Active and Passive Microwave Remote Sensing

Most citations come from the main text book: Jensen, J.R., 2007, Remote Sensing of the Environment: an Earth resource perspective, 2nd ed., Prentice Hall, 592p

- active microwave (RADAR), which is based on the transmission of long wavelength microwaves (e.g., 3-25cm) through the atmosphere and then recording the amount of energy backscattered from the terrain
- LIDAR which is based on the transmission of relatively short-wavelength laser light (e.g., 1040nm) and then recording the amount of light backscattered from the terrain
- SONAR which is based on the transmission of sound waves through a water column and then recording the amount of energy backscattered from the bottom or from objects within the water column.

Active and Passive Microwave Remote Sensing History of Active Microwave (RADAR) Remote Sensing

• Advantages of RADAR Remote Sensing

Active and Passive Microwave Remote Sensing History of Active Microwave (RADAR) Remote Sensing

• RADAR wavelengths and frequencies

Active and Passive Microwave Remote Sensing Active Microwave System Components

• The wavelength and frequency of commonly used RADAR bands

Active and Passive Microwave Remote Sensing Active Microwave System Components

• Geometric characteristics of radar imagery

Active and Passive Microwave Remote Sensing Active Microwave System Components

• Polarization of RADAR

Active and Passive Microwave Remote Sensing RADAR Interferometry

• RADAR Interferometry