (static profiling).
3 Prepare and configure the profiling tool3. Prepare and configure the profiling tool

(instrumentation).
4. Run dynamic profiling.
5 Analyze the results of static/dynamic5. Analyze the results of static/dynamic

profiling.

2011-03-07 11

Different kinds of profilingDifferent kinds of profiling

Source code profile Assembly language profile

Efficiency

AccuracyAccuracy

MATLAB C/C++ IR ASM

Dynamic profiling at IR level is possible if IR simulator is available
i h b i l dMemory accesses might be excessively counted

2011-03-07 12

Static profiling in 4 steps

1. Generate CFG (Control Flow Graph), identify
h b i bl k h lthe basic blocks are the lowest component.

2. Perform cost annotation on each branch of the
CFG.

3. Identify cost accumulation based on annotations y
on all branches of the CFG.

4 Analyze the result and find the cost of the true4. Analyze the result and find the cost of the true
critical path.

2011-03-07 13

Fine grained Static ProfilingFine-grained Static Profiling

i i d i• For instruction set design, expose
computation cost in a BB (Basic blocks)

• Counting operations in a BB including
+ * / and %– +, −, *, /, and %.

– logic operations &&, ||, and !.
– Bitwise operations ~, ^ , &, | , << , and >>
– Relation operators >, >=, < ,<=, ==, and !=p , , , , ,

• Memory accesses and communication should
b l fil dbe also profiled

2011-03-07 14

Start

B1 B3
a11

12

a13

15 16

Basic block 1:
10 MAC
20 ADD / SUB

pl
eB2

a12

a21

a15 a1620 ADD / SUB
15 scaling (shift)

xa
m

p

B4

a22

24

a23 a36

a55

n
ex

B7

B5

B6

a24

a31 a42 a32 a41 a51

a55
Fine-grained

profiling

A
nB7

B8

B9 B6

B11B10

a34 a33 a52

B8 B11B10

a43 a54

a35

a37

a53

B12

2011-03-07 15

Following the exampleFollowing the example
Coarse-grained profiling Fine-grained profiling
Basic block Total Arithmetic operations Logic / Shift MACBasic block Total Arithmetic operations Logic / Shift MAC

B1 45 20 15 10
B2 12 10 2 0B2 12 10 2 0
B3 3 2 1 0
B4 140 10 30 100B4 140 10 30 100
B5 8 4 2 2
B6 145 25 0 120B6 145 25 0 120
B7 122 2 10 110
B8 53 50 3 0
B9 14 10 2 2
B10 214 12 2 200
B11 11 8 1 2
B12 6 5 1 0

2011-03-07 16

Load/store and moveLoad/store and move

d h h hi• Depend very much on the target architecture
– Instruction set
– Register file

Data memory– Data memory
• Architecture independent load/store

– Input variables of a procedure
– Output of the procedureOutput of the procedure
– Changed global variables

Hidd l d/ t ill d ti bl• Hidden load/store: spilled vatiables

2011-03-07 17

Coarse-grained Static Profiling

• Coarse-grained: for architecture design
– fine-grained: for instruction set design

• Identify• Identify
– Time-consuming BBs
– Frequently executed BBs
– BBs that use large part of program memory
– BBs that use large part of data memory

2011-03-07 18

An example: IEEE802.11a/g:p g
appearance of BB × cost of BB

Tasks Algorithms MOPS Data types
Viterbi decoding Viterbi decoding algorithm 1700 Short integer

Receiving Filter Complex FIR convolution 960 Complex g p p

De-interleaving Permutation algorithm 260 Bit

Track fast fading FFT and vector diff 160 Complex

F di i F d i LMS 200 C lFading compensation F-domain LMS 200 Complex

Sampling phase offset FFT / phase decision 100 Complex

Demapping Decision FSM 80 Integer

Descrambling Polynomial algorithm 80 Bit

Packet detection Autocorrelation 80 Complex

Energ detection A tocorrelation 80 CompleEnergy detection Autocorrelation 80 Complex

IFFT/FFT 64 points FFT and IFFT 60 Complex

Payload Rotor Vector product 40 Complex

Normalization 1/x and vector product 40 Complex

TOTAL 3840

2011-03-07 19

Instrumentation for Coarse grainedInstrumentation for Coarse-grained
dynamic profiling y p g

• The purpose of instrumentation of a coarse-
grained profiling is to understand the
software system and the structure of the y
code at a higher level.

• It identifies the critical paths the scope of• It identifies the critical paths, the scope of
the algorithms, the general execution
behaviors of kernel algorithms, and the use
of hardware in general.g

2011-03-07 20

Instrumentation for Coarse grainedInstrumentation for Coarse-grained
dynamic profiling y p g

• Probes or instrumentations are inserted to:
– Check the frequency to reach each program

mode (behavior of the high-level CFG).(g)
– Check the cycle cost of each basic block.

Check the frequency of invocation of a basic– Check the frequency of invocation of a basic
block (low level paths).

2011-03-07 21

Instrumentation for Fine grainedInstrumentation for Fine-grained
dynamic profiling y p g

• To get the knowledge of appearance of
instructions inside the basic blocks

• To help decide:To help decide:
– Which appears frequently

hi h h ld b l d– Which should be accelerated

2011-03-07 22

Example: Fine-grained dynamic profiling p g y p g
Standards G.723 6.3kb/s

Operations in a voice frame Dynamic Static

16 bits Fractional MAC 222373 26481016 bits Fractional MAC 222373 264810

16 bits Integer MAC 58565 74768

32 bits arithmetic left shift 8550 10242

16 bits absolute value 6975 8945

32 bits absolute value 6937 9068

16 bits multiplication with 16 bits rounded result 3308 3478

32 bits arithmetic right shift 2625 4075

16 bits multiplication 32 bits result 2126 7076

32 bits subtraction 638 841

32 bits addition 557 682

32 bits normalization 378 782

32 bits by 16 bits multiplication 339 1406

16 bits multiplication 16 bits result 329 7544

TOTAL main arithmetic operations in a frame 313772 393968

The frame length (milliseconds) 30 30

TOTAL main arithmetic operations per voice sample 1307 1642

TOTAL arithmetic MOPS 10.46 13.14

2011-03-07 23

Hidden cost: Shall be estimated

• To prepare and terminate a subroutine call
• The cost of preparing and running HW

(DMA and other IO transactions)()
• The cost of the top-level management of a

programprogram
• The cost of thread and interrupt handling

Th f ll li i• The extra cost of parallelization
(synchronization, communication, etc.)

2011-03-07 24

Hidden cost: Shall be estimated
• Hidden computing costs cannot be exposed

b f l i bl l l dbefore analyzing assembly level codes.
• When HWMR (HW multiplexing ratio) is low, (p g) ,

the hidden cost could be a big trouble (?)
• Check the example: Running 802 11a and• Check the example: Running 802.11a and

Bluetooth in parallel in the book.
– Bluetooth data packet processing : 1 microsecond
– WLAN 802.11a processing: 4 microsecondsp g
– EDF scheduling for two tasks (250MHz)

Thread switching: 50 cycles– Thread switching: 50 cycles
– 100/(250x4) = 10%

2011-03-07 25

HW multiplexingHW multiplexing
A h i h h d d i• A technique to share a hardware device or a
functional unit (a full adder, a multiplier, a
register file, etc.) for different purposes at
different times.

• Hardware multiplexing can be implemented
ith b ft b fi i theither by software or by configuring the

hardware
• HWMR:

– machine clock rate / signal sampling rate (?)– machine clock rate / signal sampling rate (?)

2011-03-07 26

HW lti l iHW multiplexing

Input of function 1

The HW functional
unit to be multiplexed

Input of function 2 Output
p

Input of function 3
Control signal g

2011-03-07 27

ReviewReview
• The quantitative design of an assembly instruction set• The quantitative design of an assembly instruction set

requires deep understanding of applications.
P fili i t d t d li ti• Profiling is a way to understand applications.

• Static profiling: Code analysis

• Dynamic profiling: Running code using carefully
selected stimuliselected stimuli.

